COMP 520 Winter 2016 Abstract syntax trees (Part 2) (1)

Abstract Syntax Trees (part 2)

COMP 520: Compiler Design (4 credits)
Professor Laurie Hendren

hendren@cs.mcgill.ca

*)’ SCAN ‘

Y

’ PARSE ‘ >’ WEED ‘

Y
SYMBOL

RESOURCE (= TYPE

A

Y
CODE

Y

OPTIMIZE > EMIT >

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (2)

Today
e Introduction to the JOOS language
e More on building ASTs and weeding.

e Interesting examples from JOOS and OncoTime

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (3)

The Java language:
e was originally called Oak;
e was developed as a small, clean, OO language for programming consumer devices;
e was built into the Webrunner browser;
e matured into Java and HotJava;
® is now supported by many browsers, allowing Java programs to be embedded in WWW pages;
® is also used by web servers, even if the client user is not running Java; and

® s the implementation language for several large applications.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (4)

Basic compilation (. java — .class):
e Java programs are developed as source code for a collection of Java classes;
® each class is compiled into Java Virtual Machine (JVM) bytecode;
e bytecode is interpreted or JIT-compiled using some implementation of the JVM;
e Java supports a GUI; and

® many browsers have Java plugins for executing JVM bytecode.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (5)

Major benefits of Java:
® it's object-oriented;
e it's a “cleaner’ OO language than C++;
e it's portable (except for native code);
e it's distributed and multithreaded;
e it's secure;
e it supports windowing and applets;
e it's semantics is completely standardized;
e it has a huge class library; and

e it's finally finally finally officially open source.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (6)

Java security has many sources:
e programs are strongly type-checked at compile-time;
e array bounds are checked at run-time;
e null pointers are checked at run-time;
e there are no explicit pointers;
e dynamic linking is checked at run-time; and

e class files are verified at load-time.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (7)

Major drawbacks of Java:
® it misses some language features, e.g. genericity (until 1.5), multiple inheritance, operator overloading;

e it does not have one single standard (JDK 1.0.2vs. JDK 1.1.% vs....)and probably never

will;

e it can be slower than C++ for expensive numeric computations due to dynamic array-bounds

A4
72

checks: Z and

e it's not JOOS.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (8)

Goals in the design of JOOS:
e extract the object-oriented essence of Java;
e make the language small enough for course work, yet large enough to be interesting;
e provide a mechanism to link to existing Java code; and

e ensure that every JOOS program is a valid Java program, such that JOOS is a strict subset of Java.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (9)

Programming in JOOS:
e each JOOS program is a collection of classes;
e there are ordinary classes which are used to develop JOOS code; and

e there are external classes which are used to interface to Java libraries.

An ordinary class consists of:
e protected fields;
e constructors; and

e public methods.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (10)

S cat Cons.java

public class Cons {
protected Object first;
protected Cons rest;

public Cons (Object £, Cons r)
{ super(); first = £; rest = r; }

public void setFirst (Object newfirst)
{ £first = newfirst; }

public Object getFirst ()
{ return first,; }

public Cons getRest ()
{ return rest; }

public boolean member (Object item)
{ if (first.equals(item))
return true;
else if (rest==null)
return false;
else
return rest.member (item);

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (11)
}

public String toString()
{ 1f (rest==null)
return first.toString();
else
return first + " " + rest;

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (12)

Notes on the Cons example:
e fields in JOOS must be protected: they can only be accessed via objects of the class or its subclasses;

e constructors in JOOS must start by invoking a constructor of the superclass, i.e. by calling
super (.. .) where the argument types determine the constructor called;

e methods in JOOS must be public: they can be invoked by any object; and

e only constructors in JOOS can be overloaded, other methods cannot.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (13)

Other important things to note about JOOS:
e subclassing must not change the signature of a method;
e |ocal declarations must come at the beginning of the statement sequence in a block; and

e every path through a non-void method must return a value. (In Java such methods can also throw
exceptions.)

