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Control Flow Analysis

COMP 621 – Program Analysis and 
Transformations
These slides have been adapted from 
http://cs.gmu.edu/~white/CS640/Slides/CS640-2-02.ppt

by Professor Liz White. 

How to represent the structure of the program?

 Based on the compositional structure ... 
i.e. the AST ...

 As a graph – which we discover from a 
sequential representation of low-level IR 
statements.
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Program Control Flow 
 Control flow

Sequence of operations

Representations
 Control flow graph

 Control dependence

 Call graph

 Control flow analysis
Analyzing program to discover its control 

structure

Today’s topic: CFG-based analysis 
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Control Flow Graph
 CFG models flow of control in the program (procedure)

 G = (N, E) as a directed graph
 Node n  N: basic blocks

 A basic block is a maximal sequence of stmts with a single entry 
point, single exit point, and no internal branches

 For simplicity, we assume a unique entry node n0 and a unique exit 
node nf in later discussions

 Edge e=(ni, nj)  E: possible transfer of control from block ni to 
block nj

if (x==y)
then { … }
else { …}
….

if (x==y)
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Basic Blocks
 Definition

A basic block is a maximal sequence of 
consecutive statements with a single entry 
point, a single exit point, and no internal 
branches

 Basic unit in control flow analysis
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Basic Blocks
 Local level of code optimizations

Redundancy elimination

Register-allocation

 Easy to do flow analysis because there are 
no alternative control flow paths.

x = 2

y = x + 1

z = z + 1
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(1) i := m – 1
(2) j := n 
(3) t1 := 4 * n
(4) v := a[t1] 
(5) i := i + 1
(6) t2 := 4 * i
(7) t3 := a[t2] 
(8) if t3 < v goto (5) 
(9)  j := j – 1
(10) t4 := 4 * j
(11) t5 := a[t4] 
(12) if t5 > v goto (9) 
(13) if i >= j goto (23) 
(14) t6 := 4*i
(15) x := a[t6]
…

Basic Block Example

• How many basic blocks 
in this code fragment?
• What are they?
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Basic Block Example
(1)   i := m – 1
(2) j := n 
(3)   t1 := 4 * n
(4)   v := a[t1] 
(5)   i := i + 1
(6) t2 := 4 * I
(7)   t3 := a[t2] 
(8) if t3 < v goto (5)
(9)   j := j – 1
(10) t4 := 4 * j
(11) t5 := a[t4] 
(12) if t5 > v goto (9)
(13) if i >= j goto (23)
(14) t6 := 4*I
(15) x := a[t6]
…

• How many basic blocks 
in this code fragment?
• What are they?
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Identify Basic Blocks
Input: A sequence of intermediate code 

statements
1. Determine the leaders, the first statements of 

basic blocks   
• The first statement in the sequence (entry point) is a 

leader 
• Any statement that is the target of a branch 

(conditional or unconditional) is a leader 
• Any statement immediately following a branch 

(conditional or unconditional) or a return is a leader 

2. For each leader, its basic block is the leader 
and all statements up to, but not including, the 
next leader or the end of the program
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(1)    i := m – 1 (16)  t7 := 4 * i  
(2) j := n (17)  t8 := 4 * j   
(3) t1 := 4 * n (18)  t9 := a[t8]   
(4) v := a[t1]               (19)  a[t7] := t9   
(5) i := i + 1                (20)  t10 := 4 * j   
(6) t2 := 4 * i                (21)  a[t10] := x   
(7) t3 := a[t2]                (22)  goto (5)   
(8) if t3 < v goto (5)     (23)  t11 := 4 * i   
(9) j := j - 1                   (24)  x := a[t11]   
(10) t4 := 4 * j                (25)  t12 := 4 * i   
(11) t5 := a[t4]                (26)  t13 := 4 * n   
(12) If t5 > v goto (9)     (27)  t14 := a[t13]   
(13) if i >= j goto (23)    (28)  a[t12] := t14   
(14) t6 := 4*i                   (29)  t15 := 4 * n   
(15) x := a[t6]                (30)  a[t15] := x   

