
1

Control Flow Analysis

COMP 621 – Program Analysis and

Transformations
These slides have been adapted from

http://cs.gmu.edu/~white/CS640/Slides/CS640-2-02.ppt

by Professor Liz White.

Control Flow Analysis
2

Program Control Flow
� Control flow

�Sequence of operations

�Representations

� Control flow graph

� Control dependence

� Call graph

� Control flow analysis

�Analyzing program to discover its control

structure

�Today’s topic: CFG-based analysis

Control Flow Analysis
3

Control Flow Graph
� CFG models flow of control in the program (procedure)

� G = (N, E) as a directed graph

� Node n ∈ N: basic blocks

� A basic block is a maximal sequence of stmts with a single entry

point, single exit point, and no internal branches

� For simplicity, we assume a unique entry node n0 and a unique exit

node nf in later discussions

� Edge e=(ni, nj) ∈ E: possible transfer of control from block ni to

block nj

if (x==y)
then { � }
else { �}
�.

if (x==y)

Control Flow Analysis
4

Basic Blocks
� Definition

�A basic block is a maximal sequence of

consecutive statements with a single entry

point, a single exit point, and no internal

branches

� Basic unit in control flow analysis

� Local level of code optimizations

�Redundancy elimination

�Register-allocation

Control Flow Analysis
5

(1) i := m – 1

(2) j := n

(3) t1 := 4 * n

(4) v := a[t1]

(5) i := i + 1

(6) t2 := 4 * i

(7) t3 := a[t2]

(8) if t3 < v goto (5)

(9) j := j – 1

(10) t4 := 4 * j

(11) t5 := a[t4]

(12) if t5 > v goto (9)

(13) if i >= j goto (23)

(14) t6 := 4*i

(15) x := a[t6]
…

Basic Block Example

• How many basic blocks

in this code fragment?

• What are they?

Control Flow Analysis
6

Basic Block Example
(1) i := m – 1

(2) j := n

(3) t1 := 4 * n

(4) v := a[t1]

(5) i := i + 1

(6) t2 := 4 * I

(7) t3 := a[t2]

(8) if t3 < v goto (5)

(9) j := j – 1

(10) t4 := 4 * j

(11) t5 := a[t4]

(12) if t5 > v goto (9)

(13) if i >= j goto (23)

(14) t6 := 4*I

(15) x := a[t6]

K

• How many basic blocks

in this code fragment?

• What are they?

2

Control Flow Analysis
7

Identify Basic Blocks
Input: A sequence of intermediate code

statements

1. Determine the leaders, the first statements of
basic blocks

• The first statement in the sequence (entry point) is a
leader

• Any statement that is the target of a branch
(conditional or unconditional) is a leader

• Any statement immediately following a branch
(conditional or unconditional) or a return is a leader

2. For each leader, its basic block is the leader
and all statements up to, but not including, the
next leader or the end of the program

Control Flow Analysis
8

(1) i := m – 1 (16) t7 := 4 * i

(2) j := n (17) t8 := 4 * j

(3) t1 := 4 * n (18) t9 := a[t8]

(4) v := a[t1] (19) a[t7] := t9

(5) i := i + 1 (20) t10 := 4 * j

(6) t2 := 4 * i (21) a[t10] := x

(7) t3 := a[t2] (22) goto (5)

(8) if t3 < v goto (5) (23) t11 := 4 * i

(9) j := j - 1 (24) x := a[t11]

(10) t4 := 4 * j (25) t12 := 4 * i

(11) t5 := a[t4] (26) t13 := 4 * n

(12) If t5 > v goto (9) (27) t14 := a[t13]

(13) if i >= j goto (23) (28) a[t12] := t14

(14) t6 := 4*i (29) t15 := 4 * n

(15) x := a[t6] (30) a[t15] := x

Example

Control Flow Analysis
9

(1) i := m – 1 (16) t7 := 4 * i

(2) j := n (17) t8 := 4 * j

(3) t1 := 4 * n (18) t9 := a[t8]

(4) v := a[t1] (19) a[t7] := t9

(5) i := i + 1 (20) t10 := 4 * j

(6) t2 := 4 * i (21) a[t10] := x

(7) t3 := a[t2] (22) goto (5)

(8) if t3 < v goto (5) (23) t11 := 4 * i

(9) j := j - 1 (24) x := a[t11]

