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Control Flow Analysis

COMP 621 – Program Analysis and 

Transformations
These slides have been adapted from 

http://cs.gmu.edu/~white/CS640/Slides/CS640-2-02.ppt

by Professor Liz White. 
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Program Control Flow 
� Control flow

�Sequence of operations

�Representations

� Control flow graph

� Control dependence

� Call graph

� Control flow analysis

�Analyzing program to discover its control 

structure

�Today’s topic: CFG-based analysis 
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Control Flow Graph
� CFG models flow of control in the program (procedure)

� G = (N, E) as a directed graph

� Node n ∈ N: basic blocks

� A basic block is a maximal sequence of stmts with a single entry 

point, single exit point, and no internal branches

� For simplicity, we assume a unique entry node n0 and a unique exit 

node nf in later discussions

� Edge e=(ni, nj) ∈ E: possible transfer of control from block ni to 

block nj

if (x==y)
then { � }
else { �}
�.

if (x==y)
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Basic Blocks
� Definition

�A basic block is a maximal sequence of 

consecutive statements with a single entry 

point, a single exit point, and no internal 

branches

� Basic unit in control flow analysis

� Local level of code optimizations

�Redundancy elimination

�Register-allocation
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(1) i := m – 1

(2) j := n 

(3) t1 := 4 * n

(4) v := a[t1] 

(5) i := i + 1

(6) t2 := 4 * i

(7) t3 := a[t2] 

(8) if t3 < v goto (5) 

(9)  j := j – 1

(10) t4 := 4 * j

(11) t5 := a[t4] 

(12) if t5 > v goto (9) 

(13) if i >= j goto (23) 

(14) t6 := 4*i

(15) x := a[t6]
…

Basic Block Example

• How many basic blocks 

in this code fragment?

• What are they?

Control Flow Analysis
6

Basic Block Example
(1)   i := m – 1

(2) j := n 

(3)   t1 := 4 * n

(4)   v := a[t1] 

(5)   i := i + 1

(6) t2 := 4 * I

(7)   t3 := a[t2] 

(8) if t3 < v goto (5)

(9)   j := j – 1

(10) t4 := 4 * j

(11) t5 := a[t4] 

(12) if t5 > v goto (9)

(13) if i >= j goto (23)

(14) t6 := 4*I

(15) x := a[t6]

K

• How many basic blocks 

in this code fragment?

• What are they?
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Identify Basic Blocks
Input: A sequence of intermediate code 

statements

1. Determine the leaders, the first statements of 
basic blocks   

• The first statement in the sequence (entry point) is a 
leader 

• Any statement that is the target of a branch 
(conditional or unconditional) is a leader 

• Any statement immediately following a branch 
(conditional or unconditional) or a return is a leader 

2. For each leader, its basic block is the leader 
and all statements up to, but not including, the 
next leader or the end of the program
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(1)    i := m – 1 (16)  t7 := 4 * i  

(2) j := n (17)  t8 := 4 * j   

(3) t1 := 4 * n (18)  t9 := a[t8]   

(4) v := a[t1]               (19)  a[t7] := t9   

(5) i := i + 1                (20)  t10 := 4 * j   

(6) t2 := 4 * i                (21)  a[t10] := x   

(7) t3 := a[t2]                (22)  goto (5)   

(8) if t3 < v goto (5)     (23)  t11 := 4 * i   

(9) j := j - 1                   (24)  x := a[t11]   

(10) t4 := 4 * j                (25)  t12 := 4 * i   

(11) t5 := a[t4]                (26)  t13 := 4 * n   

(12) If t5 > v goto (9)     (27)  t14 := a[t13]   

(13) if i >= j goto (23)    (28)  a[t12] := t14   

(14) t6 := 4*i                   (29)  t15 := 4 * n   

(15) x := a[t6]                (30)  a[t15] := x   

Example
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(1)    i := m – 1 (16)  t7 := 4 * i  

(2) j := n (17)  t8 := 4 * j   

(3) t1 := 4 * n (18)  t9 := a[t8]   

(4) v := a[t1]               (19)  a[t7] := t9   

(5) i := i + 1 (20)  t10 := 4 * j   

(6) t2 := 4 * i                (21)  a[t10] := x   

(7) t3 := a[t2]                (22)  goto (5)   

