Control Flow Analysis

COMP 621 - Program Analysis and Transformations

These slides have been adapted from http://cs.gmu.edu/~white/CS640/Slides/CS640-2-02.ppt by Professor Liz White.

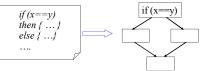
Program Control Flow

- □ Control flow
 - Sequence of operations
 - Representations
 - Control flow graph
 - Control dependence
 - Call graph
- Control flow analysis
 - Analyzing program to discover its control
 - o Today's topic: CFG-based analysis

Control Flow Analysis

Control Flow Graph

- □ CFG models flow of control in the program (procedure)
- □ G = (N, E) as a directed graph
 - Node n ∈ N: basic blocks
 - A basic block is a maximal sequence of stmts with a single entry point, single exit point, and no internal branches
 - For simplicity, we assume a unique entry node no and a unique exit node nf in later discussions
 - \circ Edge e= $(n_i, n_j) \in E$: possible transfer of control from block n_i to



Control Flow Analysis

Basic Blocks

- Definition
 - A basic block is a maximal sequence of consecutive statements with a single entry point, a single exit point, and no internal branches
- □ Basic unit in control flow analysis
- □ Local level of code optimizations
 - Redundancy elimination
 - Register-allocation

Control Flow Analysis

Basic Block Example

```
(1) i := m - 1
     j := n
                                 · How many basic blocks
(3) t1 := 4 * n
                                 in this code fragment?
    v := a[t1]
                                · What are they?
    i := i + 1
    t2 := 4 * i
t3 := a[t2]
(7)
(8) if t3 < v goto (5)
     j := j - 1
(10) t4 := 4 * j
(11) t5 := a[t4]
(12) if t5 > v goto (9)
(13) if i >= j goto (23)
(14) t6 := 4*i
(15) x := a[t6]
  Control Flow Analysis
```

Basic Block Example (1) i:= m – 1 (2) j:= n

- (3) t1 := 4 * n (4) v := a[t1] (5) i:=i+1 (6) t2 := 4 * I (7) t3 := a[t2]
- (8) if t3 < v goto (5) (9) j:=j-1 (10) t4 := 4 * j
- (11) t5 := a[t4] (12) if t5 > v goto (9) (13) if i >= j goto (23) (14) t6 := 4*I

(15) x := a[t6] Control Flow Analysis

- · How many basic blocks in this code fragment?
- · What are they?

Identify Basic Blocks

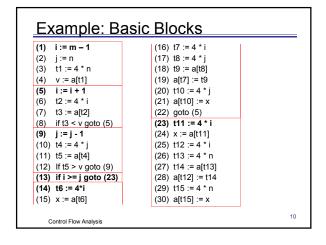
Input: A sequence of intermediate code statements

- Determine the *leaders*, the first statements of basic blocks
 - The first statement in the sequence (entry point) is a leader.
 - Any statement that is the target of a branch (conditional or unconditional) is a leader
- Any statement immediately following a branch (conditional or unconditional) or a return is a leader
- For each leader, its basic block is the leader and all statements up to, but not including, the next leader or the end of the program