(10) t4 := 4 * j (25) t12 := 4 * i

(11) t5 := a[t4] (26) t13 := 4 * n

(12) If t5 > v goto (9) (27) t14 := a[t13]

(13) if i >= j goto (23) (28) a[t12] := t14

(14) t6 := 4*i (29) t15 := 4 * n

(15) x := a[t6] (30) a[t15] := x

Example: Leaders

Control Flow Analysis
10

(1) i := m – 1 (16) t7 := 4 * i

(2) j := n (17) t8 := 4 * j

(3) t1 := 4 * n (18) t9 := a[t8]

(4) v := a[t1] (19) a[t7] := t9

(5) i := i + 1 (20) t10 := 4 * j

(6) t2 := 4 * i (21) a[t10] := x

(7) t3 := a[t2] (22) goto (5)

(8) if t3 < v goto (5) (23) t11 := 4 * i

(9) j := j - 1 (24) x := a[t11]

(10) t4 := 4 * j (25) t12 := 4 * i

(11) t5 := a[t4] (26) t13 := 4 * n

(12) If t5 > v goto (9) (27) t14 := a[t13]

(13) if i >= j goto (23) (28) a[t12] := t14

(14) t6 := 4*i (29) t15 := 4 * n

(15) x := a[t6] (30) a[t15] := x

Example: Basic Blocks

Control Flow Analysis
11

Generating CFGs
� Partition intermediate code into basic blocks

� Add edges corresponding to control flows

between blocks

� Unconditional goto

� Conditional branch – multiple edges

� Sequential flow – control passes to the next block (if

no branch at the end)

� If no unique entry node n0 or exit node nf, add

dummy nodes and insert necessary edges

� Ideally no edges entering n0; no edges exiting nf

� Simplify many analysis and transformation algorithms

Control Flow Analysis
12

(1) i := m – 1 (16) t7 := 4 * i

(2) j := n (17) t8 := 4 * j

(3) t1 := 4 * n (18) t9 := a[t8]

(4) v := a[t1] (19) a[t7] := t9

(5) i := i + 1 (20) t10 := 4 * j

(6) t2 := 4 * i (21) a[t10] := x

(7) t3 := a[t2] (22) goto (5)

(8) if t3 < v goto (5) (23) t11 := 4 * i

(9) j := j - 1 (24) x := a[t11]

(10) t4 := 4 * j (25) t12 := 4 * i

(11) t5 := a[t4] (26) t13 := 4 * n

(12) If t5 > v goto (9) (27) t14 := a[t13]

(13) if i >= j goto (23) (28) a[t12] := t14

(14) t6 := 4*i (29) t15 := 4 * n

(15) x := a[t6] (30) a[t15] := x

Example: CFG

3

Control Flow Analysis
13

CFG and HL code
I = 1

J = 1

K = 1

L = 1

repeat

if (P) then begin

J = I

if (Q) then L = 2

else L = 3

K = K + 1

end

else K = K + 2

print (I,J,K,L)

repeat

if (R) then L = L + 4

until (S)

I = I + 6

until (T)

1

2

3 7

4 5

6

8 9

10

11 12

Control Flow Analysis
14

Complications in CFG Construction
� Function calls

� Instruction scheduling may prefer function calls as
basic block boundaries

� Special functions as setjmp() and longjmp()

� Exception handling

� Ambiguous jump
� Jump r1 //target stored in register r1

� Static analysis may generate edges that never occur
at runtime

� Record potential targets if possible

� Jumps target outside the current procedure
� PASCAL, Algol: still restricted to lexically enclosing

procedure

Control Flow Analysis
15

� Given a CFG = <N, E>

� If there is an edge ni→nj ∈ E

� ni is a predecessor of nj

� nj is a successor of ni

�For any node n ∈ N

� Pred(n): the set of predecessors of n

� Succ(n): the set of successors of n

� A branch node is a node that has more than one

successor

� A join node is a node that has more than one

predecessor

Nodes in CFG

A

B C

D

Control Flow Analysis
16

Depth First Traversal
� CFG is a rooted, directed graph

� Entry node as the root

� Depth-first traversal (depth-first searching)

� Idea: start at the root and explore as far/deep as

possible along each branch before backtracking

� Can build a spanning tree for the graph

� Spanning tree of a directed graph G contains all

nodes of G such that

� There is a path from the root to any node reachable in

the original graph and

� There are no cycles

Control Flow Analysis
17

DFS Spanning Tree Algorithm

procedure span(v) /* v is a node in the

graph */

InTree(v) = true

For each w that is a successor of v do

if (!InTree(w)) then

Add edge v ���� w to spanning tree

span(w)

end span

� Initial: span(n0)

Control Flow Analysis
18

DFST Example

A

C

D

E F

G

I

J

B

H

Nodes are numbered

in the order visited

during the search

== depth first pre-order

numbering.

