Separation of Concerns
Ideal Scenario

Virtual Modularity and Software System

Concern Modeling with I | I I | |I I | I | |
FEAT

Martin Robillard

School of Computer Science

McGill University \ Mudules

T concern

© Martin P. Robillard 2005

Separation of Concerns

The Sad Reality A Closer Look at the Problem

Software Syslem

L | -
I I| | ‘ I‘ | “ ; 10 Code to load a file from disk
‘ I ‘ l\\ Backup recovery code
| z A Error-handling code
/ :

Modules

\ Concern =

Why do We Have Bad Modularity

Are all software developers inept? Overarching Problem...

’

= Limitations of programming languages

— You can’t decompose programs in enough pieces.

m Emergence of unforseen concerns Good modularity

— The customer wants another feature... is a relative concept
m Code decay
— If you play with it long enough you'll break it.

© Martin P. Robillard 2005

|

For Example: A Word Processor

Display

-
10

I ol 1

Task:
Improve
performance

Task:
Add spell

checking = Software system
uffering

Compression

Refactoring

Changing the structure
of a system without affecting
its behavior

Software system

Refactoring

Changing the structure
of a system without affecting
its behavior

- - Software system

© Martin P. Robillard 2005

In the Rest of this Lecture...

1. Addressing relative modularity
2. Software evolution with FEAT

3. Demo and questions

artin P. Robillard 2005

Refactoring

Changing the structure
of a system without affecting
its behavior

Software system

Refactoring

Changing the structure
of a system without affecting
its behavior

L
T
e

L

Software system

Aspect-Oriented Programming Aspect-Oriented Programming

Putting crosscutting structure Putting crosscutting structure
in modules called aspects in modules called aspects

Aspect] Example from a drawing program

pointcut move():
1 gureElement.setxy(int, int)) ||
in) |1

Software system Software system
after() returning: moveQ) { dirty = true; }

From Getting Started with Aspect]
http://eclipse.org/aspectj/

© Martin P. Robillard 2005

AOP & Refactoring Virtual Modularity to the Rescue

|

= Very good when: Idea: To use tools to
— The “crosscutting” nature of the concern is bridge the gap between

fEegUk:‘f i rostad i RN g conceptual and physical
— E.g., I'm interested In all calls to methods name mOdUIeS in a System

= Not so good when:
— The crosscutting nature of the concern is
complex, irregular, fuzzy, etc.

— I'm sometimes interested in this call to x() in Software system
method m() when it may be setting field f...

© Martin P. Robillard © Martin P. Rol

The Concern Graph Approach Creating CGs with FEAT

ﬁ @ Software
2

Development s
works on e ¥ ¥
..

Environment

Add To FEAT Concern called by
Fan-out 3 overridden by

II: i I |||| =|I| ||| | Eanin » referenced by
11§ g ~ i

Concern System
Graph

© Martin P. Robillard 2005 © Martin P. Robillar

Creating CGs with FEAT

|

2 Projection

P % =8~ x

|Buffer.recover.ﬂutosave(\fiew) called by ALL j

=@ Buffer
-+ B recoverfutosavelyiew)

® called by
—-@ Buf

@

Fan-out
Fan-in

Projection |Relations

Add Elemnent to Concern

Add Relation to Concern

Modifying Systems Using CGs

|

15 Participants - Autosave

Relations: Buffer.r.. View) in Autosave X

P == &#

&

=] 0 Autosave

@ setInterval(int)

-1-@ Buffer

@ load{View, boolean)
@ recoverutosave(tisw)

=@ jedit

@ propertiesChanged()

® called by Buffer load{Yiew, boolean)
7 referenced by Buffer.load{View, boolean)

Participants |Interactions | Inconsiste... | | Projection | Relations

© Martin P. Robillard

What a Concern Graph Looks Like

© Martin P. Robillard 2005

Modifying Systems Using CGs
¥ Concern Graph

Recovery

© Martin P. Robillard 2005

Modifying Systems Using CGs

Edjre @Bufejea X 2 Aduave e

TgmeFl.

© Martin P. Rol

What a Concern Graph Looks Like

recoverAutosave

an load(View view,
boolean reload)

if('reload && autosaveFile != null &&
autosaveFile.exists())

© Martin P. Robillard 2005

Maintaining and Reusing CGs

m CGs describe code. What happens to a CG
if you change the code?

recover/.tosave(...)

Solution: Inconsistency
detection and recovery mechanism

CG = [query] + [subgraph]

Summary

m Potential solution: Virtual modules

— Models of how high-level concepts map to
software artifacts

= Desired Impact: To reduce the complexity
of changing software
— Less effort, fewer bugs

Summary

= Badly modularized systems are hard and
expensive to change

= Good modularity is relative

m Research problem: to find a cost-effective
way to bridge the gap between desired and
actual structure.

© Martin P. Robillard 2005