Example
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(1)    i := m – 1 (16)  t7 := 4 * i  
(2) j := n (17)  t8 := 4 * j   
(3) t1 := 4 * n (18)  t9 := a[t8]   
(4) v := a[t1]               (19)  a[t7] := t9   
(5) i := i + 1 (20)  t10 := 4 * j   
(6) t2 := 4 * i                (21)  a[t10] := x   
(7) t3 := a[t2]                (22)  goto (5)   
(8) if t3 < v goto (5)     (23)  t11 := 4 * i
(9) j := j - 1 (24)  x := a[t11]   
(10) t4 := 4 * j                (25)  t12 := 4 * i   
(11) t5 := a[t4]                (26)  t13 := 4 * n   
(12) If t5 > v goto (9)     (27)  t14 := a[t13]   
(13) if i >= j goto (23) (28)  a[t12] := t14   
(14) t6 := 4*i (29)  t15 := 4 * n   
(15) x := a[t6]                (30)  a[t15] := x    

Example: Leaders
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(1)    i := m – 1 (16)  t7 := 4 * i  
(2) j := n (17)  t8 := 4 * j   
(3) t1 := 4 * n (18)  t9 := a[t8]   
(4) v := a[t1]               (19)  a[t7] := t9   
(5) i := i + 1 (20)  t10 := 4 * j   
(6) t2 := 4 * i                (21)  a[t10] := x   
(7) t3 := a[t2]                (22)  goto (5)   
(8) if t3 < v goto (5)     (23)  t11 := 4 * i
(9) j := j - 1 (24)  x := a[t11]   
(10) t4 := 4 * j                (25)  t12 := 4 * i   
(11) t5 := a[t4]                (26)  t13 := 4 * n   
(12) If t5 > v goto (9)     (27)  t14 := a[t13]   
(13) if i >= j goto (23) (28)  a[t12] := t14   
(14) t6 := 4*i (29)  t15 := 4 * n   
(15) x := a[t6]                (30)  a[t15] := x    

Example: Basic Blocks
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Generating CFGs
 Partition intermediate code into basic blocks

 Add edges corresponding to control flows 
between blocks
 Unconditional goto

 Conditional branch – multiple edges

 Sequential flow – control passes to the next block (if 
no branch at the end)

 If no unique entry node n0 or exit node nf, add 
dummy nodes and insert necessary edges
 Ideally no edges entering n0; no edges exiting nf

 Simplify many analysis and transformation algorithms
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(1)    i := m – 1 (16)  t7 := 4 * i
(2) j := n (17)  t8 := 4 * j   
(3) t1 := 4 * n (18)  t9 := a[t8]   
(4) v := a[t1]               (19)  a[t7] := t9   
(5) i := i + 1 (20)  t10 := 4 * j   
(6) t2 := 4 * i (21)  a[t10] := x   
(7) t3 := a[t2]                (22)  goto (5)   
(8) if t3 < v goto (5)     (23)  t11 := 4 * i
(9) j := j - 1 (24)  x := a[t11]   
(10) t4 := 4 * j                (25)  t12 := 4 * i
(11) t5 := a[t4]                (26)  t13 := 4 * n   
(12) If t5 > v goto (9)     (27)  t14 := a[t13]   
(13) if i >= j goto (23) (28)  a[t12] := t14   
(14) t6 := 4*i (29)  t15 := 4 * n   
(15) x := a[t6]                (30)  a[t15] := x    

Example: CFG
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CFG and HL code
I = 1
J = 1
K = 1
L = 1
repeat

if (P) then begin
J = I
if (Q) then L = 2
else L = 3
K = K + 1

end
else K = K + 2
print (I,J,K,L)
repeat 

if (R) then L = L + 4
until (S)
I = I + 6

until (T)

1

2

3 7

4 5

6
8 9

10

11 12
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Complications in CFG Construction
 Function calls

 Instruction scheduling may prefer function calls as 
basic block boundaries

 Special functions as setjmp() and longjmp()

 Exception handling
 Ambiguous jump

 Jump r1   //target stored in register r1
 Static analysis may generate edges that never occur 

at runtime
 Record potential targets if possible

 Jumps target outside the current procedure
 PASCAL, Algol: still restricted to lexically enclosing 

procedure
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 Given a CFG = <N, E>
 If there is an edge  ninj  E

 ni is a predecessor of  nj

 nj is a successor of  ni

For any node n  N
 Pred(n): the set of predecessors of n

 Succ(n): the set of successors of n

 A branch node is a node that has more than one 
successor

 A join node is a node that has more than one 
predecessor

Nodes in CFG

A    

B C

D

Control Flow Analysis
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Depth First Traversal
 CFG is a rooted, directed graph

 Entry node as the root

 Depth-first traversal (depth-first searching)
 Idea: start at the root and explore as far/deep as 

possible along each branch before backtracking

 Can build a spanning tree for the graph

 Spanning tree of a directed graph G contains all 
nodes of G such that 
 There is a path from the root to any node reachable in 

the original graph and 

 There are no cycles
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DFS Spanning Tree Algorithm

procedure span(v)  /* v is a node in the 
graph */

InTree(v) = true

For each w that is a successor of v do

if (!InTree(w)) then

Add edge v  w to spanning tree
span(w)

end span

 Initial: span(n0)

Control Flow Analysis
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DFST Example

A

C

D

E F

G

I

J

B

H

Nodes are numbered 
in the order visited 
during the search 
== depth first pre-order 
numbering.