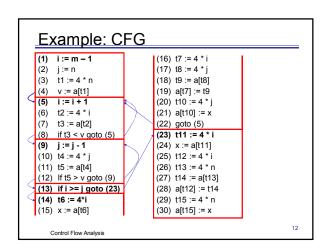
Control Flow Analysis

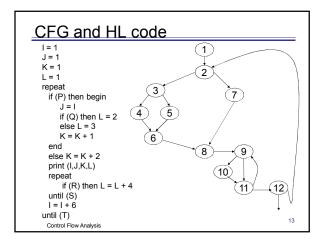
```
Example
(1) i := m − 1
                                  (16) t7 := 4 * i
    j := n
                                  (17) t8 := 4 * j
(3) t1 := 4 * n
                                  (18) t9 := a[t8]
    v := a[t1]
                                  (19) a[t7] := t9
(5) i := i + 1
                                  (20) t10 := 4 * j
(6) t2 := 4 * i
                                  (21) a[t10] := x
(7) t3 := a[t2]
                                  (22) goto (5)
(8) if t3 < v goto (5)
                                  (23) t11 := 4 * i
(9) j := j - 1
                                  (24) x := a[t11]
                                  (25) t12 := 4 * i
(10) t4 := 4 *
                                  (26) t13 := 4 * n
(11) t5 := a[t4]
(12) If t5 > v goto (9)
                                  (27) t14 := a[t13]
(13) if i >= j goto (23)
                                  (28) a[t12] := t14
(14) t6 := 4*i
                                  (29) t15 := 4 * n
(15) x := a[t6]
                                  (30) a[t15] := x
    Control Flow Analysis
```

Example: Leaders (16) t7 := 4 * i (1) i := m - 1 (17) t8 := 4 * j (2) j := n (3) t1 := 4 * n (18) t9 := a[t8] (4) v := a[t1] (19) a[t7] := t9 (5) i := i + 1 (20) t10 := 4 * j (6) t2 := 4 * i (21) a[t10] := x (7) t3 := a[t2] (22) goto (5) (23) t11 := 4 * i (8) if t3 < v goto (5) (9) j := j - 1 (24) x := a[t11] (25) t12 := 4 * i (10) t4 := 4 * i(26) t13 := 4 * n (11) t5 := a[t4] (12) If t5 > v goto (9) (27) t14 := a[t13] (13) if i >= j goto (23) (28) a[t12] := t14 (14) t6 := 4*i (29) t15 := 4 * n (15) x := a[t6] (30) a[t15] := x Control Flow Analysis



Generating CFGs Partition intermediate code into basic blocks Add edges corresponding to control flows between blocks Unconditional goto Conditional branch – multiple edges Sequential flow – control passes to the next block (if no branch at the end) If no unique entry node n₀ or exit node n_f, add dummy nodes and insert necessary edges Ideally no edges entering n₀; no edges exiting n_f Simplify many analysis and transformation algorithms





Complications in CFG Construction

- □ Function calls
 - Instruction scheduling may prefer function calls as basic block boundaries
 - Special functions as setjmp() and longjmp()
- Exception handling
- Ambiguous jump
 - o Jump r1 //target stored in register r1
 - Static analysis may generate edges that never occur at runtime
 - Record potential targets if possible
- □ Jumps target outside the current procedure
 - PASCAL, Algol: still restricted to lexically enclosing procedure

Control Flow Analysis

14

Nodes in CFG

- □ Given a CFG = <N, E>
 - \circ If there is an edge $n_i \rightarrow n_j \in E$
 - n_i is a predecessor of n_i
 - n_i is a predecessor of n_i
 n_i is a successor of n_i
 - \circ For any node $n \in N$
 - Pred(n): the set of predecessors of n
 - Succ(n): the set of successors of n
 - A branch node is a node that has more than one successor
 - A join node is a node that has more than one predecessor

Control Flow Analysis

15

Depth First Traversal

- □ CFG is a rooted, directed graph
 - o Entry node as the root
- Depth-first traversal (depth-first searching)
 - Idea: start at the root and explore as far/deep as possible along each branch before backtracking
 - o Can build a spanning tree for the graph
- Spanning tree of a directed graph G contains all nodes of G such that
 - There is a path from the root to any node reachable in the original graph and
 - There are no cycles

Control Flow Analysis

16

DFS Spanning Tree Algorithm

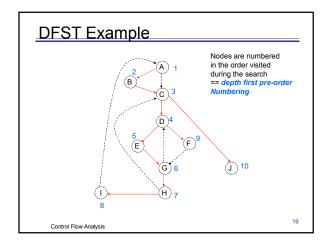
```
procedure span(v) /* v is a node in the
  graph */
  InTree(v) = true
  For each w that is a successor of v do
      if (!InTree(w)) then
      Add edge v → w to spanning tree
      span(w)
end span
□ Initial: span(n₀)
```

Control Flow Analysis

DFST Example

Nodes are numbered in the order visited during the search == depth first pre-order numbering.

