
COMP 520 Winter 2016 Garbage Collection (1)

Garbage Collection
COMP 520: Compiler Design (4 credits)

Professor Laurie Hendren, hendren@cs.mcgill.ca

qqqq
qqqqq
qqqqq
qq

�

-
-

�

�

�

- �

qqqqq
qqqqq
qq

qqqqqq
q
q

q

-
-

�

-

--

-

-

-

-

�

�

��

��

�

WendyTheWhitespace-IntolerantDragon

WendyTheWhitespacenogarDtnarelotnI

COMP 520 Winter 2016 Garbage Collection (2)

A garbage collector is part of the run-time system: it reclaims heap-allocated records that are no

longer used.

A garbage collector should:

• reclaim all unused records;

• spend very little time per record;

• not cause significant delays; and

• allow all of memory to be used.

These are difficult and often conflicting requirements.

COMP 520 Winter 2016 Garbage Collection (3)

Life without garbage collection:
• unused records must be explicitly deal-

located;

• superior if done correctly;

• but it is easy to miss some records; and

• it is dangerous to handle pointers.

Memory leaks in real life (ical v.2.1):

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

hours

MB

COMP 520 Winter 2016 Garbage Collection (4)

Which records are dead, i.e. no longer in use?

Ideally, records that will never be accessed in the future execution of the program.

But that is of course undecidable...

Basic conservative assumption:

A record is live if it is reachable from a stack-based program variable, otherwise dead.

Dead records may still be pointed to by other dead records.

COMP 520 Winter 2016 Garbage Collection (5)

A heap with live and dead records:

rr
rr
rrr
rr
rrr
rr

-

�

�

-

-

�

�

-
p
q
r

37

12

15

7

37

59

20

9

COMP 520 Winter 2016 Garbage Collection (6)

The mark-and-sweep algorithm:

• explore pointers starting from the program variables, and mark all records encountered;

• sweep through all records in the heap and reclaim the unmarked ones; also

• unmark all marked records.

Assumptions:

• we know the size of each record;

• we know which fields are pointers; and

• reclaimed records are kept in a freelist.

COMP 520 Winter 2016 Garbage Collection (7)

Pseudo code for mark-and-sweep:

function DFS(x)

if x is a pointer into the heap then

if record x is not marked then

mark record x

for i:=1 to |x| do

DFS(x.fi)

function Mark()

for each program variable v do

DFS(v)

function Sweep()

p := first address in heap

while p < last address in heap do

if record p is marked then

unmark record p

else

p.f1 := freelist

freelist := p

p := p+sizeof(record p)

COMP 520 Winter 2016 Garbage Collection (8)

Marking and sweeping:

rr
rr
rrr
rr
rrr
rr

rr
rrr
rr
rrr
rr

r

-

�

�

-

-

�

�

-

-

�

�

-

�

-

-

�

37

p

q

r

12

15

7

37

59

20

9

p

q

r

12

15

7

37

59

20

9

37

freelist

COMP 520 Winter 2016 Garbage Collection (9)

Analysis of mark-and-sweep:

• assume the heap has size H words; and

• assume that R words are reachable.

The cost of garbage collection is:

c1R + c2H

Realistic values are:

10R + 3H

The cost per reclaimed word is:
c1R + c2H

H −R

• if R is close to H , then this is expensive;

• the lower bound is c2;

• increase the heap when R > 0.5H ; then

• the cost per word is c1 + 2c2 ≈ 16.

COMP 520 Winter 2016 Garbage Collection (10)

Other relevant issues:

• The DFS recursion stack could have size H (and has at least size logH), which may be too much;

however, the recursion stack can cleverly be embedded in the fields of marked records (pointer

reversal).

• Records can be kept sorted by sizes in the freelist. Records may be split into smaller pieces if

necessary.

• The heap may become fragmented: containing many small free records but none that are large

enough.

COMP 520 Winter 2016 Garbage Collection (11)

The reference counting algorithm:

• maintain a counter of the references to each record;

• for each assignment, update the counters appropriately; and

• a record is dead when its counter is zero.

Advantages:

• is simple and attractive;

• catches dead records immediately; and

• does not cause long pauses.

Disadvantages:

• cannot detect cycles of dead records; and

• is much too expensive.