1

4

Control Flow Analysis
19

DFST Example

A

C

D

E F

G

I

J

B

H

Nodes are numbered

in the order visited

during the search

== depth first pre-order

Numbering.

1

9

2

3

4

5

6

7

8

10

Control Flow Analysis
20

CFG Edges Classification
Edge x � y in a CFG is an

� Advancing edge – if x is an ancestor of y
in the tree

�Tree edge – if part of the spanning tree

�Forward edge – if not part of the spanning tree
and x is an ancestor of y in the tree

� Retreating edge – if not part of the
spanning tree and y is an ancestor of x in
the tree

� Cross edge – if not part of the spanning
tree and neither is an ancestor of the other

Control Flow Analysis
21

DFST Example

A

C

D

E F

G

I

J

B

H

Tree Edge

Forward Edge

Retreating Edge

Cross Edge

Control Flow Analysis
22

Back Edges and Reducibility
� An edge x � y in a CFG is a back edge if

every path from the entry node of the flow
graph to x goes through y
�y dominates x : more details later

�Every back edge is a retreating edge

�Vice versa?

� A flow graph is reducible if all its retreating

edges in any DFST are also back edges

�Flow graphs that occur in practice are almost

always reducible

Control Flow Analysis
23

Non-Reducible Graphs
� Testing reducibility: Take any DFST for the

flow graph, remove the back edges, and

check that the result is acyclic

A

CB

In any DFST, one
of these edges will
be a retreating edge

Control Flow Analysis
24

Nodes Ordering wrt DFST
� Enhanced depth-first spanning tree algorithm:

time =0;

procedure span(v) /* v is a node in the graph */

InTree(v) = true; d[v] = ++time;

For each w that is a successor of v do

if (!InTree(w)) then

Add edge v � w to spanning tree

span(w)

f[v]=++time;

end span

� Associate two numbers to each node v in the graph

� d[v]: discovery time of v in the spanning

� f[v]: finish time of v in the spanning

5

Control Flow Analysis
25

Nodes Ordering wrt DFST
� Pre-ordering

�Ordering of vertices based on discovery time

� Post-ordering
�Ordering of vertices based on finish time

� Reverse post-ordering
�The reverse of a post-ordering, i.e. ordering of

vertices in the opposite order of their finish
time

�Not the same as pre-ordering

�Commonly used in forward data flow analysis
� Backward data flow analysis: RPO on the reverse

CFG

Control Flow Analysis
26

Ordering Example

D

E F

G

6

5

7

8

� Pre-ordering: DEGF

� Post-ordering: GEFD

� Reverse post-ordering: DFEG

Control Flow Analysis
27

Big Picture
Why care about ordering / back edges?

� CFGs are commonly used to propagate
information between nodes (basic blocks)
� Data flow analysis

� The existence of back edges / cycles in flow
graphs indicates that we may need to traverse
the graph more than once
� Iterative algorithms: when to stop? How quickly can

we stop?

� Proper ordering of nodes during iterative
algorithm assures number of passes limited by
the number of “nested” back edges

Control Flow Analysis
28

Regions in CFG
� Extended basic block (EBB)

� EBB is a maximal set of nodes in a CFG that contains

no join nodes other than the entry node

� A single entry and possibly multiple exits

� Some optimizations like value numbering and instruction

scheduling are more effective if applied in EBBs

� Natural loop

� Loop is a collection of nodes in a CFG such that
� All nodes in the collection are strongly connected, and

� The collection of nodes has a unique entry: the only way to
visit the loop from outside

� A loop that contains no other loops is an inner loop

� Main target of program optimizations

Control Flow Analysis
29

EBB Example

A

C

D

E F

G

I

J

B

H

Max-size EBBs:

{A,B}, {C,J},

{D,E,F}, {G,H,I}

Loops?