Control Flow Analysis



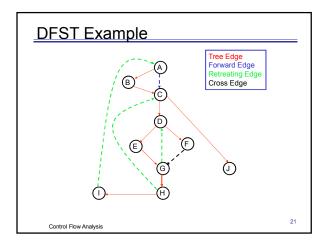
CFG Edges Classification

Edge $x \rightarrow y$ in a CFG is an

- \square Advancing edge if x is an ancestor of y in the tree
 - o Tree edge if part of the spanning tree
 - o Forward edge if not part of the spanning tree and x is an ancestor of y in the tree
- □ Retreating edge if not part of the spanning tree and *y* is an ancestor of *x* in the tree
- □ Cross edge if not part of the spanning tree and neither is an ancestor of the other

Control Flow Analysis

20



Back Edges and Reducibility

- □ An edge $x \rightarrow y$ in a CFG is a *back edge* if every path from the entry node of the flow graph to x goes through y
 - \circ y dominates x: more details later
 - Every back edge is a retreating edge
 - Vice versa?
- □ A flow graph is *reducible* if all its retreating edges in any DFST are also back edges
 - Flow graphs that occur in practice are almost always reducible

Control Flow Analysis

22

Non-Reducible Graphs

□ Testing reducibility: Take any DFST for the flow graph, remove the back edges, and check that the result is acyclic

In any DFST, one of these edges will be a retreating edge

Control Flow Analysis

Nodes Ordering wrt DFST

□ Enhanced depth-first spanning tree algorithm:

```
time =0;
procedure span(v) /* v is a node in the graph */
InTree(v) = true; d[v] = ++time;
For each w that is a successor of v do
if (!InTree(w)) then
Add edge v → w to spanning tree
span(w)
f[v]=++time;
end span
```

- Associate two numbers to each node v in the graph
 - $\circ\,$ d[v]: discovery time of v in the spanning
 - o f[v]: finish time of v in the spanning

Control Flow Analysis

Nodes Ordering wrt DFST

- Pre-ordering
 - o Ordering of vertices based on discovery time
- □ Post-ordering
 - Ordering of vertices based on finish time
- □ Reverse post-ordering
 - The reverse of a post-ordering, i.e. ordering of vertices in the opposite order of their finish time
 - Not the same as pre-ordering
 - o Commonly used in forward data flow analysis
 - Backward data flow analysis: RPO on the reverse CFG

Control Flow Analysis

Ordering Example

- □ Pre-ordering: DEGF
- □ Post-ordering: GEFD
- □ Reverse post-ordering: DFEG

Control Flow Analysis

26

Big Picture

Why care about ordering / back edges?

- CFGs are commonly used to propagate information between nodes (basic blocks)
 - o Data flow analysis
- The existence of back edges / cycles in flow graphs indicates that we may need to traverse the graph more than once
 - o Iterative algorithms: when to stop? How quickly can we stop?
- Proper ordering of nodes during iterative algorithm assures number of passes limited by the number of "nested" back edges

Control Flow Analysis

27

Regions in CFG

- □ Extended basic block (EBB)
 - EBB is a maximal set of nodes in a CFG that contains no join nodes other than the entry node
 - A single entry and possibly multiple exits
 - Some optimizations like value numbering and instruction scheduling are more effective if applied in EBBs
- Natural loop
 - o Loop is a collection of nodes in a CFG such that
 - All nodes in the collection are strongly connected, and
 - The collection of nodes has a unique entry: the only way to visit the loop from outside
 - o A loop that contains no other loops is an inner loop
 - Main target of program optimizations

Control Flow Analysis

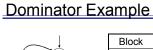
28

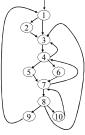
Max-size EBBs: {A,B}, {C,J}, {D,E,F}, {G,H,I}} Loops? Not that obvious... Can use dominator-based loop detection