(8) if t3 < v goto (5)     (23)  t11 := 4 * i

(9) j := j - 1 (24)  x := a[t11]   

(10) t4 := 4 * j                (25)  t12 := 4 * i   

(11) t5 := a[t4]                (26)  t13 := 4 * n   

(12) If t5 > v goto (9)     (27)  t14 := a[t13]   

(13) if i >= j goto (23) (28)  a[t12] := t14   

(14) t6 := 4*i (29)  t15 := 4 * n   

(15) x := a[t6]                (30)  a[t15] := x    

Example: Leaders
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(1)    i := m – 1 (16)  t7 := 4 * i  

(2) j := n (17)  t8 := 4 * j   

(3) t1 := 4 * n (18)  t9 := a[t8]   

(4) v := a[t1]               (19)  a[t7] := t9   

(5) i := i + 1 (20)  t10 := 4 * j   

(6) t2 := 4 * i                (21)  a[t10] := x   

(7) t3 := a[t2]                (22)  goto (5)   

(8) if t3 < v goto (5)     (23)  t11 := 4 * i

(9) j := j - 1 (24)  x := a[t11]   

(10) t4 := 4 * j                (25)  t12 := 4 * i   

(11) t5 := a[t4]                (26)  t13 := 4 * n   

(12) If t5 > v goto (9)     (27)  t14 := a[t13]   

(13) if i >= j goto (23) (28)  a[t12] := t14   

(14) t6 := 4*i (29)  t15 := 4 * n   

(15) x := a[t6]                (30)  a[t15] := x    

Example: Basic Blocks
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Generating CFGs
� Partition intermediate code into basic blocks

� Add edges corresponding to control flows 

between blocks

� Unconditional goto

� Conditional branch – multiple edges

� Sequential flow – control passes to the next block (if 

no branch at the end)

� If no unique entry node n0 or exit node nf, add 

dummy nodes and insert necessary edges

� Ideally no edges entering n0; no edges exiting nf

� Simplify many analysis and transformation algorithms
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(1)    i := m – 1 (16)  t7 := 4 * i

(2) j := n (17)  t8 := 4 * j   

(3) t1 := 4 * n (18)  t9 := a[t8]   

(4) v := a[t1]               (19)  a[t7] := t9   

(5) i := i + 1 (20)  t10 := 4 * j   

(6) t2 := 4 * i (21)  a[t10] := x   

(7) t3 := a[t2]                (22)  goto (5)   

(8) if t3 < v goto (5)     (23)  t11 := 4 * i

(9) j := j - 1 (24)  x := a[t11]   

(10) t4 := 4 * j                (25)  t12 := 4 * i

(11) t5 := a[t4]                (26)  t13 := 4 * n   

(12) If t5 > v goto (9)     (27)  t14 := a[t13]   

(13) if i >= j goto (23) (28)  a[t12] := t14   

(14) t6 := 4*i (29)  t15 := 4 * n   

(15) x := a[t6]                (30)  a[t15] := x    

Example: CFG
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CFG and HL code
I = 1

J = 1

K = 1

L = 1

repeat

if (P) then begin

J = I

if (Q) then L = 2

else L = 3

K = K + 1

end

else K = K + 2

print (I,J,K,L)

repeat 

if (R) then L = L + 4

until (S)

I = I + 6

until (T)

1

2

3 7

4 5

6

8 9

10

11 12
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Complications in CFG Construction
� Function calls

� Instruction scheduling may prefer function calls as 
basic block boundaries

� Special functions as setjmp() and longjmp()

� Exception handling

� Ambiguous jump
� Jump r1   //target stored in register r1

� Static analysis may generate edges that never occur 
at runtime

� Record potential targets if possible

� Jumps target outside the current procedure
� PASCAL, Algol: still restricted to lexically enclosing 

procedure
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� Given a CFG = <N, E>

� If there is an edge  ni→nj ∈ E

� ni is a predecessor of  nj

� nj is a successor of  ni

�For any node n ∈ N

� Pred(n): the set of predecessors of n

� Succ(n): the set of successors of n

� A branch node is a node that has more than one 

successor

� A join node is a node that has more than one 

predecessor

Nodes in CFG

A    

B C

D
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Depth First Traversal
� CFG is a rooted, directed graph