Not that obviousK

Can use dominator-

based loop detection

Control Flow Analysis
30

Dominance
� Node d of a CFG dominates node n if every path

from the entry node of the graph to n passes
through d (d dom n)
� Dom(n): the set of dominators of node n

� Every node dominates itself: n ∈ Dom(n)

� Node d strictly dominates n if d ∈ Dom(n) and d ≠ n

� Dominance-based loop recognition: entry of a loop
dominates all nodes in the loop

� Each node n has a unique immediate dominator
m which is the last dominator of n on any path
from the entry to n (m idom n), m ≠ n
� The immediate dominator m of n is the strict dominator

of n that is closest to n

6

Control Flow Analysis
31

Dominator Example

1

2

3

4

5 6

7

8

9 10

Block Dom IDom

1 {1} —

2 {1,2} 1

3 {1,3} 1

4 {1,3,4} 3

5 {1,3,4,5} 4

6 {1,3,4,6} 4

7 {1,3,4,7} 4

8 {1,3,4,7,8} 7

9 {1,3,4,7,8,9} 8

10 {1,3,4,7,8,10} 8

Control Flow Analysis
32

Dominator Trees

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

� In a dominator tree, a node’s parent is its immediate
dominator

Control Flow Analysis
33

Other sets of interest

1

2

3

4

5 6

7

8

9 10

Block SDom

Dom-n

Dom-1

1 {} {1,2,3,4,5,6,7,8,9,10}

2 {1} {2}

3 {1} {3,4,5,6,7,8,9,10}

4 {1,3} {4,5,6,7,8,9,10}

5 {1,3,4} {5}

6 {1,3,4} {6}

7 {1,3,4} {7,8,9,10}

8 {1,3,4,7} {8,9,10}

9 {1,3,4,7,8} {9}

10 {1,3,4,7,8} {10}

Control Flow Analysis
34

Example 2
1

2

3 7

4 5

6

8 9

10

11 12

Block Dom IDom

1

2

3

4

5

6

7

8

9

10

11

12

Control Flow Analysis
35

Example 2
1

2

3 7

4 5

6

8 9

10

11 12

Block Dom IDom

1 1 -

2 1,2 1

3 1,2,3 2

4 1,2,3,4 3

5 1,2,3,5 3

6 1,2,3,6 3

7 1,2,7 2

8 1,2,8 2

9 1,2,8,9 8

10 1,2,8,9,10 9

11 1,2,8,9,11 9

12 1,2,8,9,11,12 11

Control Flow Analysis
36

Algorithm: Computing DOM
� An iterative fixed-point calculation

N is the set of nodes in the CFG

DOM(n0) = {n0} (n0 is the entry)

For all nodes x ≠ n0

DOM(x) = N

Until no more changes to dominator sets

for all nodes x ≠ n0

DOM(x) = { x } + (∩ DOM(P)) for all predecessors P of x

� At termination, node d in DOM(n) iff d dominates n

7

Control Flow Analysis
37

Dominator Example

1

2

3

4

5 6

7

8

9 10

0

initial iteration1

0 {0} {0}

1 N {1} + (Dom(0) ∩∩∩∩ Dom(9)) = {0,1}

2 N {2} + Dom(1) = {0,1,2}

3 N {3} + (Dom(1) ∩∩∩∩ Dom(2) ∩∩∩∩ Dom(8) ∩∩∩∩

Dom(4)) = {0,1,3}

4 N {4} + (Dom(3) ∩∩∩∩ Dom(7)) = {0,1,3,4}

5 N {5} + Dom(4) = {0,1,3,4,5}

6 N {6} + Dom(4) = {0,1,3,4,6}

7 N {7} + (Dom(5) ∩∩∩∩ Dom(6) ∩∩∩∩ Dom(10)) =

{0,1,3,4,7}

8 N {8} + Dom(7) = {0,1,3,4,7,8}

9 N {9} + Dom(8) = {0,1,3,4,7,8,9}

10 N {10} + Dom(8) = {0,1,3,4,7,8,10}

Control Flow Analysis
38

Dominator Example

1

2

3

4

5 6

7

8

9 10

Block

Dom

initial iteration1 iteration2

0 {0} {0} {0}

1 N {0,1} {0,1}

2 N {0,1,2} {0,1,2}

3 N {0,1,3} {0,1,3}

4 N {0,1,3,4} {0,1,3,4}

5 N {0,1,3,4,5} {0,1,3,4,5}

6 N {0,1,3,4,6} {0,1,3,4,6}

7 N {0,1,3,4,7} {0,1,3,4,7}

8 N {0,1,3,4,7,8} {0,1,3,4,7,8}

9 N {0,1,3,4,7,8,9} {0,1,3,4,7,8,9}

10 N {0,1,3,4,7,8,10} {0,1,3,4,7,8,10}

0

Control Flow Analysis
39

Computing IDOM from DOM

1. For each node n, initially set IDOM(n) =

DOM(n)-{n} (SDOM - strict dominators)