COMP 520 Winter 2016 Garbage Collection (12)

Pseudo code for reference counting:

function Increment(x)

x.count := x.count+1

function Decrement(x)

x.count := x.count−1
if x.count=0 then

PutOnFreelist(x)

function PutOnFreelist(x)

Decrement(x.f1)

x.f1 := freelist

freelist := x

function RemoveFromFreelist(x)

for i:=2 to |x| do

Decrement(x.fi)

COMP 520 Winter 2016 Garbage Collection (13)

The stop-and-copy algorithm:

• divide the heap into two parts;

• only use one part at a time;

• when it runs full, copy live records to the other part; and

• switch the roles of the two parts.

Advantages:

• allows fast allocation (no freelist);

• avoids fragmentation;

• collects in time proportional to R; and

• avoids stack and pointer reversal.

Disadvantage:

• wastes half your memory.

COMP 520 Winter 2016 Garbage Collection (14)

Before and after stop-and-copy:

qqq qqqqqqqqq
qqq
qqqqqq

qqqq�

�

-

-

�
-

�

�

�
from-space to-space to-space from-space

next

limit

next
limit

• next and limit indicate the available heap space; and

• copied records are contiguous in memory.

COMP 520 Winter 2016 Garbage Collection (15)

Pseudo code for stop-and-copy:

function Forward(p)

if p∈ from-space then

if p.f1 ∈ to-space then

return p.f1

else

for i:=1 to |p| do

next.fi := p.fi

p.f1 := next

next := next + sizeof(record p)

return p.f1

else return p

function Copy()

scan := next := start of to-space

for each program variable v do

v := Forward(v)

while scan< next do

for i:=1 to |scan| do

scan.fi := Forward(scan.fi)

scan := scan + sizeof(record scan)

COMP 520 Winter 2016 Garbage Collection (16)

Snapshots of stop-and-copy:

qq37
p
q
r

qq37
p
q
r

qqqqq
qqqqq
qq

�

-
-

�

�

�

- �

12

15

7

37

59

20

9

before

qqqqq
qqqqq
qq

qqqqqq
q
q

q

-
-

�

-

--

-

-

-

-

�

�

��

��

�

7

59

20

9

15

37

12

scan

next

after forwarding p and q and scanning 1 record

COMP 520 Winter 2016 Garbage Collection (17)

Analysis of stop-and-copy:

• assume the heap has size H words; and

• assume that R words are reachable.

The cost of garbage collection is:

c3R

A realistic value is:

10R

The cost per reclaimed word is:
c3R

H
2
−R

• this has no lower bound as H grows;

• if H = 4R then the cost is c3 ≈ 10.

COMP 520 Winter 2016 Garbage Collection (18)

Earlier assumptions:

• we know the size of each record; and

• we know which fields are pointers.

For object-oriented languages, each record already contains a pointer to a class descriptor.

For general languages, we must sacrifice a few bytes per record.

COMP 520 Winter 2016 Garbage Collection (19)

We use mark-and-sweep or stop-and-copy.

But garbage collection is still expensive:

≈ 100 instructions for a small object!

Each algorithm can be further extended by:

• generational collection (to make it run faster); and

• incremental (or concurrent) collection (to make it run smoother).

COMP 520 Winter 2016 Garbage Collection (20)

Generational collection:

• observation: the young die quickly;

• hence the collector should focus on young records;

• divide the heap into generations: G0, G1, G2, . . .;

• all records in Gi are younger than records in Gi+1;

• collect G0 often, G1 less often, and so on; and

• promote a record from Gi to Gi+1 when it survives several collections.

COMP 520 Winter 2016 Garbage Collection (21)

How to collect the G0 generation:

• it might be very expensive to find those pointers;

• fortunately, they are rare; so

• we can try to remember them.

Ways to remember:

• maintain a list of all updated records (use marks to make this a set); or

• mark pages of memory that contain updated records (in hardware or software).

COMP 520 Winter 2016 Garbage Collection (22)

Incremental collection:

• garbage collection may cause long pauses;

• this is undesirable for interactive or real-time programs; so

• try to interleave the garbage collection with the program execution.

Two players access the heap:

• the mutator: creates records and moves pointers around; and

• the collector: tries to collect garbage.

Some invariants are clearly required to make this work.

The mutator will suffer some slowdown to maintain these invariants.