1
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DFST Example

A

C

D

E F

G

I

J

B

H

Nodes are numbered 
in the order visited 
during the search 
== depth first pre-order 
Numbering.

1

9

2

3

4

5

6

7
8

10
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CFG Edges Classification
Edge x y in a CFG is an
 Advancing edge – if x is an ancestor of y

in the tree
Tree edge – if part of the spanning tree
Forward edge – if not part of the spanning tree 

and x is an ancestor of y in the tree

 Retreating edge – if not part of the 
spanning tree and y is an ancestor of x in 
the tree 

 Cross edge – if not part of the spanning 
tree and neither is an ancestor of the other
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DFST Example

A

C

D

E F

G

I

J

B

H

Tree Edge
Forward Edge
Retreating Edge
Cross Edge
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Nodes Ordering wrt DFST
 Enhanced depth-first spanning tree algorithm:

time =0;

procedure span(v)  /* v is a node in the graph */

InTree(v) = true; d[v] = ++time;

For each w that is a successor of v do

if (!InTree(w)) then

Add edge v  w to spanning tree

span(w)

f[v]=++time;

end span

 Associate two numbers to each node v in the graph
 d[v]: discovery time of v in the spanning

 f[v]: finish time of v in the spanning
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Nodes Ordering wrt DFST
 Pre-ordering

Ordering of vertices based on discovery time

 Post-ordering
Ordering of vertices based on finish time

 Reverse post-ordering
The reverse of a post-ordering, i.e. ordering of  

vertices in the opposite order of their finish 
time

Not the same as pre-ordering
Commonly used in forward data flow analysis

 Backward data flow analysis: RPO on the reverse 
CFG

Control Flow Analysis
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Ordering Example

D

E F

G

 Pre-ordering: DEGF

 Post-ordering: GEFD 

 Reverse post-ordering: DFEG
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Big Picture
Why care about ordering / back edges?
 CFGs are commonly used to propagate 

information between nodes (basic blocks)
 Data flow analysis

 The existence of back edges / cycles in flow 
graphs indicates that we may need to traverse 
the graph more than once
 Iterative algorithms: when to stop? How quickly can 

we stop?

 Proper ordering of nodes during iterative 
algorithm assures number of passes limited by 
the number of “nested” back edges
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Regions in CFG – Bigger Blocks?
 Extended basic block (EBB)

 EBB is a maximal set of nodes in a CFG that contains 
no join nodes other than the entry node
 A single entry and possibly multiple exits

 Some optimizations like value numbering and instruction 
scheduling are more effective if applied in EBBs
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EBB Example

A

C

D

E F

G

I

J

B

H

Max-size EBBs:
{A,B}, {C,J}, 
{D,E,F}, {G,H,I}

Loops?
Not that obvious…
Can use dominator-
based loop detection
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Algorithm: Computing DOM
 An iterative fixed-point calculation

N is the set of nodes in the CFG
DOM(n0) = {n0}  (n0 is the entry)
For all nodes x  n0

DOM(x) = N

Until no more changes to dominator sets
for all nodes x  n0

DOM(x) = { x } + (∩ DOM(P) ) for all predecessors P of x

 At termination, node d in DOM(n) iff d dominates n

Control Flow Analysis
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Dominator Example