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (14)

The class hierarchies in JOOS and Java are both single inheritance, i.e. each class has exactly one
superclass, except for the root class:

ZN

7 X

The root class is called Ob ject, and any class without an explicit ext ends clause is a subclass of
Object.

COMP 520 Winter 2016

The definition of Cons is equivalent to:

public class Cons extends Object

{ ...}

which gives the tiny hierarchy:

Object

public String toString();
public boolean equals (Object obj);

Cons

public void setFirst (Object newfirst);
public Object getFirst();

public Cons getRest () ;

public boolean member (Object item);
public String toString();

Abstract syntax trees (Part 2) (15)

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (16)

The class Ob ject has two methods:
e toString () returns a string encoding the type and object id; and

e cquals () returns true if the object reference denotes the current object.

These methods are often overridden in subclasses:
e toString () encodes the value as a string; and

e cquals () decides a more abstract equality.

When overriding a method, the argument types and return types must remain the same.

When overriding equals (), hashcode () must also be overridden: equal objects must produce the
same hashcode.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (17)

Extending the Cons class:

$ cat ExtCons. java

public class ExtCons extends Cons ({
protected int intField;

public ExtCons (Object £, Cons r, int 1i)
{ super(f,r),;
intField = 1i;

}

public void setIntField(int i)
{ intField = 1i; }

public int getIntField()
{ return(intField); }

}

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (18)

The extended hierarchy:

Object
public String toString();
public boolean equals (Object obj);

Cons

public void setFirst (Object newfirst);
public Object getFirst();

public Cons getRest () ;

public boolean member (Object item);
public String toString();

ExtCons
public void setIntField(int 1);
public int getIntField();

COMP 520 Winter 2016

Using the Cons class:

$ cat UseCons. java
import Jjoos.lib. %;

public class UseCons {
public UseCons () { super(); }

public static void main(String argv([])

{ Cons 1;
JoosIO f£;
l = new Cons("a",new Cons("b",new Cons("c",null)));
f = new JoosIO();
f.println(l.toString());
f.println("first is " + l.getFirst());
f.println("second is " + l.getRest () .getFirst());
f.println("a member? " + 1l.member("a")),;
f.println("z member? " + 1l.member("z"));

}

A Java program (not an applet) requires amain () method.
It is necessary to import library functions suchas println ().

Abstract syntax trees (Part 2) (19)

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (20)

Compile and run the UseCons program:

$ javac joos/lib/x.java
$ joosc UseCons.java Cons.java
S java UseCons

The UseCons program builds these objects:

equals ()

setFirst ()

equals ()

setFirst ()

equals ()

setFirst ()

The output of the UseCons program is:

a b c

first is a
second 1is b

a member? true
z member? false

COMP 520 Winter 2016

Types in JOOS are either primitive types:
® boolean: true and false;
e int: —231..,23% 1,
e char: the ASCII characters;

or user-defined class types;
or externally defined class types:

e Object;

e Boolean;

e Integer;

e Character;
e String;

® BitSet;

® Vector;

e Date.

Note that boolean and Boolean are different.

Abstract syntax trees (Part 2) (21)

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (22)

Types in Java and JOOS:
e Java is strongly-typed;
e Java uses the name of a class as its type;
® given a type of class C, any instance of class C or a subclass of C is a permitted value;

e there is “down-casting” which is automatically checked at run-time:
SubObject subobj (SubObject) obj;

e there is an explicit instanceof check:

if (subobj instanceof Object)
return true;

else
return false;

e and finally some type-checking must be done at run-time.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (23)

Statements in JOOS:

[expression statements:
X =y + z;
X =y = zZ;
a.toString(1);
new Cons ("abec",null);

® block statements:
{ int x;
x = 3;

}

e control structures:

if (1l.member("z")) {
// do something

}

while (1 != null) {
1l = 1l.getRest(); // do something
}

® return statements:
return;

return true;