Dominance

- □ Node *d* of a CFG *dominates* node *n* if every path from the entry node of the graph to *n* passes through *d* (*d dom n*)
 - Dom(n): the set of dominators of node n
 - \circ Every node dominates itself: $n \in Dom(n)$
 - Node d strictly dominates n if $d \in Dom(n)$ and $d \neq n$
 - Dominance-based loop recognition: entry of a loop dominates all nodes in the loop
- □ Each node n has a unique immediate dominator m which is the last dominator of n on any path from the entry to n (m idom n), $m \ne n$
 - The immediate dominator m of n is the strict dominator of n that is closest to n

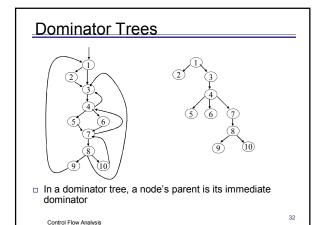
Control Flow Analysis



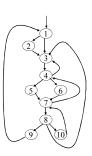


Block	Dom	IDom
1	{1}	_
2	{1,2}	1
3	{1,3}	1
4	{1,3,4}	3
5	{1,3,4,5}	4
6	{1,3,4,6}	4
7	{1,3,4,7}	4
8	{1,3,4,7,8}	7
9	{1,3,4,7,8,9}	8
10	{1,3,4,7,8,10}	8

Control Flow Analysis

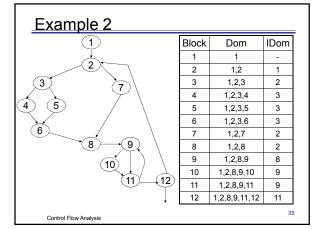


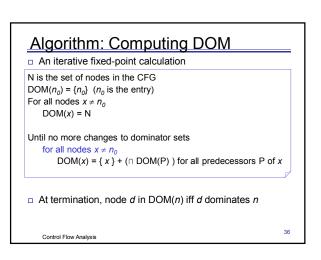
Other sets of interest

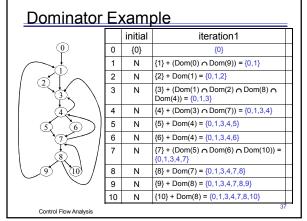


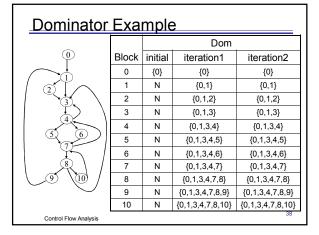
Control Flow Analysis

Block	SDom	Dom ⁻¹
	Dom-n	
1	{}	{1,2,3,4,5,6,7,8,9,10}
2	{1}	{2}
3	{1}	{3,4,5,6,7,8,9,10}
4	{1,3}	{4,5,6,7,8,9,10}
5	{1,3,4}	{5}
6	{1,3,4}	{6}
7	{1,3,4}	{7,8,9,10}
8	{1,3,4,7}	{8,9,10}
9	{1,3,4,7,8}	{9}
10	{1,3,4,7,8}	{10}









Computing IDOM from DOM

- For each node n, initially set IDOM(n) = DOM(n)-{n} (SDOM strict dominators)
- For each node p in IDOM(n), see if p has dominators other than itself also included in IDOM(n): if so, remove them from IDOM(n)
- The immediate dominator m of n is the strict dominator of n that is closest to n

Control Flow Analysis

39

I-Dominator Example			
		IDom	
•	Block	initial (SDOM)	
	0	{}	0
	1	{0}	{0}
	2	{0,1}	{1} //0 - 1's dominator
	3	{0,1}	{1} //0 - 1's dominator
4	4	{0,1,3}	{3} // 0,1 - 3's dominators
	5	{0,1,3,4}	{4} // 0,1,3 - 4's dominators
	6	{0,1,3,4}	{4} // 0,1,3 - 4's dominators
8 \	7	{0,1,3,4}	{4} // 0,1,3 - 4's dominators
9) (10)	8	{0,1,3,4,7}	{7} // 0,1,3,4 - 7's dominators
	9	{0,1,3,4,7,8}	{8} // 0,1,3,4,7 - 8's dominators
	10	{0,1,3,4,7,8}	{8} // 0,1,3,4,7 - 8's dominators
Control Flow Analysis			40

