

 ecc: the ELI-to-C Compiler

 User’s Guide

 December 2, 2013

1. Introduction

ecc is an ELI-to-C compiler which translates an ELI program into ANSI Standard C code. The translated C code

can then be compiled by a C compiler to produce machine code executable outside the ELI environment. In most

cases, the resulting C executable so produced runs much faster than the corresponding ELI source code runs under

ELI interpreter. However, the speedup of a compiled ELI program over the interpreted version greatly depends on

the style of the program being compiled. For an ELI programmer who intends to deliver his application developed

in ELI for outside use, the ability to distribute object code provides a mechanism for basic protection. This also

makes a piece of code developed in ELI much easier to be integrated into a large C/C++ based application.

The ecc compiler comes with substantial restrictions: it basically can only compile ELI programs using flat-arrays.

We will detail these in the next section. We intend to remove some of these restrictions in future versions of ecc. In

addition, we plan to incorporate automatic parallelization for multi-core machine capability into ecc in the near

future. We note that while iterative ELI programs gain most in speedup from compilation, only ELI programs

written in array-oriented style will benefit from automatic parallelization.

Section 3 will describe how to prepare ELI code for compilation, the compilation procedure and how to run the

compiled code in various platforms. No extra declarations are required for compiling ELI code, and in general no

modification to the ELI source code is needed. No knowledge of C is required to compile or run compiled code

other than typing in required command lines.

2. Compiler Restrictions

A compilation unit (cu for short) in ELI is a group of ELI defined functions with a main function fmain and all

defined functions called directly or indirectly by fmain. A cu is translated by the compiler into a single C source

file. A cu must be self-contained in the sense that any functions in it cannot access global variables but the main

function can take one or two parameters each of which can be a list of nested arrays. We recall that ELI provides a

system variable []IO, the index origin, which can be 0 or 1. One restriction is that one []IO value must be chosen

for the whole cu. From here on, when we say a compiler restriction, it applies to all (defined) functions in a cu.

1. nowhere the execute function !. can be used.

2. other than the parameter(s) to the main function, variables must be scalars or arrays (see ELI Primer).

3. currently, the data of type symbol, complex numbers and temporal data cannot be used*.

4. no system variable or system functions can be used.

5. [] input are not allowed.

6. the type and rank of a variable must not change thru all paths of execution.*

If a variable in a function violates the last restriction, it is usually the case that the same variable name has been used

for, in a real sense, two different variables. Hence, this violation can be avoided by renaming the variable at the

point where type/rank change takes place. We will soon remove restriction 3 as well as part of 4 by allowing []CR,

[]TS. There is an exception to restriction 2 for the main function fmain in a cu. Suppose

 larg fmain rarg (*larg can be empty*)

is the headline of fmain, then larg/rarg can be one-level nested lists, i.e. each can be of the form (v1;..;vn)

where for each vk,k=1,..n,is either a scalar or an array.

3. Preparing an ELI Program for Compilation

To prepare a program, i.e. a compilation unit or cu, for compilation, one put all functions in that cu into a ELI *.esf

file, say cmain.esf which can be just an ordinary *.txt file with file extention esf or a file resulting from

)out cmain

in an ELI workspace (see [1]). We note that it is ok for cmain.esf to contain functions not reachable from the

designated main function fmain of the cu, i.e. outside the cu. They just do not get compiled.

In addition to the function text included in cmain.esf, one needs to put two variables lparm and rparm, in

cmain.esf. These are the left and right arguments to the main function compile in ecc. The type designations of

a scalar or array in ELI are the following:

 boolean: ‘B’, integer:’I’, floating point: ‘E’, character: ‘C’

lparm is a character string whole initial portion is the name of the main function of the cu, then followed by two

characters indicating the types left and right parameters to the main function in the cu. For example,

 lparm<-‘fmain CI’

if the type of the left parameter to fmain is character and the type of the right parameter to fmain is integer. In case

the left or/and the right is a list, then the type indicators of the component elements of this list are presented with

surrounding parentheses. For example, suppose the right parameter above is a list whose components have types

boolean, floating point and integer, then we put the following in cmain.esf

 lparm<-‘fmain C(BEI)’

If fmain has no left parameter then the part indicating its type is empty, and in case it has no parameters at all, i.e.

cu has no input, lparm is simply ‘fmain’.