1

2

3

4

5 6

7

8

9 10

0
initial iteration1

0 {0} {0}

1 N {1} + (Dom(0)  Dom(9)) = {0,1}

2 N {2} + Dom(1) = {0,1,2}

3 N {3} + (Dom(1)  Dom(2)  Dom(8) 
Dom(4)) = {0,1,3}

4 N {4} + (Dom(3)  Dom(7)) = {0,1,3,4}

5 N {5} + Dom(4) = {0,1,3,4,5}

6 N {6} + Dom(4) = {0,1,3,4,6}

7 N {7} + (Dom(5)  Dom(6)  Dom(10)) = 
{0,1,3,4,7}

8 N {8} + Dom(7) = {0,1,3,4,7,8}

9 N {9} + Dom(8) = {0,1,3,4,7,8,9}

10 N {10} + Dom(8) = {0,1,3,4,7,8,10}
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Dominator Example

1

2

3

4

5 6

7

8

9 10

Block

Dom

initial iteration1 iteration2
0 {0} {0} {0}

1 N {0,1} {0,1}

2 N {0,1,2} {0,1,2}

3 N {0,1,3} {0,1,3}

4 N {0,1,3,4} {0,1,3,4}

5 N {0,1,3,4,5} {0,1,3,4,5}

6 N {0,1,3,4,6} {0,1,3,4,6}

7 N {0,1,3,4,7} {0,1,3,4,7}

8 N {0,1,3,4,7,8} {0,1,3,4,7,8}

9 N {0,1,3,4,7,8,9} {0,1,3,4,7,8,9}

10 N {0,1,3,4,7,8,10} {0,1,3,4,7,8,10}

0
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Computing IDOM from DOM

1. For each node n, initially set IDOM(n) = 
DOM(n)-{n} (SDOM - strict dominators)

2. For each node p in IDOM(n), see if p has 
dominators other than itself also included in 
IDOM(n): if so, remove them from IDOM(n)

 The immediate dominator m of n is the strict 
dominator of n that is closest to n
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I-Dominator Example

1

2

3

4

5 6

7

8

9 10

Block

IDom

initial (SDOM)

0 {} {}

1 {0} {0}

2 {0,1} {1} //0 - 1’s dominator

3 {0,1} {1} //0 - 1’s dominator

4 {0,1,3} {3} // 0,1 - 3’s dominators

5 {0,1,3,4} {4} // 0,1,3 - 4’s dominators

6 {0,1,3,4} {4} // 0,1,3 - 4’s dominators

7 {0,1,3,4} {4} // 0,1,3 - 4’s dominators

8 {0,1,3,4,7} {7} // 0,1,3,4 - 7’s dominators

9 {0,1,3,4,7,8} {8} // 0,1,3,4,7 - 8’s dominators

10 {0,1,3,4,7,8} {8} // 0,1,3,4,7 - 8’s dominators

0
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Post-Dominance
 Related concept 

 Node d of a CFG post-dominates node n if 
every path from n to the exit node passes 
through d (d pdom n)
Pdom(n): the set of post-dominators of node n

Every node post-dominates itself: n 
Pdom(n)

 Each node n has a unique immediate post 
dominator m
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Post-dominator Example

1

2

3

4

5 6

7

8

9 10

Block Pdom IPdom
1 {3,4,7,8,10,exit} 3

2 {2,3,4,7,8,10,exit} 3

3 {3,4,7,8,10,exit} 4

4 {4,7,8,10,exit} 7

5 {5,7,8,10,exit} 7

6 {6,7,8,10,exit} 7

7 {7,8,10,exit} 8

8 {8,10,exit} 10

9 {1,3,4,7,8,10,exit} 1

10 {10,exit} exitexit
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CFG
1

2

3 7

4 5

6
8 9

10

11 12

exit

exit

12

11

910

8

762

1    3  4  5
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Natural Loops
 Natural loops that are suitable for improvement 

have two essential properties:
 A loop must have a single entry point called header

 There must be at least one way to iterate the loop, i.e., 
at least one path back to the header

 Identifying natural loops
 Searching for back edges (nd) in CFG whose 

heads dominate their tails 
 For an edge ab, b is the head and a is the tail

 A back edge flows from a node n to one of n’s dominators d

 The natural loop for that edge is {d}+the set of nodes 
that can reach n without going through d
 d is the header of the loop
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Back Edge Example

1

2

3

4

5 6

7

8

9 10

Block Dom IDom
1 1 —

2 1,2 1

3

4

5

6

7

8

9

10

1,3 1

1,3,4 3

1,3,4,5 4

1,3,4,6 4

1,3,4,7 4

1,3,4,7,8           7

1,3,4,7,8,9           8

1,3,4,7,8,10          8Back edges?
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Identifying Natural Loops
 Given a back edge nd, the natural loop of the 

edge includes
 Node d
 Any node that can reach n without going through d

 Loop construction
 Set loop={d}
 Add n into loop if n ≠d
 Consider each node m≠d that we know is in loop, 

make sure that m’s predecessors are also inserted in 
loop
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Natural Loops Example

