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Separation of Concerns

The Sad Reality A Closer Look at the Problem
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Why do We Have Bad Modularity

Are all software developers inept? Overarching Problem...
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= Limitations of programming languages

— You can’t decompose programs in enough pieces.

m Emergence of unforseen concerns Good modularity

— The customer wants another feature... is a relative concept
m Code decay
— If you play with it long enough you'll break it.
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Refactoring

Changing the structure
of a system without affecting
its behavior

Software system

Refactoring

Changing the structure
of a system without affecting
its behavior
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In the Rest of this Lecture...

1. Addressing relative modularity
2. Software evolution with FEAT

3. Demo and questions

artin P. Robillard 2005

Refactoring

Changing the structure
of a system without affecting
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Aspect-Oriented Programming Aspect-Oriented Programming

Putting crosscutting structure Putting crosscutting structure
in modules called aspects in modules called aspects

Aspect] Example from a drawing program

pointcut move():
1 gureElement.setxy(int, int)) ||
in) |1

Software system Software system
after() returning: moveQ) { dirty = true; }

From Getting Started with Aspect]
http://eclipse.org/aspectj/
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AOP & Refactoring Virtual Modularity to the Rescue

_|_

= Very good when: Idea: To use tools to
— The “crosscutting” nature of the concern is bridge the gap between

fEegUk:‘f i rostad i RN g conceptual and physical
— E.g., I'm interested In all calls to methods name mOdUIeS in a System

= Not so good when:
— The crosscutting nature of the concern is
complex, irregular, fuzzy, etc.

— I'm sometimes interested in this call to x() in Software system
method m() when it may be setting field f...
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The Concern Graph Approach Creating CGs with FEAT
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Creating CGs with FEAT
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2 Projection
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Modifying Systems Using CGs
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15 Participants - Autosave

Relations: Buffer.r.. View) in Autosave X

P == &#
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=] 0 Autosave

@ setInterval(int)

-1-@ Buffer

@ load{View, boolean)
@ recoverutosave(tisw)

=@ jedit

@ propertiesChanged()

® called by Buffer load{Yiew, boolean)
7 referenced by Buffer.load{View, boolean)

Participants |Interactions | Inconsiste... | | Projection | Relations
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What a Concern Graph Looks Like
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Modifying Systems Using CGs
¥ Concern Graph

Recovery
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Modifying Systems Using CGs
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What a Concern Graph Looks Like

recoverAutosave

an load(View view,
boolean reload)

if('reload && autosaveFile != null &&
autosaveFile.exists())
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Maintaining and Reusing CGs

m CGs describe code. What happens to a CG
if you change the code?

recover/.tosave(...)

Solution: Inconsistency
detection and recovery mechanism

CG = [query] + [subgraph]

Summary

m Potential solution: Virtual modules

— Models of how high-level concepts map to
software artifacts

= Desired Impact: To reduce the complexity
of changing software
— Less effort, fewer bugs

Summary

= Badly modularized systems are hard and
expensive to change

= Good modularity is relative

m Research problem: to find a cost-effective
way to bridge the gap between desired and
actual structure.
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