
Introduction to Aspect Oriented Programming and
Aspect Matlab

AspectMatlab 1 / 30

Motivation for Aspect Oriented Programming

void transfer (Account from, Account to, int amount, User user, Logger logger)
throws Exception {
logger . info (” Transferring money ...”);
if (! checkUserPermission(user)){

logger . info (”User has no permission .”);
throw new UnauthorizedUserException();
}
if (from.getBalance() < amount) {

logger . info (” Insufficient funds .”);
throw new InsufficientFundsException ();
}
from.withdraw(amount);
to . deposit (amount);
logger . info (” Successful transaction .”);
}

The basic functionality is simply transferring money from one account to
another, but other interests get tangled together with this simple
functionality.

AspectMatlab 2 / 30

Motivation for Aspect Oriented Programming

void transfer (Account from, Account to, int amount, User user, Logger logger)
throws Exception {
logger . info (” Transferring money ...”);
if (! checkUserPermission(user)){

logger . info (”User has no permission .”);
throw new UnauthorizedUserException();
}
if (from.getBalance() < amount) {

logger . info (” Insufficient funds .”);
throw new InsufficientFundsException ();
}
from.withdraw(amount);
to . deposit (amount);
logger . info (” Successful transaction .”);
}

The basic functionality is simply transferring money from one account to
another, but other interests get tangled together with this simple
functionality.

AspectMatlab 2 / 30

Cross-Cutting Concerns

Certain portions of a program cannot be neatly represented using objects,
and are scattered throughout the code. These portions of the program are
referred to as cross-cutting concerns, problems which require cutting
across multiple abstractions of a program.
These concerns raise a few problems:

Code will be difficult to maintain or modify.

Code will be redundant.

Code will be less clear.

AspectMatlab 3 / 30

Cross-Cutting Concerns

Certain portions of a program cannot be neatly represented using objects,
and are scattered throughout the code. These portions of the program are
referred to as cross-cutting concerns, problems which require cutting
across multiple abstractions of a program.
These concerns raise a few problems:

Code will be difficult to maintain or modify.

Code will be redundant.

Code will be less clear.

AspectMatlab 3 / 30

Cross-Cutting Concerns

Certain portions of a program cannot be neatly represented using objects,
and are scattered throughout the code. These portions of the program are
referred to as cross-cutting concerns, problems which require cutting
across multiple abstractions of a program.
These concerns raise a few problems:

Code will be difficult to maintain or modify.

Code will be redundant.

Code will be less clear.

AspectMatlab 3 / 30

Cross-Cutting Concerns

Certain portions of a program cannot be neatly represented using objects,
and are scattered throughout the code. These portions of the program are
referred to as cross-cutting concerns, problems which require cutting
across multiple abstractions of a program.
These concerns raise a few problems:

Code will be difficult to maintain or modify.

Code will be redundant.

Code will be less clear.

AspectMatlab 3 / 30

Aspect Oriented Programming

Aspect oriented programming solves inherent issues with cross-cutting
concerns by separating them into stand alone modules called aspects.

Aspect oriented languages weave aspect code into existing object
oriented code

Aspect oriented languages define join points, which are well-defined
points in a program where code can be meaningfully inserted.

Specific groups of join points can be specified using pointcuts. A
pointcut is used to determine if a given join point matches some
specification.

Programmers can specify code to be run at join points. This code can
be inserted when a desired pointcut matches a portion of code in the
main program.

AspectMatlab 4 / 30

Aspect Oriented Programming - Example

void transfer (Account fromAcc, Account toAcc, int amount) throws Exception {
if (fromAcc.getBalance() < amount) {

throw new InsufficientFundsException ();
}
fromAcc.withdraw(amount);
toAcc.deposit (amount);
}

AOP allows for us to separate out cross-cutting concerns from our main
program, leaving only the basic functionality. Cross-cutting concerns are
added into their own aspect modules which specify what code should be
added (woven) into the main program and where.

