
COMP520 - GoLite Type Checking Specification

Vincent Foley

March 2, 2016

1 Declarations

Declarations are the primary means of introducing new identifiers in the symbol table. In Go, top-level dec-
larations can come in any order; in GoLite, we will require that identifiers be declared before they are used.
This will prevent mututally recursive functions, however it should make the type checker implementation
easier.

The symbol table should start with a few pre-declared mappings. These mappings may be shadowed.

Identifier Type
true bool
false bool

1.1 Variable declarations

var x int

Adds the mapping x -> int to the symbol table.

var x int = expr

If expr is well-typed and its type is int, the mapping x -> int is added to the symbol table.

var x = expr

If expr is well-typed and its type is T, the mapping x -> T is added to the symbol table.

In all three cases, if x is already declared in the current scope, an error is raised. If x is already declared, but
in an outer scope, the new x -> T mapping will shadow the previous mapping.

Note: In Go, it is an error to declare a local variable and not use it. In GoLite, we will allow unused variables.
(If you wanted to comply with the Go specification, how would you make sure that all locals are used?)

1.2 Type declarations

type num int

1

Adds the type mapping num -> int to the symbol table. If num is already declared in the current scope,
an error is raised. If num is already declared, but in an outer scope, the new num -> int type mapping
will shadow the previous mapping.

1.3 Function declarations

func f(p1 T1, p2 T2, ..., pn Tn) Tr {
// statements

}

Given the declaration for f above, the mapping f -> (T1 * T2 * ... * Tn -> Tr) is added to
the symbol table. If f is already declared in the current scope (i.e. the global scope since we don’t have
nested functions), an error is raised.

For each formal parameter pi, the mapping pi -> Ti is added to the symbol table. If two parameters
have the same name, an error is raised. A formal parameter may have the same name as the function itself.

A formal parameter or a variable or type declared in the body of the function may have the same name as
the function.

// Valid
func f(f int) {

...
}

// Invalid
func f(f int) {

var f float64 // Redeclares f (the formal parameter)
...

}

A function declaration type checks if the statements of its body type check. Additionally, for functions that
return a value, there should be a well-typed return statement on every execution path.

Hint: you may want to add a new weeding pass to check for return statements on every path.

2 Statements

Type checking of a statement involves making sure that all its children are well-typed. A statement does not
have a type.

2.1 Empty statement

The empty statement is trivially well-typed.

2

2.2 break and continue

The break and continue statements are trivially well-typed.

2.3 Expression statement

expr

An expression statement is well-typed if its expression child is well-typed.

2.4 return

return

A return statement with no expression is well-typed if the enclosing function has no return type.

return expr

A return statement with an expression is well-typed if its expression is well-typed and the type of this
expression is the same as the return type of the enclosing function.

2.5 Short declaration

v1, v2, ..., vn := e1, e2, ..., en

A short declaration type checks if:

• All the expressions on the right-hand side are well-typed;

• At least one variable on the left-hand side is not declared in the current scope;

• The variables already declared in the current scope are assigned expressions of the same type. E.g.
if the symbol table contains the mapping v1 -> T1, then it must be the case that typeof(e1) =
T1.

If these conditions are met, the mappings v1 -> typeof(e1), v2 -> typeof(e2), . . . , vn ->
typeof(en) are added to symbol table.

Hint: short declarations are hard to get right, make sure you write a bunch of tests and compare against the
Go compiler and the reference GoLite compiler.

2.6 Declarations

Declaration statements obey the rules described in the previous section.

3

2.7 Assignment

v1, v2, ..., vn = e1, e2, ..., en

An assigment statement type checks if:

• All the expressions on the left-hand side are well-typed;

• All the expressions on the right-hand side are well-typed;

• For every pair of lvalue/expression, typeof(vi) = typeof(ei).

2.8 Op-assignment

v op= expr

An op-assignment statement type checks if:

• The expression on the left-hand side is well-typed;

• The expression on the right-hand side is well-typed;

• The operator op accepts two arguments of types typeof(v) and typeof(expr) and return a
value of type typeof(v).

2.9 Block

{
// statements

}

A block type checks if its statements type check. A block opens a new scope in the symbol table.

2.10 print and println

print(expr)
println(expr1, expr2)

A print statement type checks if all its expressions are well-typed and are of a base type (int, float64, bool,
string, rune).

2.11 For loop

for {
// statements

}

An infinite for loop type checks if its body type checks. The body opens a new scope in the symbol table.

4

for expr {
// statements

}

A "while" loop type checks if:

• Its expression is well-typed and has type bool;

• The statements type check.

The body opens a new scope in the symbol table.

for init; expr; post {
// statements

}

A three-part for loop type checks if:

• init type check;

• expr is well-typed and has type bool;

• post type checks;

• the statements type check.

The init statement can shadow variables declared in the same scope as the for statement. The body
opens a new scope in the symbol table and can redeclare variables declared in the init statement.