COMP 520 Winter 2016

Expressions in JOOS:

® constant expressions:

true, 13, ’"\n’,

e variable expressions:

i, first, rest

e binary operators:

® unary operators:

"abc" ,

> <= >= jnstanceof

null

Abstract syntax trees (Part 2) (24)

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (25)
Expressions in JOOS:

® class instance creation:
new Cons ("abc",null)

® cast expressions:

(String) getFirst (list)
(char) 119

e method invocation:

l.getFirst ()
super.getFirst () ;
l.getFirst () .getFirst () ;
this.getFirst () ;

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (26)
Abstract methods and classes:
e a method may be abstract, where no implementation is given;
e if a class contains one or more abst ract methods, it must be defined as an abstract class;
e the constructor of an abst ract class cannot be invoked;

® abstract classes are used to define “frameworks”.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (27)

import Jjoos.lib. %;

public abstract class Benchmark ({
protected JoosSystem s; // JOOS interface to the Java System Class

public Benchmark ()
{ super(); s = new JoosSystem(); }

public abstract void benchmark();// Hook for actual benchmark

public int myrepeat (int count) // driver to time repeated executions
{ int start;
int 1,
start = s.currentTimeMillis () ;
i=20;
while (i < count) {
this.benchmark () ;
i = 1i+1;
}
return s.currentTimeMillis ()-start;
}
}

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (28)

public class ExtBenchmark extends Benchmark ({
public ExtBenchmark () ({
super () ;
}
public void benchmark() {} // timing an empty method

}

import Jjoos.lib. %;
public class UseBenchmark ({
public UseBenchmark () { super(); 1}
public static void main (String argv][])
{ ExtBenchmark b;
JoosIO f£;
int reps;
int time;
b = new ExtBenchmark();
f = new JoosIO();
f.print ("Enter number of repetitions: ");
reps = f.readInt();
time = b.myrepeat (reps);
f.println("time is " + time + " millisecs");

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (29)
Final methods and classes:
e the final keyword is used when no modifications to functionality are allowed;
e a final method cannot be overridden by subclasses;
e a final class cannot be extended;
e final classes typically belong to libraries: Boolean, Integer, and St ring (for security

purposes).

Note that JOOS does not provide final fields like Java does.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (30)

Synchronized methods:
e Java and JOOS programs can start multiple threads;

® sometimes access to a shared resource must be protected, such that only one thread is in a critical
section at a time;

e cach object has an associated lock; and

e JOOS provides synchronized methods, such that when a thread invokes a synchronized
method on an object, the thread does not enter the method until it has successfully acquired the target
object’s lock and it holds on to the lock until the method execution completes.

Note that JOOS does not provide synchronized blocks like Java does.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (31)

public class SyncBox {
protected Object boxContents;

public SyncBox() { super(); }

// return contents of the box, set contents to null
public synchronized Object get ()
{ Object contents;

contents = boxContents;

boxContents = null;

return contents;

}

// put something in the box,
// if the box already has something in it, return false

// else £ill the box, return true
public synchronized boolean put (Object contents)
{ 1f (boxContents != null) return false;
boxContents = contents;
return true;

}

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (32)

External classes in Java:
e Java compiles programs with respect to a set of libraries of precompiled class files; and

e when a Java compiler encounters an unknown method, it searches the precompiled bytecode for an
implementation.