� Entry node as the root

� Depth-first traversal (depth-first searching)

� Idea: start at the root and explore as far/deep as 

possible along each branch before backtracking

� Can build a spanning tree for the graph

� Spanning tree of a directed graph G contains all 

nodes of G such that 

� There is a path from the root to any node reachable in 

the original graph and 

� There are no cycles
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DFS Spanning Tree Algorithm

procedure span(v)  /* v is a node in the 

graph */

InTree(v) = true

For each w that is a successor of v do

if (!InTree(w)) then

Add edge v ���� w to spanning tree

span(w)

end span

� Initial: span(n0)
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DFST Example

A

C

D

E F

G

I

J

B

H

Nodes are numbered 

in the order visited 

during the search 

== depth first pre-order 

numbering.

1
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DFST Example

A

C

D

E F

G

I

J

B

H

Nodes are numbered 

in the order visited 

during the search 

== depth first pre-order 

Numbering.

1

9

2

3

4

5

6

7

8

10
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CFG Edges Classification
Edge x � y in a CFG is an

� Advancing edge – if x is an ancestor of y
in the tree

�Tree edge – if part of the spanning tree

�Forward edge – if not part of the spanning tree 
and x is an ancestor of y in the tree

� Retreating edge – if not part of the 
spanning tree and y is an ancestor of x in 
the tree 

� Cross edge – if not part of the spanning 
tree and neither is an ancestor of the other
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DFST Example

A

C

D

E F

G

I

J

B

H

Tree Edge

Forward Edge

Retreating Edge

Cross Edge
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Back Edges and Reducibility
� An edge x � y in a CFG is a back edge if 

every path from the entry node of the flow 
graph to x goes through y
�y dominates x : more details later

�Every back edge is a retreating edge

�Vice versa?

� A flow graph is reducible if all its retreating 

edges in any DFST are also back edges

�Flow graphs that occur in practice are almost 

always reducible
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23

Non-Reducible Graphs
� Testing reducibility: Take any DFST for the 

flow graph, remove the back edges, and 

check that the result is acyclic

A

CB

In any DFST, one
of these edges will
be a retreating edge
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Nodes Ordering wrt DFST
� Enhanced depth-first spanning tree algorithm:

time =0;

procedure span(v)  /* v is a node in the graph */

InTree(v) = true; d[v] = ++time;

For each w that is a successor of v do

if (!InTree(w)) then

Add edge v � w to spanning tree

span(w)

f[v]=++time;

end span

� Associate two numbers to each node v in the graph

� d[v]: discovery time of v in the spanning

� f[v]: finish time of v in the spanning
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Nodes Ordering wrt DFST
� Pre-ordering

�Ordering of vertices based on discovery time

� Post-ordering
�Ordering of vertices based on finish time

� Reverse post-ordering
�The reverse of a post-ordering, i.e. ordering of  

vertices in the opposite order of their finish 
time

�Not the same as pre-ordering

�Commonly used in forward data flow analysis
� Backward data flow analysis: RPO on the reverse 

CFG
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Ordering Example

D

E F

G

6

5

7

8

� Pre-ordering: DEGF

� Post-ordering: GEFD 

� Reverse post-ordering: DFEG
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Big Picture
Why care about ordering / back edges?

� CFGs are commonly used to propagate 
information between nodes (basic blocks)
� Data flow analysis

� The existence of back edges / cycles in flow 
graphs indicates that we may need to traverse 
the graph more than once
� Iterative algorithms: when to stop? How quickly can 

we stop?

� Proper ordering of nodes during iterative 
algorithm assures number of passes limited by 
the number of “nested” back edges
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Regions in CFG
� Extended basic block (EBB)

� EBB is a maximal set of nodes in a CFG that contains 

no join nodes other than the entry node

� A single entry and possibly multiple exits

� Some optimizations like value numbering and instruction 

scheduling are more effective if applied in EBBs

� Natural loop

� Loop is a collection of nodes in a CFG such that
� All nodes in the collection are strongly connected, and 

� The collection of nodes has a unique entry: the only way to 
visit the loop from outside

� A loop that contains no other loops is an inner loop

� Main target of program optimizations
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EBB Example

A

C

D

E F

G

I

J

B

H

Max-size EBBs:

{A,B}, {C,J}, 

{D,E,F}, {G,H,I}

Loops?