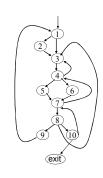
Post-Dominance

- □ Related concept
- □ Node *d* of a CFG post-dominates node *n* if every path from *n* to the exit node passes through *d* (*d* pdom *n*)
 - \circ Pdom(n): the set of post-dominators of node n
 - Every node post-dominates itself: n ∈Pdom(n)
- □ Each node *n* has a unique *immediate post* dominator *m*

Control Flow Analysis

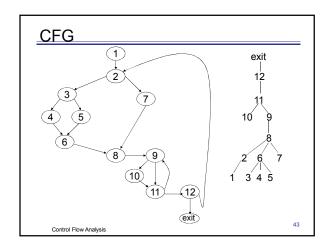
41

Post-dominator Example



Block	Pdom	IPdom
1	{3,4,7,8,10,exit}	3
2	{2,3,4,7,8,10,exit}	3
3	{3,4,7,8,10,exit}	4
4	{4,7,8,10,exit}	7
5	{5,7,8,10,exit}	7
6	{6,7,8,10,exit}	7
7	{7,8,10,exit}	8
8	{8,10,exit}	10
9	{1,3,4,7,8,10,exit}	1
10	{10,exit}	exit

Control Flow Analysis



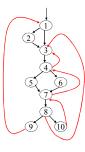
Natural Loops

- □ Natural loops that are suitable for improvement have two essential properties:
 - A loop must have a single entry point called header
 - There must be at least one way to iterate the loop, i.e., at least one path back to the header
- Identifying natural loops
 - Searching for back edges (n→d) in CFG whose heads dominate their tails
 - For an edge a→b, b is the head and a is the tail
 - A back edge flows from a node n to one of n's dominators d
 - The natural loop for that edge is {*d*}+the set of nodes that can reach *n* without going through *d*
 - d is the header of the loop

Control Flow Analysis

44

Back Edge Example



Back edges?

Control Flow Analysis

Block	Dom	IDom
1	1	_
2	1,2	1
3	1,3	1
4	1,3,4	3
5	1,3,4,5	4
6	1,3,4,6	4
7	1,3,4,7	4
8	1,3,4,7,8	7
9	1,3,4,7,8,9	8
10	1,3,4,7,8,10	8

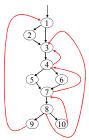
Identifying Natural Loops

- \Box Given a back edge $n{\rightarrow}d$, the natural loop of the edge includes
 - Node d
 - o Any node that can reach n without going through d
- Loop construction
 - Set loop={d}
 - Add n into loop if n ≠d
 - Consider each node m≠d that we know is in loop, make sure that m's predecessors are also inserted in loop

Control Flow Analysis

46

Natural Loops Example



Back edge	Natural loop
10→7	{7,10,8}
7→4	{4,7,5,6
	10,8}
4→3	(2.47.5.6.40.0)
8→3	{3,4,7,5,6,10,8}
9→1	{1,9,8,7,5,6,
	10,4,3,2}

□ Why neither {3,4} nor {4,5,6,7} is a natural loop?