AspectMatlab 5 / 30

AspectMatlab

Extension of Matlab

Intended to be easy to use

Would like a library of predefined useful aspects

Supports patterns (pointcuts), actions

Focused more on profiling/checking functionality

Designed to have patterns which deal with constructs frequently
encountered in Matlab

AspectMatlab 6 / 30

AspectMatlab

An aspect is named and contains a body

Aspects are designed to be similar to object-oriented MATLAB
classes, which allow for properites blocks and methods blocks.

In addition, includes patterns blocks and action blocks. Patterns are
used to pick out specific join points, and actions are the blocks of
code intended to be executed at specific join points.

AspectMatlab 7 / 30

AspectMatlab - An Example Aspect

aspect myAspect
properties

count = 0;
end
methods

function incCount(this)
this .count = this .count + 1;

end
end
patterns

callFoo : call (foo);
end
actions

actCall : before callFoo
this . incCount();

end
end

AspectMatlab 8 / 30

Patterns

Patterns are contained inside blocks, a particular aspect can have any
number of blocks of patterns.

Patterns are identified by a unique name, and consist of a pattern
designator which identifies which MATLAB constructs should be
targeted by the pattern.

In addition, includes patterns blocks and action blocks. Patterns are
used to pick out specific join points, and actions are the blocks of
code intended to be executed at specific join points.

AspectMatlab 9 / 30

Patterns - Join Points in Matlab

AspectMatlab provides patterns to match a variety of join points

Loops (loop,loopbody,loophead)

Function calls (call)

Function executions (execution)

Array accesses (get)

Array assignments (set)

Annotations (annote)

AspectMatlab 10 / 30

Patterns - Loops

loop(i) - Matches the outside of the loop that iterates over i

loopbody(i) - Matches the body of the loop that iterates over i

loophead(i) - Matches the head of the loop that iterates over i

AspectMatlab 11 / 30

Patterns - Arrays

get(x) - Matches array accesses of x

set(x) - Matches array assignments to x

AspectMatlab 12 / 30

Patterns - Functions

call (foo) - Matches calls to the function foo

execution(foo) - Matches the entire body of function foo

mainexecution() - Matches the execution of the first function/script
executed.

AspectMatlab 13 / 30

Patterns - Selective Matching

Specialization of patterns for arrays and function calls can based on the
indices/arguments used for assignments/function calls

AspectMatlab 14 / 30

Patterns - Annotation

In order to make AspectMatlab easier to use, we introduce annotations to
the base Matlab language. Annotations are Matlab comments which the
AspectMatlab compiler recognizes and considers to be join points.
Annotations take the form %@annotationname. Optionally, a list of
arguments may follow the annotation name, which can be used in the
woven aspect code.

function [F, V] = nbody3d(n, R, m, dT, T)

%@type n ”double” [1,1]
%@type R ”double” [n,3]
%@type m ”double” [n,1]
%@type dT ”double” [1,1]
...

AspectMatlab 15 / 30

Patterns - Annotation

The annote pattern can be used to match annotations. The pattern which
will be matched can be restricted by specifying expected arguments.
Recognized argument types are var, char and double, as well as arrays of
these types.

patterns
annoteEx: annote(plot);
annoteAdd: annote(add(double,double));
typeAnn : annote(type(var , char , [∗]));

end

AspectMatlab 16 / 30

Patterns - Compound Patterns

Compound patterns can be made of primitive patterns using | (or) and &

(and)

patterns
pCallFoo : call (foo) & within(loops , ∗);
pGetOrSet : (get(∗) | set (∗)) & within(function , bar);
pCallExec : pCallFoo | execution(foo);

end

AspectMatlab 17 / 30

Patterns - Scope Restriction

The within pattern can be used to restrict the scope of pattern
application. It matches all join points that occur within a function, script,
class, or loop. It can be meaningfully applied using compound patterns to
only match within certain constructs.