External classes in JOOS:
e JOOS compiles programs with respect to a set of libraries of precompiled class files; but

e external classes must be explicitly presented to the JOOS compiler.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (33)

S cat joos/extern/javalib. joos

[...]
// Jjava.lang.String
extern public final class String in "java.lang" {

public String();
public String(String value);
public String(StringBuffer buffer);
public String vlaueOf (boolean b);
public char charAt (int index);
public int compareTo (String anotherString);
public boolean endsWith (String suffix);
public boolean equals (Object ob7j);
public boolean equalsIgnoreCase (String anotherString);
public int indexOf (String str, int fromIndex);
public int lastIndexOf (String str, int fromIndex);
public 1int length();
public boolean regionMatches (boolean ignoreCase,
int toffset, String other, int ooffset, int len);
public boolean startsWith (String prefix, int toffset);
public String substring(int beginlIndex, int endIndex);
public String concat (String str);
public String toLowerCase();
public String toUpperCase();
public String toString();

public

-]

String trim();

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (34)

External declarations for Java libraries:
e Jjavalilb. joos

e appletlib. joos

e awtlib. joos

e netlib. joos

e BigDecimal. Joos

External declarations for JOOS libraries:

® jooslib. joos

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (35)

Example JOOS programs:
e AppletGraphics: simple graphics programs to be displayed via a browser;
e AwtDemos: examples of using the Abstract Windows Toolkit;
e TmageDemos: two techniques for displaying an animation;
e Network: simple examples of interacting over the network;
e Simple: a relatively large collection of simple programs;
e Threads: simple multithreaded programs; and

e WIGapplets: examples of WIG applets.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (36)

When compared to Java, JOOS:

e does not support packages, interfaces, exceptions, some control structures, mixed statements and
declarations;

e has only protected fields and public methods;

e does not allow overloading of methods;

e does not support arrays;

e does not allow static methods;

e supportsonly int, boolean, and char as primitive types; and

e uses external class declarations.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (37)

Converting between JOOS & Java source code (* . Java, . Joos), Jasmin assembler (x . J) and
Java bytecode (. class):

dejava

Java
bytecode

javac

joosc simply calls Joos and then Jasmain.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (38)

Now lets look at some highlights of the JOOS scanner/parser/AST:

e Remember that there are three implementations of JOOS (A- version), available on the web site:
flex/bison, SableCC2 and SableCC3.

e We will do one assignment on the JOOS compiler (peephole optimization of bytecode).

COMP 520 Winter 2016

The JOOS compiler has the AST node types:

PROGRAM CLASSFILE CLASS
FIELD TYPE LOCAL
CONSTRUCTOR METHOD FORMAL
STATEMENT EXP RECEIVER
ARGUMENT LABEL CODE

with many extra fields:

typedef struct METHOD {
int lineno;
char *name;
ModifierKind modifier;
int localslimit; /* resource =*/
int labelcount; /* resource */
struct TYPE *xreturntype;
struct FORMAL xformals;
struct STATEMENT xstatements;
char xsignature; /* code =*/
struct LABEL xlabels; /* code x/
struct CODE *opcodes; /* code =*/
struct METHOD =xnext;

} METHOD;

Abstract syntax trees (Part 2) (39)

COMP 520 Winter 2016

The JOOS constructors are as we expect:

METHOD *makeMETHOD (char *name,
FORMAL xformals,

{ METHOD *m;
m = NEW (METHOD) ;
m—->lineno lineno;
m—>name = name;
m—>modifier = modifier;
m—->returntype =
m—>formals = formals;
m—>statements =
m->next = next;
return m;

}

STATEMENT *makeSTATEMENTwhile (EXP *condition,

{ STATEMENT +*s;
s = NEW (STATEMENT) ;
s—>lineno lineno;
s—>kind = whileK;
s—->val.whileS.condition
s—>val .whileS.body = body;
return s;

ModifierKind modifier,
STATEMENT xstatements,

returntype;

statements;

condition;

Abstract syntax trees (Part 2) (40)

TYPE *returntype,
METHOD *next)

STATEMENT *body)

COMP 520 Winter 2016

Highlights from the JOOS scanner:

[\t]1+

\n
\/\/[*\n]*
abstract
boolean
break
byte

np=n
"g&"

" l l "
"+"

/* ignore */;
lineno++;
/* ignore x/;

return
return
return
return

return
return
return
return
return

t ABSTRACT;
t BOOLEAN;
t BREAK;
tBYTE;

tNEQ;
tAND,
tOR;
I+I;

4 r .