2. For each node p in IDOM(n), see if p has

dominators other than itself also included in

IDOM(n): if so, remove them from IDOM(n)

� The immediate dominator m of n is the strict

dominator of n that is closest to n

Control Flow Analysis
40

I-Dominator Example

1

2

3

4

5 6

7

8

9 10

Block

IDom

initial (SDOM)

0 {} {}

1 {0} {0}

2 {0,1} {1} //0 - 1’s dominator

3 {0,1} {1} //0 - 1’s dominator

4 {0,1,3} {3} // 0,1 - 3’s dominators

5 {0,1,3,4} {4} // 0,1,3 - 4’s dominators

6 {0,1,3,4} {4} // 0,1,3 - 4’s dominators

7 {0,1,3,4} {4} // 0,1,3 - 4’s dominators

8 {0,1,3,4,7} {7} // 0,1,3,4 - 7’s dominators

9 {0,1,3,4,7,8} {8} // 0,1,3,4,7 - 8’s dominators

10 {0,1,3,4,7,8} {8} // 0,1,3,4,7 - 8’s dominators

0

Control Flow Analysis
41

Post-Dominance

� Related concept

� Node d of a CFG post-dominates node n if

every path from n to the exit node passes

through d (d pdom n)

�Pdom(n): the set of post-dominators of node n

�Every node post-dominates itself: n ∈

Pdom(n)

� Each node n has a unique immediate post

dominator m

Control Flow Analysis
42

Post-dominator Example

1

2

3

4

5 6

7

8

9 10

Block Pdom IPdom

1 {3,4,7,8,10,exit} 3

2 {2,3,4,7,8,10,exit} 3

3 {3,4,7,8,10,exit} 4

4 {4,7,8,10,exit} 7

5 {5,7,8,10,exit} 7

6 {6,7,8,10,exit} 7

7 {7,8,10,exit} 8

8 {8,10,exit} 10

9 {1,3,4,7,8,10,exit} 1

10 {10,exit} exit
exit

8

Control Flow Analysis
43

CFG
1

2

3 7

4 5

6

8 9

10

11 12

exit

exit

12

11

910

8

762

1 3 4 5

Control Flow Analysis
44

Natural Loops
� Natural loops that are suitable for improvement

have two essential properties:

� A loop must have a single entry point called header

� There must be at least one way to iterate the loop, i.e.,

at least one path back to the header

� Identifying natural loops

� Searching for back edges (n→d) in CFG whose

heads dominate their tails

� For an edge a→b, b is the head and a is the tail

� A back edge flows from a node n to one of n’s dominators d

� The natural loop for that edge is {d}+the set of nodes

that can reach n without going through d

� d is the header of the loop

Control Flow Analysis
45

Back Edge Example

1

2

3

4

5 6

7

8

9 10

Block Dom IDom

1 1 —

2 1,2 1

3

4

5

6

7

8

9

10

1,3 1

1,3,4 3

1,3,4,5 4

1,3,4,6 4

1,3,4,7 4

1,3,4,7,8 7

1,3,4,7,8,9 8

1,3,4,7,8,10 8Back edges?

Control Flow Analysis
46

Identifying Natural Loops
� Given a back edge n→d, the natural loop of the

edge includes
� Node d

� Any node that can reach n without going through d

� Loop construction
� Set loop={d}

� Add n into loop if n ≠d

� Consider each node m≠d that we know is in loop,
make sure that m’s predecessors are also inserted in
loop

Control Flow Analysis
47

Natural Loops Example

1

2

3

4

5 6

7

8

9 10

Back edge Natural loop

10→7

7→4

4→3

8→3

9→1

{7,10,8}

{4,7,5,6

10,8}

{3,4,7,5,6,10,8}

{1,9,8,7,5,6,

10,4,3,2}

� Why neither {3,4} nor
{4,5,6,7} is a natural loop?