Control Flow Analysis

Inner Loops

 A useful property of natural loops: unless two loops have the same header, they are either disjoint or one is entirely contained (nested within) the other

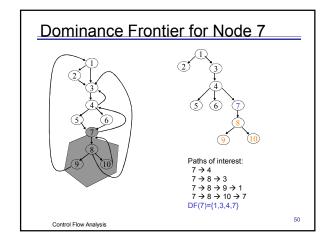
- An inner loop is a loop that contains no other loops
 - o Good optimization candidate
 - o The inner loop of the previous example: {7,8,10}

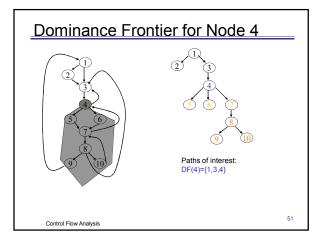
Control Flow Analysis

Dominance Frontiers

- □ For a node *n* in CFG, DF(*n*) denotes the dominance frontier set of *n*
 - DF(n) contains all nodes x s.t. n dominates an immediate predecessor of x but does not strictly dominate x
 - For this to happen, there is some path from node n to $x, n \rightarrow ... \rightarrow y \rightarrow x$ where (n DOM y) but !(n SDOM x)
 - Informally, DF(n) contains the first nodes reachable from n that n does not strictly dominate, on each CFG path leaving n
- Used in SSA calculation and redundancy elimination

Control Flow Analysis





Computing Dominance Frontiers

□ Easiest way:

 $DF(x) = SUCC(DOM^{-1}(x)) - SDOM^{-1}(x)$ where SUCC(x) = set of successors of x in the CFG

- But not the most efficient
- Observation
 - O Nodes in a DF must be join nodes
 - The predecessor of any join node j must have j in its DF unless it dominates j
 - The dominators of j's predecessors must have j in their DF sets unless they also dominate j

Control Flow Analysis

52

Computing Dominance Frontiers

for all nodes n, initialize DF(n) =Ø

for all nodes n

if n has multiple predecessors, then

for each predecessor p of n

runner = p

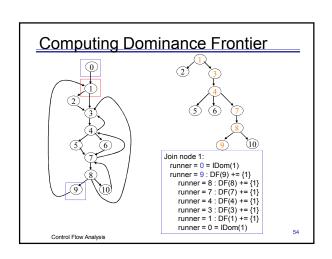
while (runner \neq IDom(n))

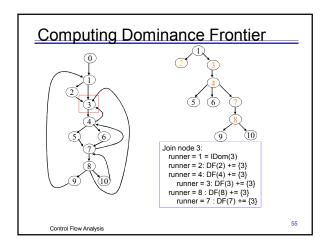
 $DF(runner) = DF(runner) \cup \{n\}$

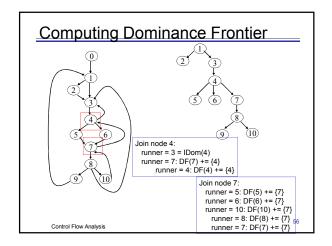
runner = IDom(runner)

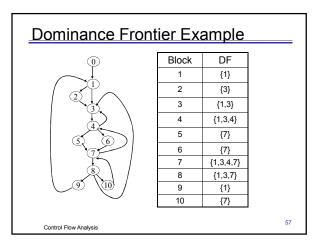
- \Box First identify join nodes j in CFG
- Starting with j's predecessors, walk up the dominator tree until we reach the immediate dominator of i
 - \circ Node j should be included in the DF set of all the nodes we pass by except for j s immediate dominator

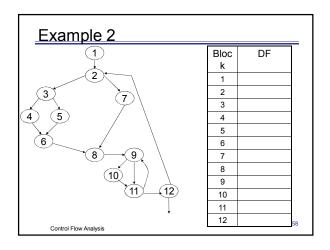
Control Flow Analysis











Dominator-based Analysis

- - Use dominators to discover loops for optimization
- Advantages
 - Sufficient for use by iterative data-flow analysis and optimizations
 - Least time-intensive to implement
 - Favored by most current optimizing compilers
- Alternative approach
 - o Interval-based analysis/structural analysis

Control Flow Analysis

CFG analysis

CFG traversal

Summary CFG construction

o Important regions: EBB and loop

Basic blocks identification

Depth-first spanning tree

Vertex ordering

- Dominators Dominance frontiers
- Additional references
 - o Advanced compiler design and implementation, by S. Muchinick, Morgan Kaufmann

Control Flow Analysis