=

Abstract syntax trees (Part 2) (41)

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (42)

Setting values

0] ([1-9]1[0-9]*) {yylval.intconst = atoi(yytext);
return tINTCONST; }

true {yylval.boolconst = 1;
return tBOOLCONST; }
false {yylval.boolconst = 0;

return tBOOLCONST; }
\"([*\"])*\" {yylval.stringconst =
(charx)malloc (strlen (yytext)-1);
yytext [strlen (yytext)-1] = "\0’;
sprintf (yylval.stringconst, "$s",yytext+l);
return tSTRINGCONST; }

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (43)

Highlights from the JOOS parser:

method : tPUBLIC methodmods returntype
tIDENTIFIER ’' ('’ formals ')’ ’'{’ statements '}’
{$$ = makeMETHOD ($4,$2,$3,$6,$9,NULL) ; }
| tPUBLIC returntype
tIDENTIFIER ’' ('’ formals ')’ ’'{’ statements '}’
{$$ = makeMETHOD ($3, modNONE, $3, $5, $8, NULL) ; }
| tPUBLIC tABSTRACT returntype
tIDENTIFIER ' ('’ formals ')’ ’;'
{$$ = makeMETHOD ($4, modABSTRACT, $3, $6, NULL, NULL) ; }
| tPUBLIC tSTATIC tVOID
tMAIN ' (' mainargv ')’ ’'{’ statements '}’
{$$ = makeMETHOD ("main", modSTATIC,
makeTYPEvoid () ,NULL, $9,NULL) ; }

14

whilestatement : tWHILE ’' (' expression ')’ statement
{$$ = makeSTATEMENTwhile ($3,$5);}

.
’

Notice the conversion from concrete syntax to abstract syntax that involves dropping unnecessary tokens.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (44)

Building LALR(1) lists:
formals : /* empty =*/
{$$ = NULL;}
| neformals

{$$ = $1;}

14

neformals : formal
{$$ = $1;}
| neformals ’',’ formal
{$$ = $3; S->next = $1;}
formal : type tIDENTIFIER
{$$ = makeFORMAL ($2, $1,NULL) ; }

The lists are naturally backwards.

COMP 520 Winter 2016

Using backwards lists:

typedef struct FORMAL {
int lineno;
char *name;
int offset; /* resource */
struct TYPE xtype;
struct FORMAL xnext;
} FORMAL;

void prettyFORMAL (FORMAL xf)

{ if (£!'=NULL) {
prettyFORMAL (f->next) ;
if (f->next!=NULL) printf (",
prettyTYPE (f->type);
printf (" %s", £f->name);

}
}

What effect would a call stack size limit have?

")

Abstract syntax trees (Part 2) (45)

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (46)

The JOOS grammar calls for:

castexpression
"(’ identifier ')’ unaryexpressionnotminus

but that is not LALR(1).

However, the more general rule:

castexpression
"(’ expression ')’ unaryexpressionnotminus

is LALR(1), so we can use a clever action:

castexpression
"(’ expression ')’ unaryexpressionnotminus
{if ($2->kind!=idK) yyerror ("identifier expected");
S = makeEXPcast ($2->val.idE.name, $4);}

4

Hacks like this only work sometimes.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (47)

LALR(1) and Bison are not enough when:
® our language is not contexi-free;
e our language is not LALR(1) (for now let’s ignore the fact that Bison now also supports GLR); or
e an LALR(1) grammar is too big and complicated.