Not that obviousK

Can use dominator-

based loop detection
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Dominance
� Node d of a CFG dominates node n if every path 

from the entry node of the graph to n passes 
through d (d dom n)
� Dom(n): the set of dominators of node n

� Every node dominates itself: n ∈ Dom(n)

� Node d strictly dominates n if d ∈ Dom(n) and d ≠ n

� Dominance-based loop recognition: entry of a loop 
dominates all nodes in the loop

� Each node n has a unique immediate dominator 
m which is the last dominator of n on any path 
from the entry to n (m idom n), m ≠ n 
� The immediate dominator m of n is the strict dominator 

of n that is closest to n
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Dominator Example

1

2

3

4

5 6

7

8

9 10

Block Dom IDom

1 {1} —

2 {1,2} 1

3 {1,3} 1

4 {1,3,4} 3

5 {1,3,4,5} 4

6 {1,3,4,6} 4

7 {1,3,4,7} 4

8 {1,3,4,7,8} 7

9 {1,3,4,7,8,9} 8

10 {1,3,4,7,8,10} 8

Control Flow Analysis
32

Dominator Trees

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

� In a dominator tree, a node’s parent is its immediate 
dominator
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Other sets of interest

1

2

3

4

5 6

7

8

9 10

Block SDom

Dom-n

Dom-1

1 {} {1,2,3,4,5,6,7,8,9,10}

2 {1} {2}

3 {1} {3,4,5,6,7,8,9,10}

4 {1,3} {4,5,6,7,8,9,10}

5 {1,3,4} {5}

6 {1,3,4} {6}

7 {1,3,4} {7,8,9,10}

8 {1,3,4,7} {8,9,10}

9 {1,3,4,7,8} {9}

10 {1,3,4,7,8} {10}
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Example 2
1

2

3 7

4 5

6

8 9

10

11 12

Block Dom IDom

1

2

3

4

5

6

7

8

9

10

11

12
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Example 2
1

2

3 7

4 5

6

8 9

10

11 12

Block Dom IDom

1 1 -

2 1,2 1

3 1,2,3 2

4 1,2,3,4 3

5 1,2,3,5 3

6 1,2,3,6 3

7 1,2,7 2

8 1,2,8 2

9 1,2,8,9 8

10 1,2,8,9,10 9

11 1,2,8,9,11 9

12 1,2,8,9,11,12 11
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Algorithm: Computing DOM
� An iterative fixed-point calculation

N is the set of nodes in the CFG

DOM(n0) = {n0}  (n0 is the entry)

For all nodes x ≠ n0

DOM(x) = N

Until no more changes to dominator sets

for all nodes x ≠ n0

DOM(x) = { x } + (∩ DOM(P) ) for all predecessors P of x

� At termination, node d in DOM(n) iff d dominates n
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Dominator Example