Control Flow Analysis
48

Inner Loops

� A useful property of natural loops: unless two
loops have the same header, they are either
disjoint or one is entirely contained (nested
within) the other

� An inner loop is a loop that contains no other
loops
� Good optimization candidate

� The inner loop of the previous example: {7,8,10}

B0 B1

B2

B3

9

Control Flow Analysis
49

Dominance Frontiers
� For a node n in CFG, DF(n) denotes the

dominance frontier set of n

� DF(n) contains all nodes x s.t. n dominates an

immediate predecessor of x but does not strictly

dominate x

� For this to happen, there is some path from node n to

x, n � K � y � x where (n DOM y) but !(n SDOM x)

� Informally, DF(n) contains the first nodes reachable

from n that n does not strictly dominate, on each CFG

path leaving n

� Used in SSA calculation and redundancy

elimination

Control Flow Analysis
50

Dominance Frontier for Node 7

Paths of interest:

7 � 4

7 � 8 � 3

7 � 8 � 9 � 1

7 � 8 � 10 � 7

DF(7)={1,3,4,7}

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

Control Flow Analysis
51

Dominance Frontier for Node 4

Paths of interest:

DF(4)={1,3,4}

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

Control Flow Analysis
52

Computing Dominance Frontiers
� Easiest way:

DF(x) = SUCC(DOM-1(x)) – SDOM-1(x) where

SUCC(x) = set of successors of x in the CFG

�But not the most efficient

� Observation

�Nodes in a DF must be join nodes

�The predecessor of any join node j must have

j in its DF unless it dominates j

�The dominators of j’s predecessors must have

j in their DF sets unless they also dominate j

Control Flow Analysis
53

Computing Dominance Frontiers
for all nodes n, initialize DF(n) =Ø

for all nodes n

if n has multiple predecessors, then

for each predecessor p of n

runner = p

while (runner ≠IDom(n))

DF(runner) = DF(runner) ∪ {n}

runner = IDom(runner)

� First identify join nodes j in CFG

� Starting with j’s predecessors, walk up the dominator tree
until we reach the immediate dominator of j
� Node j should be included in the DF set of all the nodes we pass

by except for j’s immediate dominator

Control Flow Analysis
54

Computing Dominance Frontier

Join node 1:

runner = 0 = IDom(1)

runner = 9 : DF(9) += {1}

runner = 8 : DF(8) += {1}

runner = 7 : DF(7) += {1}

runner = 4 : DF(4) += {1}

runner = 3 : DF(3) += {1}

runner = 1 : DF(1) += {1}

runner = 0 = IDom(1)

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

0

10

Control Flow Analysis
55

Computing Dominance Frontier

Join node 3:

runner = 1 = IDom(3)

runner = 2: DF(2) += {3}

runner = 4: DF(4) += {3}

runner = 3: DF(3) += {3}

runner = 8 : DF(8) += {3}

runner = 7 : DF(7) += {3}

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

0

Control Flow Analysis
56

Computing Dominance Frontier

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

0

Join node 7:

runner = 5: DF(5) += {7}

runner = 6: DF(6) += {7}

runner = 10: DF(10) += {7}

runner = 8: DF(8) += {7}

runner = 7: DF(7) += {7}

Join node 4:

runner = 3 = IDom(4)

runner = 7: DF(7) += {4}

runner = 4: DF(4) += {4}

Control Flow Analysis
57

Dominance Frontier Example

1

2

3

4

5 6

7

8

9 10

Block DF

1 {1}

2 {3}

3 {1,3}

4 {1,3,4}

5 {7}

6 {7}

7 {1,3,4,7}

8 {1,3,7}

9 {1}

10 {7}

0

Control Flow Analysis
58

Example 2
1

2

3 7

4 5

6

8 9

10

11 12

Bloc

k

DF

1

2

3

4

5

6

7

8

9

10

11

12

Control Flow Analysis
59

Dominator-based Analysis
� Idea

�Use dominators to discover loops for
optimization

� Advantages

�Sufficient for use by iterative data-flow
analysis and optimizations

�Least time-intensive to implement

�Favored by most current optimizing compilers

� Alternative approach

� Interval-based analysis/structural analysis

Control Flow Analysis
60

Summary
� CFG construction

� Basic blocks identification

� CFG traversal
� Depth-first spanning tree

� Vertex ordering

� CFG analysis
� Important regions: EBB and loop

� Dominators

� Dominance frontiers

� Additional references
� Advanced compiler design and implementation, by S.

Muchinick, Morgan Kaufmann