In these cases we can try using a more liberal grammar which accepts a slightly larger language.
A separate phase can then weed out the bad parse trees.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (48)

Example: disallowing division by constant O:

exp : tIDENTIFIER
tINTCONST
exp '*’ exp
exp '/’ pos
exp '+’ exp
exp '-' exp
I(I exp I)I

pos : tIDENTIFIER
tINTCONSTPOSITIVE

exp 'x’ exp

exp '/’ pos

exp '+’ exp

exp '-' exp

’ (l pos 4) ’

We have doubled the size of our grammar.
This is not a very modular technique.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (49)

Instead, weed out division by constant O:

int zerodivEXP (EXP xe)
{ switch (e—->kind) {
case idK:
case intconstK:
return O;
case timeskK:
return zerodivEXP (e->val.timesE.left) ||
zerodivEXP (e->val.timesE.right);
case divkK:
if (e->val.divE.right->kind==intconstK &é&
e—->val.divE.right->val.intconstE==0) return 1;
return zerodivEXP (e->val.divE.left) ||
zerodivEXP (e->val.divE.right);
case pluskK:
return zerodivEXP (e->val.plusE.left) ||
zerodivEXP (e->val.plusE.right);
case minusk:
return zerodivEXP (e->val.minusE.left) ||
zerodivEXP (e—>val .minusE.right);

}
}

A simple, modular traversal.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (50)

Requirements of JOOS programs:

e all local variable declarations must appear at the beginning of a statement sequence:
int 1i;
int j;
i=17;
int b; /* illegal */
b=1i,;

e cvery branch through the body of a non-vo1d method must terminate with a return statement:

boolean foo (Object x, Object y) {
if (x.equals(y))
return true;
} /* illegal =*/

Also may not return from within a while-loop etc.
These are hard or impossible to express through an LALR(1) grammar.

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (51)

Weeding bad local declarations:

int weedSTATEMENTlocals (STATEMENT *s,int localsallowed)
{ int onlylocalsfirst, onlylocalssecond;
if (s!=NULL) ({
switch (s—->kind) {
case skipK:
return O;
case localk:
if ('localsallowed) {
reportError ("illegally placed local declaration",s—->1lineno);
}
return 1;
case expkK:
return O;
case returnkK:
return O;
case sequencek:
onlylocalsfirst =
weedSTATEMENTlocals (s—>val.sequenceS.first,localsallowed);
onlylocalssecond =
weedSTATEMENTlocals (s—>val. sequenceS.second, onlylocalsfirst);
return onlylocalsfirst && onlylocalssecond;
case 1ifK:
(void) weedSTATEMENTlocals (s—>val.ifS.body, 0);
return O;

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (52)

case ifelseK:
(void) weedSTATEMENTlocals (s—>val.ifelseS.thenpart, 0);
(void) weedSTATEMENTlocals (s—>val.ifelseS.elsepart,0);
return O;

case whileK:
(void) weedSTATEMENTlocals (s—>val.whileS.body, 0) ;
return O;

case blockK:
(void) weedSTATEMENTlocals (s—>val.blockS.body, 1) ;
return O;

case superconskK:
return 1; } } }

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (53)

Weeding missing returns:

int weedSTATEMENTreturns (STATEMENT xs)
{ if (s!'=NULL) {
switch (s->kind) {
case skipK:
return O;
case localk:
return O;
case expkK:
return O;
case returnk:
return 1;
case sequencek:
return weedSTATEMENTreturns (s—->val.sequenceS.second);
case 1ifK:
return O;
case ifelseK:
return weedSTATEMENTreturns (s—>val.ifelseS.thenpart) &é&
weedSTATEMENTreturns (s—>val.ifelseS.elsepart);
case whileK:
return O;
case blockK:
return weedSTATEMENTreturns (s—->val.blockS.body);
case superconskK:
return O0; } } }

COMP 520 Winter 2016 Abstract syntax trees (Part 2) (54)

The testing strategy for a parser that constructs an abstract syntax tree I' from a program P
usually involves a pretty printer.

If parse(P) constructs T" and pretty(T") reconstructs the text of P, then:

pretty(parse(P)) ~ P

Even better, we have that:

pretty(parse(pretty(parse(P)))) = pretty(parse(P))

Of course, this is a necessary but not sufficient condition for parser correctness.