rparm is a vector of integers of the form

 qdio lshape rshape

where qdio is the desired []IO of the cu, lshape and rshape are the shape elements of the left and right parameters

to the main function (as for lparm one or both shape elements can be missing). A shape element is defined as

follows: a scalar is indicated by a 0; arrays are indicated by their rank followed by their shape. Any dimension of

the shape vector can be unknown at compile time, and is indicated by a _1 in that case. Thus a vector is specified as

 1 v1

where v1 is the length of the vector, and 1 _1 for a vector of unknown length. A matrix is specified as

 2 d1 d2

where d1 and d2 are the first and second dimensions of the array with _1 indicating unknown. In case one (or both)

parameter(s) is a one-level list, then in place of one shape element there is a sequence of shape elements each

indicating the shape of a list element which must be a scalar or an array. Note that, unlike in the case of type

specification, no parentheses are needed or allowed in rparm. For example, for fmain above, suppose its left

argument is a character vector of length 16, and the right argument is a list of a single bit, a floating point vector of

unknown length and a 2 by variable length integer matrix; then we put

 rparm<-0 1 16 0 1 _1 2 2 _1

in the cmain.esf assuming []IO is 0 for the cu.

4. Compiling and running Compiled code

One first downloads the ecc compiler package from the [download] section at site http://fastarray.appspot.com/. The

platform choices for the package are Windows, Linux and Mac OS. Unpack, and put the file into a designated

directory. The file should contain the ecc executable. Type

 ./ecc –u

to check compiler usage.

Now assume a source code cmain.esf has been prepared as in sect.3 and has been put in the same directory. The

command line to compile this code is the following

 ./ecc cmain

Once that line has been executed, if the ELI cu satisfies all the restrictions listed in sect.2, a C file fmain.c will

appear in the same directory as that of ecc (fmain is the name of the main function in the cu). In case compilation

is not successful, the compiler will emit appropriate error messages to help the user to modify his ELI source code,

and one just re-attempt the compilation process. In Windows, the prefix ‘./’ in the command line should be dropped,

or one can use another way to compile by double click on the icon denoting ecc and fill in the name of cmain.esf

in a box.

The next step is to compile the translated C code. Suppose we use the gcc compiler. First cd to where the translated

C code resides, and dependent files eli3lib.h, eli3lib.c and elimacros.h should be there too. Type (in Linux)

 gcc –o fmain fmain.c eli3lib.c -lm

Again, in Windows one can double click on fmain.c and choose compile option. This will produce an executable

file fmain.

To run that executable file in Windows, Linux or Mac OS, we need to prepare inmain.lef and inmain.rig data

files representing the input data for the left and the right parameters to the function fmain in cmain.esf. (again, if

there is no left argument, then inmain.lef is not present). The format of one of the files looks like below:

E 2 2 3

1 2 3 4 5 6

where the first line specifies the type and shape element of the argument, and from the second line on, these are the

raveled elements of the argument itself. The one above represents a 2 by 3 floating point matrix 2 3#!6.

The compiled code is executed by issuing

 fmain inmain

or

 fmain (* by default fmain takes fmain.lef and fmain.rig as input data files *)

One can prepare another set of input files inmain1.lef and inmain1.rig and run

 fmain inmain1

to get different result.

One convenient way to prepare the input files is to export a variable in an ELI workspace, and modify the exported

file’s content slightly as well as change its file extension. Suppose we already have a variable mat corresponding to

the example above in an ELI session or workspace, then do

)out inmain mat

will generate a file inmain.esf in the directory Program files/eli/ws of your machine; if the system is

directory not Windows the output file can be found in the same directory as that of eli. Its content is

&mat E 2 2 3

1 2 3 4 5 6

&

We’ll take &mat out of the first line and eliminate the last line (&), and rename its file extension to lef or rig. In

case of character data, the quote character ` in the beginning and the end of data should also be removed. Of course,

input data can come from other sources, one only need to add the extra top line specifying type and shape.

There are three examples in paper [2] at http://fastarray.appspot.com/. They are blackscholes, hotspot and k-means.

All these examples come from standard benchmarks, been rewritten in Eli and compiled by ecc. One can follow the

ReadMe in the download package to verify the workflow of the whole procedure.

References

[1] A Primer for ELI: a system for programming with arrays, last revision 2013.

[2] An ELI-to-C Compiler: Self-compilation and Performance, 2013.