1

2

3

4

5 6

7

8

9 10

Back edge Natural loop

107

74

43

83

91

{7,10,8}

{4,7,5,6

10,8}

{3,4,7,5,6,10,8}

{1,9,8,7,5,6,

10,4,3,2}

 Why neither {3,4} nor 
{4,5,6,7} is a natural loop?
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Inner Loops
 A useful property of natural loops: unless two 

loops have the same header, they are either 
disjoint or one is entirely contained (nested 
within) the other

 An inner loop is a loop that contains no other 
loops
 Good optimization candidate
 The inner loop of the previous example: {7,8,10}

B0 B1

B2

B3
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Dominance Frontiers
 For a node n in CFG, DF(n) denotes the 

dominance frontier set of n
 DF(n) contains all nodes x s.t. n dominates an 

immediate predecessor of x but does not strictly 
dominate x

 For this to happen, there is some path from node n to 
x, n…  y x where (n DOM y) but !(n SDOM x)

 Informally, DF(n) contains the first nodes reachable 
from n that n does not strictly dominate, on each CFG 
path leaving n

 Used in SSA calculation and redundancy 
elimination
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Dominance Frontier for Node 7

Paths of interest:
7  4
7  8  3
7  8  9  1
7  8  10  7

DF(7)={1,3,4,7}

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10
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Dominance Frontier for Node 4

Paths of interest:
DF(4)={1,3,4}

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10
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Computing Dominance Frontiers
 Easiest way:

DF(x) = SUCC(DOM-1(x)) – SDOM-1(x) where 
SUCC(x) = set of successors of x in the CFG

But not the most efficient

 Observation
Nodes in a DF must be join nodes

The predecessor of any join node j must have 
j in its DF unless it dominates j

The dominators of j’s predecessors must have 
j in their DF sets unless they also dominate j
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Computing Dominance Frontiers
for all nodes n, initialize DF(n) =Ø

for all nodes n
if n has multiple predecessors, then

for each predecessor p of n
runner = p
while (runner IDom(n))

DF(runner) = DF(runner)  {n}
runner = IDom(runner)  

 First identify join nodes j in CFG
 Starting with j’s predecessors, walk up the dominator tree 

until we reach the immediate dominator of j
 Node j should be included in the DF set of all the nodes we pass 

by except for j’s immediate dominator
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Computing Dominance Frontier

Join node 1:
runner = 0 = IDom(1)
runner = 9 : DF(9) += {1}

runner = 8 : DF(8) += {1}
runner = 7 : DF(7) += {1}
runner = 4 : DF(4) += {1}
runner = 3 : DF(3) += {1}
runner = 1 : DF(1) += {1}
runner = 0 = IDom(1) 

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

0
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Computing Dominance Frontier

Join node 3:
runner = 1 = IDom(3)
runner = 2: DF(2) += {3}
runner = 4: DF(4) += {3}

runner = 3: DF(3) += {3}
runner = 8 : DF(8) += {3}

runner = 7 : DF(7) += {3}

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

0
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Computing Dominance Frontier

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

0

Join node 7:
runner = 5: DF(5) += {7}
runner = 6: DF(6) += {7}
runner = 10: DF(10) += {7}

runner = 8: DF(8) += {7}
runner = 7: DF(7) += {7}

Join node 4:
runner = 3 = IDom(4)
runner = 7: DF(7) += {4}

runner = 4: DF(4) += {4}
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Dominance Frontier Example

1

2

3

4

5 6

7

8

9 10

Block DF
1 {1}

2 {3}

3 {1,3}

4 {1,3,4}

5 {7}

6 {7}

7 {1,3,4,7}

8 {1,3,7}

9 {1}

10 {7}

0



32

Control Flow Analysis
63

Example 2
1

2

3 7

4 5

6
8 9

10

11 12

Bloc
k

DF

1

2

3

4

5

6

7

8

9

10

11

12
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Dominator-based Analysis
 Idea

Use dominators to discover loops for 
optimization

 Advantages
Sufficient for use by iterative data-flow 

analysis and optimizations
Least time-intensive to implement
Favored by most current optimizing compilers

 Alternative approach
 Interval-based analysis/structural analysis
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Summary
 CFG construction

 Basic blocks identification

 CFG traversal
 Depth-first spanning tree
 Vertex ordering

 CFG analysis
 Important regions: EBB and loop
 Dominators
 Dominance frontiers

 Additional references
 Advanced compiler design and implementation, by S. 

Muchinick, Morgan Kaufmann