1

2

3

4

5 6

7

8

9 10

0

initial iteration1

0 {0} {0}

1 N {1} + (Dom(0) ∩∩∩∩ Dom(9)) = {0,1}

2 N {2} + Dom(1) = {0,1,2}

3 N {3} + (Dom(1) ∩∩∩∩ Dom(2) ∩∩∩∩ Dom(8) ∩∩∩∩

Dom(4)) = {0,1,3}

4 N {4} + (Dom(3) ∩∩∩∩ Dom(7)) = {0,1,3,4}

5 N {5} + Dom(4) = {0,1,3,4,5}

6 N {6} + Dom(4) = {0,1,3,4,6}

7 N {7} + (Dom(5) ∩∩∩∩ Dom(6) ∩∩∩∩ Dom(10)) = 

{0,1,3,4,7}

8 N {8} + Dom(7) = {0,1,3,4,7,8}

9 N {9} + Dom(8) = {0,1,3,4,7,8,9}

10 N {10} + Dom(8) = {0,1,3,4,7,8,10}
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Dominator Example

1

2

3

4

5 6

7

8

9 10

Block

Dom

initial iteration1 iteration2

0 {0} {0} {0}

1 N {0,1} {0,1}

2 N {0,1,2} {0,1,2}

3 N {0,1,3} {0,1,3}

4 N {0,1,3,4} {0,1,3,4}

5 N {0,1,3,4,5} {0,1,3,4,5}

6 N {0,1,3,4,6} {0,1,3,4,6}

7 N {0,1,3,4,7} {0,1,3,4,7}

8 N {0,1,3,4,7,8} {0,1,3,4,7,8}

9 N {0,1,3,4,7,8,9} {0,1,3,4,7,8,9}

10 N {0,1,3,4,7,8,10} {0,1,3,4,7,8,10}

0
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Computing IDOM from DOM

1. For each node n, initially set IDOM(n) = 

DOM(n)-{n} (SDOM - strict dominators)

2. For each node p in IDOM(n), see if p has 

dominators other than itself also included in 

IDOM(n): if so, remove them from IDOM(n)

� The immediate dominator m of n is the strict 

dominator of n that is closest to n
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I-Dominator Example

1

2

3

4

5 6

7

8

9 10

Block

IDom

initial (SDOM)

0 {} {}

1 {0} {0}

2 {0,1} {1} //0 - 1’s dominator

3 {0,1} {1} //0 - 1’s dominator

4 {0,1,3} {3} // 0,1 - 3’s dominators

5 {0,1,3,4} {4} // 0,1,3 - 4’s dominators

6 {0,1,3,4} {4} // 0,1,3 - 4’s dominators

7 {0,1,3,4} {4} // 0,1,3 - 4’s dominators

8 {0,1,3,4,7} {7} // 0,1,3,4 - 7’s dominators

9 {0,1,3,4,7,8} {8} // 0,1,3,4,7 - 8’s dominators

10 {0,1,3,4,7,8} {8} // 0,1,3,4,7 - 8’s dominators

0
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Post-Dominance

� Related concept 

� Node d of a CFG post-dominates node n if 

every path from n to the exit node passes 

through d (d pdom n)

�Pdom(n): the set of post-dominators of node n

�Every node post-dominates itself: n ∈

Pdom(n)

� Each node n has a unique immediate post 

dominator m
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Post-dominator Example

1

2

3

4

5 6

7

8

9 10

Block Pdom IPdom

1 {3,4,7,8,10,exit} 3

2 {2,3,4,7,8,10,exit} 3

3 {3,4,7,8,10,exit} 4

4 {4,7,8,10,exit} 7

5 {5,7,8,10,exit} 7

6 {6,7,8,10,exit} 7

7 {7,8,10,exit} 8

8 {8,10,exit} 10

9 {1,3,4,7,8,10,exit} 1

10 {10,exit} exit
exit
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CFG
1

2

3 7

4 5

6

8 9

10

11 12

exit

exit

12

11

910

8

762

1    3  4  5
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Natural Loops
� Natural loops that are suitable for improvement 

have two essential properties:

� A loop must have a single entry point called header

� There must be at least one way to iterate the loop, i.e., 

at least one path back to the header

� Identifying natural loops

� Searching for back edges (n→d) in CFG whose 

heads dominate their tails 

� For an edge a→b, b is the head and a is the tail

� A back edge flows from a node n to one of n’s dominators d

� The natural loop for that edge is {d}+the set of nodes 

that can reach n without going through d

� d is the header of the loop
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Back Edge Example

1

2

3

4

5 6

7

8

9 10

Block Dom IDom

1 1 —

2 1,2 1

3

4

5

6

7

8

9

10

1,3 1

1,3,4 3

1,3,4,5 4

1,3,4,6 4

1,3,4,7 4

1,3,4,7,8           7

1,3,4,7,8,9           8

1,3,4,7,8,10          8Back edges?
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Identifying Natural Loops
� Given a back edge n→d, the natural loop of the 

edge includes
� Node d

� Any node that can reach n without going through d

� Loop construction
� Set loop={d}

� Add n into loop if n ≠d

� Consider each node m≠d that we know is in loop, 
make sure that m’s predecessors are also inserted in 
loop
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Natural Loops Example