2.12 If statement

if init; expr {
// then statements

} else {
// else statements

}

An if statement type checks if:

• init type checks;

• expr is well-typed and has type bool;

• The statements in the first block type check;

• The statements in the second block type check.

The init statement can shadow variables declared in the same scope as the for statement. The bodies
both open a new scope in the symbol table and can redeclare variables declared in the init statement.

5

2.13 Switch statement

switch init; expr {
case e1, e2, ..., en:

// statements
default:

// statements
}

A switch statement with an expression type checks if:

• init type checks;

• expr is well-typed;

• The expressions e1, e2, . . . , en are well-typed and have the same type as expr;

• The statements under the different alternatives type check.

switch init; {
case e1, e2, ..., en:

// statements
default:

// statements
}

A switch statement without an expression type checks if:

• init type checks;

• The expressions e1, e2, . . . , en are well-typed and have type bool;

• The statements under the different alternatives type check.

3 Expressions

Type checking of an expression involves making sure that all its children are well-typed and also giving a
type to the expression itself. This type can should be stored (either in the AST itself or in an auxiliary data
structure) as it will be queried by the expression’s parent.

3.1 Literals

42 // int
1.62 // float64
’X’ // rune
"comp520" // string

The different literals have obvious types:

6

• Integer literals have type int

• Float literals have type float64

• Rune literals have type rune

• String literals have type string

3.2 Identifiers

sum

The type of an identifier is obtained by querying the symbol table. If the identifier cannot be found in the
symbol table, an error is raised.

3.3 Unary exression

unop expr

A unary expression is well-typed if its sub-expression is well-typed and has the appropriate type for the
operation. In GoLite, the type of a unary expression is always the same as its child.

• Unary plus: expr must be numeric (int, float64, rune)

• Arithmetic negation: expr must be numeric (int, float64, rune)

• Logical negation: expr must be a bool

• Bitwise negation: expr must be an integer (int, rune)

3.4 Binary expressions

expr binop expr

A binary expression is well-typed if its sub-expressions are well-typed, are of the same type and have
appropriate types for the operation. The type of the binary operation is detailed in the table below. The Go
specification (links below) explains which types are ordered, comparable, numeric, integer, etc.

7

arg1 op arg2 result
bool || bool bool
bool && bool bool
comparable == comparable bool
comparable != comparable bool
ordered < ordered bool
ordered <= ordered bool
ordered > ordered bool
ordered >= ordered bool
numeric or string + numeric or string numeric or string
numeric - numeric numeric
numeric * numeric numeric
numeric / numeric numeric
numeric % numeric numeric
integer | integer integer
integer & integer integer
integer << integer integer
integer >> integer integer
integer &ˆ integer integer
integer ˆ integer integer

Note: The Go specification states that if the divisor of a division is zero, the compiler should report an error.
In GoLite, we allow such expressions and let the executable program throw the appropriate error.

• http://golang.org/ref/spec#Arithmetic_operators

• http://golang.org/ref/spec#Comparison_operators

• http://golang.org/ref/spec#Logical_operators

3.5 Function call

expr(arg1, arg2, ..., argn)

A function call is well-typed if:

• expr is well-typed and has function type (T1 * T2 * ... * Tn) -> Tr;

• arg1, arg2, . . . , argn are well-typed and have types T1, T2, . . . , Tn respectively.

The type of a function call is Tr.

3.6 Indexing

expr[index]

Indexing into a slice or an array is well-typed if:

• expr is well-typed and has type []T or [N]T;

8

http://golang.org/ref/spec#Arithmetic_operators
http://golang.org/ref/spec#Comparison_operators
http://golang.org/ref/spec#Logical_operators

• index is well-typed and has type int.

The result of the indexing expression is T.

Note: The Go specification states that the compiler should to report an error if the index of an array (not of
a slice) evaluates to a statically-known constant that is outsides the bounds of the array. You do not have to
implement this at compile-time in GoLite, instead we’ll do the check at runtime.

3.7 Field selection

expr.id

Selecting a field in a struct is well-typed if:

• expr is well-typed and has type S;

• S is a struct type that has a field named id.

The type of a field selection expression is the type associated with id in the struct definition.

3.8 append

append(id, expr)

An append expression is well-typed if:

• id is found in the symbol table and maps to a []T;

• expr is well-typed and has type T.

The type of append is []T.

3.9 Type cast

type(expr)

A type cast expression is well-typed if:

• type is a int, float64, bool, rune, or a type alias that maps to one of those four;

• expr is well-typed and has a type listed in the previous bullet point.

The type of a type cast expression is type.

9

	Declarations
	Variable declarations
	Type declarations
	Function declarations

	Statements
	Empty statement
	break and continue
	Expression statement
	return
	Short declaration
	Declarations
	Assignment
	Op-assignment
	Block
	print and println
	For loop
	If statement
	Switch statement

	Expressions
	Literals
	Identifiers
	Unary exression
	Binary expressions
	Function call
	Indexing
	Field selection
	append
	Type cast

