
Lecture Notes on JUnit (COMP 303)
These slides extracted from material at
http://junit.sourceforge.net/doc/testinfected/testing.htm .
Slides compiled by Laurie Hendren, McGill University.

next [Slide 1]

JUnit is a simple framework for testing Java
programs

Encourages you to develop tests as you develop code.
Makes it easy to run test suites.
You may even want to write the test first.
You can download JUnit from http://junit.org

previous | start | next [Slide 2]

Example Problem: Representing a currency
class Money {
 private int fAmount;
 private String fCurrency;

 public Money(int amount, String currency) {
 fAmount= amount;
 fCurrency= currency;
 }

 public int amount() {
 return fAmount;
 }

 public String currency() {
 return fCurrency;
 }

 public Money add(Money m) {
 return new Money(amount()+m.amount(), currency());
 }
}

previous | start | next [Slide 3]

Want to test the add method - code a little -
test a little

Define a MoneyTest class that extends TestCase .
Define a method testSimpleAdd() that:

1. creates objects to use in the test case fixtures
2. code which exercises the objects in the fixture
3. code which verifies the result

previous | start | next [Slide 4]

Let’s see what it looks like:
public class MoneyTest extends TestCase {

 public void testSimpleAdd() {
 Money m12CHF= new Money(12, "CHF"); // (1)
 Money m14CHF= new Money(14, "CHF");
 Money expected= new Money(26, "CHF");
 Money result= m12CHF.add(m14CHF); // (2)
 Assert.assertTrue(expected.equals(result)); // (3)
 }
}

previous | start | next [Slide 5]

But wait, how do we check if two Money
objects are equal?

must override the method equals defined in Object
let’s write a test for it, before we actually code the method

public void testEquals() {
 Money m12CHF= new Money(12, "CHF");
 Money m14CHF= new Money(14, "CHF");

 Assert.assertTrue(!m12CHF.equals(null));
 Assert.assertEquals(m12CHF, m12CHF);
 Assert.assertEquals(m12CHF, new Money(12, "CHF")); // (1)
 Assert.assertTrue(!m12CHF.equals(m14CHF));
}

previous | start | next [Slide 6]

Now we have the test, let’s implement the
code
public class Money {
 // ... all the previous code
 public boolean equals(Object anObject) {
 if (anObject instanceof Money) {
 Money aMoney= (Money)anObject;
 return aMoney.currency().equals(currency())
 & & amount() == aMoney.amount();
 }
 return false;
}

Money is a value object, must first check it is of the correct type, and
then check the inside values.
go back and check we have handled all cases in the test.

previous | start | next [Slide 7]

Maybe add another case?
public void testEquals() {
 Money m12CHF= new Money(12, "CHF");
 Money m14CHF= new Money(14, "CHF");
 Object o = new Object(); // new fixture here

 Assert.assertTrue(!m12CHF.equals(null));
 Assert.assertEquals(m12CHF, m12CHF);
 Assert.assertEquals(m12CHF, new Money(12, "CHF"));
 Assert.assertTrue(!m12CHF.equals(m14CHF));
 Assert.assertTrue(!m12CHF.equals(o)); // new test case here
}

Note special assertEquals method. If not equal, tester will print
toString of each expression.
As an aside, always define a good toString method for every class.
Other assertXXXX variants, check out
http://junit.sourceforge.net/javadoc/junit/framework/Assert.html

previous | start | next [Slide 8]

Avoiding code duplication between different
tests

Note that there is some code duplication in creating the fixtures in the
two methods testSimpleAdd and testEquals .
Can put common code into methods setUp() and tearDown .

public class MoneyTest extends TestCase {
 private Money f12CHF;
 private Money f14CHF;

 protected void setUp() {
 f12CHF= new Money(12, "CHF");
 f14CHF= new Money(14, "CHF");
 }

 public void testEquals() {
 Assert.assertTrue(!f12CHF.equals(null));
 Assert.assertEquals(f12CHF, f12CHF);
 Assert.assertEquals(f12CHF, new Money(12, "CHF"));
 Assert.assertTrue(!f12CHF.equals(f14CHF));
 }

 public void testSimpleAdd() {
 Money expected= new Money(26, "CHF");
 Money result= f12CHF.add(f14CHF);
 Assert.assertTrue(expected.equals(result));
 }
}

previous | start | next [Slide 9]

Putting test cases into a suite of tests
Define a static method called suite() as follows:

If you want to explicitly list the tests to include the following in
MoneyTest :

 public static Test suite() {
 TestSuite suite= new TestSuite();
 suite.addTest(new MoneyTest("testEquals"));
 suite.addTest(new MoneyTest("testSimpleAdd"));
 return suite;
 }

If you want all methods starting with "test ".

 public static Test suite() {
 return new TestSuite(MoneyTest.class);
 }

previous | start | next [Slide 10]

Ok, now let’s run the test suite.
Make sure junit.jar is on your CLASSPATH, or explicitly give
the classpath on your call to java .
use the command-line version:

java junit.textui.TestRunner MoneyTest

or use the Swing version:

java junit.swingui.TestRunner MoneyTest

previous | start | next [Slide 11]

Some general testing practices
Martin Fowler says "Whenever you are tempted to type something into
a print statement or a debugger expression, write it as a test case
instead."
At first you will have to create a lot of fixtures, but then you will find
you have created all the infrastructure and new tests become easier to
add.
Try to write tests that you imagine to be useful. Look for the boundary
cases.
When to add tests:

During development: while you are designing your class (but
before implementing).
During debugging: when someone discovers a defect, first write a
test that should succeed if your program is working, then debug
until it succeeds.

When to run the tests:
All the time.
If you find newly introduced errors right away, then you have a
good idea where the error might be.
Fix errors right away, keep your test suite running.

previous | start [Slide 12]

	
	Lecture Notes on JUnit †COMP 303‡

	
	JUnit is a simple framework for testing Java programs

	
	Example Problem: Representing a currency

	
	Want to test the add method - code a little - test a little

	
	Let's see what it looks like:

	
	But wait, how do we check if two Money objects are equal?

	
	Now we have the test, let's implement the code

	
	Maybe add another case?

	
	Avoiding code duplication between different tests

	
	Putting test cases into a suite of tests

	
	Ok, now let's run the test suite.

	
	Some general testing practices