1

2

3

4

5 6

7

8

9 10

Back edge Natural loop

10→7

7→4

4→3

8→3

9→1

{7,10,8}

{4,7,5,6

10,8}

{3,4,7,5,6,10,8}

{1,9,8,7,5,6,

10,4,3,2}

� Why neither {3,4} nor 
{4,5,6,7} is a natural loop?
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Inner Loops

� A useful property of natural loops: unless two 
loops have the same header, they are either 
disjoint or one is entirely contained (nested 
within) the other

� An inner loop is a loop that contains no other 
loops
� Good optimization candidate

� The inner loop of the previous example: {7,8,10}

B0 B1

B2

B3
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Dominance Frontiers
� For a node n in CFG, DF(n) denotes the 

dominance frontier set of n

� DF(n) contains all nodes x s.t. n dominates an 

immediate predecessor of x but does not strictly 

dominate x

� For this to happen, there is some path from node n to 

x, n � K � y � x where (n DOM y) but !(n SDOM x)

� Informally, DF(n) contains the first nodes reachable 

from n that n does not strictly dominate, on each CFG 

path leaving n

� Used in SSA calculation and redundancy 

elimination
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Dominance Frontier for Node 7

Paths of interest:

7 � 4

7 � 8 � 3

7 � 8 � 9 � 1

7 � 8 � 10 � 7

DF(7)={1,3,4,7}
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Dominance Frontier for Node 4

Paths of interest:

DF(4)={1,3,4}
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Computing Dominance Frontiers
� Easiest way:

DF(x) = SUCC(DOM-1(x)) – SDOM-1(x) where 

SUCC(x) = set of successors of x in the CFG

�But not the most efficient

� Observation

�Nodes in a DF must be join nodes

�The predecessor of any join node j must have 

j in its DF unless it dominates j

�The dominators of j’s predecessors must have 

j in their DF sets unless they also dominate j
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Computing Dominance Frontiers
for all nodes n, initialize DF(n) =Ø

for all nodes n

if n has multiple predecessors, then

for each predecessor p of n

runner = p

while (runner ≠IDom(n))

DF(runner) = DF(runner) ∪ {n}

runner = IDom(runner)  

� First identify join nodes j in CFG

� Starting with j’s predecessors, walk up the dominator tree 
until we reach the immediate dominator of j
� Node j should be included in the DF set of all the nodes we pass 

by except for j’s immediate dominator
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Computing Dominance Frontier

Join node 1:

runner = 0 = IDom(1)

runner = 9 : DF(9) += {1}

runner = 8 : DF(8) += {1}

runner = 7 : DF(7) += {1}

runner = 4 : DF(4) += {1}

runner = 3 : DF(3) += {1}

runner = 1 : DF(1) += {1}

runner = 0 = IDom(1) 
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Computing Dominance Frontier

Join node 3:

runner = 1 = IDom(3)

runner = 2: DF(2) += {3}

runner = 4: DF(4) += {3}

runner = 3: DF(3) += {3}

runner = 8 : DF(8) += {3}

runner = 7 : DF(7) += {3}
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Computing Dominance Frontier

1
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Join node 7:

runner = 5: DF(5) += {7}

runner = 6: DF(6) += {7}

runner = 10: DF(10) += {7}

runner = 8: DF(8) += {7}

runner = 7: DF(7) += {7}

Join node 4:

runner = 3 = IDom(4)

runner = 7: DF(7) += {4}

runner = 4: DF(4) += {4}
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Dominance Frontier Example
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Block DF

1 {1}

2 {3}

3 {1,3}

4 {1,3,4}

5 {7}

6 {7}

7 {1,3,4,7}

8 {1,3,7}

9 {1}

10 {7}
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Example 2
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Dominator-based Analysis
� Idea

�Use dominators to discover loops for 
optimization

� Advantages

�Sufficient for use by iterative data-flow 
analysis and optimizations

�Least time-intensive to implement

�Favored by most current optimizing compilers

� Alternative approach

� Interval-based analysis/structural analysis
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Summary
� CFG construction

� Basic blocks identification

� CFG traversal
� Depth-first spanning tree

� Vertex ordering

� CFG analysis
� Important regions: EBB and loop

� Dominators

� Dominance frontiers

� Additional references
� Advanced compiler design and implementation, by S. 

Muchinick, Morgan Kaufmann