patterns
pWithinFoo : within(function , foo);
pWithinBar : within(script , bar);
pWithinMyClass : within(class , myClass);
pWithinLoops : call (foo)&within(loops , ∗);
pWithinAllAbc : get(x)&within(∗, abc);

end

AspectMatlab 18 / 30

Patterns - Type Restriction

The isclass pattern and dimension pattern can be used to restrict the
matlab class and dimension of matches to array accesses and assignments.
The isclass pattern matches all array assignment and array access join
points which operate on data of the specified matlab type, and the
dimension pattern matches those which have the specified size.

patterns
isint32pat : isclass (int32) ;
isbsinglepat : (get(x)| set(x))& isclass (numeric) ;

dimp : dimension(2,∗,∗) ;
dimx2by2 : (get(x)| set(x))&dimension(2,2);

end

AspectMatlab 19 / 30

Actions

Actions are contained inside blocks, a particular aspect can have any
number of blocks of actions.

Actions are pieces of code that can be executed at certain points in
source code when matched by specified patterns.

Actions are named, and are linked to an existing pattern in the
patterns block.

When more than one action of the same class is triggered by the
same join point, the actions are applied in the order they are defined

AspectMatlab 20 / 30

Actions

There exist 3 types of actions, before, around and after actions. Before
actions are executed before a matched pattern, after actions are matched
after a matched pattern. Around actions are a bit more complicated and
are executed around a matched pattern.

AspectMatlab 21 / 30

Actions - Context Exposure

It is often important to have some information about a matched join
point to be used in action code. This is done using context exposure.

In AspectMatlab, context exposure is done by specifying selectors
along with an action definition.

AspectMatlab 22 / 30

Actions - Context Exposure

The selectors that are applicable depend on the join point type. Certain
selectors will have different meanings depending on the join point on
which they are used.

AspectMatlab 23 / 30

Around Actions

Around actions are executed in the place of the join point they match.
A special call, proceed, carries out the join point matched by the pattern
instead of it simply being executed before or after the action, as with
before or after advice. The proceed function can be used several times,
including not at all.

actions
actcall : around call2args : (name, args)

disp ([’ before call of ’, name, ’with parameters (’, args , ’)’]);
proceed();
disp ([’ after call of ’, name, ’with parameters (’, args , ’)’]);

end
end

AspectMatlab 24 / 30

Around Actions

A special variable, varargout, is used to return arguments. When proceed
is used, returning arguments is dealt with automatically. In the event that
proceed is not used varargout should be set to contain as many values as
the original join point would return

actions
actcall : around callFoo : (args)

% proceed not called , so varargout is set
varargout{1} = bar(args{1}, args{2});

end
end

AspectMatlab 25 / 30

Back to the Example

aspect myAspect
properties

count = 0;
end
methods

function incCount(this)
this .count = this .count + 1;

end
end
patterns

callFoo : call (foo);
end
actions

actCall : before callFoo
this . incCount();

end
end

AspectMatlab 26 / 30

Another Example

aspect myAspect
properties

count=0;
end
methods

function out = getCount(this)
out = this .count;

end
function incCount(this)

this .count = this .count + 1;
end

end
patterns

call2args : call (∗(∗,..));
executionMain : mainexecution();

end

AspectMatlab 27 / 30

Another Example

actions
actcall : around call2args : (name, args)

this . incCount();
disp ([’ calling ’, name, ’with parameters (’, args , ’)’]);
proceed();

end
actexecution : after executionMain

total = this .getCount();
disp ([’ total calls : ’, num2str(total)]);

end
end

end

AspectMatlab 28 / 30

AspectMatlab Compiler - How to Use

After obtaining the AspectMatlab jar file, you can compile aspects by
executing the jar,with a list of Matlab files and the AspectMatlab files that
should be woven into them.

java −jar amc.jar myFunc.m myAspect.m

java −jar amc.jar −main myFunc.m myAspect.m

Code generated by the AspectMatlab compiler can be found in a ”weaved”
directory, which is created in the current working directory. This code can
then be executed by running the woven Matlab file in any Matlab
environment.

AspectMatlab 29 / 30

End

AspectMatlab 30 / 30

