

(1) i := m – 1	(16) t7 := 4 * i	
(2) j := n	(17) t8 := 4 * j	
(3) t1 := 4 * n	(18) t9 := a[t8]	
(4) v := a[t1]	(19) a[t7] := t9	
(5) i := i + 1	(20) t10 := 4 * j	
(6) t2 := 4 * i	(21) a[t10] := x	
(7) t3 := a[t2]	(22) goto (5)	
(8) if t3 < v goto (5)	(23) t11 := 4 * i	
(9) j := j - 1	(24) x := a[t11]	
(10) t4 := 4 * j	(25) t12 := 4 * i	
(11) t5 := a[t4]	(26) t13 := 4 * n	
(12) If t5 > v goto (9)	(27) t14 := a[t13]	
(13) if i >= j goto (23)	(28) a[t12] := t14	
(14) t6 := 4*i	(29) t15 := 4 * n	
(15) x := a[t6]	(30) a[t15] := x	

(1) i := m – 1	(16) t7 := 4 * i	
(2) j := n	(17) t8 := 4 * j	
(3) t1 := 4 * n	(18) t9 := a[t8]	
(4) v := a[t1]	(19) a[t7] := t9	
(5) i := i + 1	(20) t10 := 4 * j	
(6) t2 := 4 * i	(21) a[t10] := x	
(7) t3 := a[t2]	(22) goto (5)	
(8) if t3 < v goto (5)	(23) t11 := 4 * i	
(9) j := j - 1	(24) x := a[t11]	
(10) t4 := 4 * j	(25) t12 := 4 * i	
(11) t5 := a[t4]	(26) t13 := 4 * n	
(12) If t5 > v goto (9)	(27) t14 := a[t13]	
(13) if i >= j goto (23)	(28) a[t12] := t14	
(14) t6 := 4*i	(29) t15 := 4 * n	
(15) x := a[t6]	(30) a[t15] := x	

Dominators & Loops · cfg edge from n to h st h dominates n is a back edge · for each back edge there is a sub-graph that is a loop. Dom Tree CFG

Finding the loop subgraph - a loop in a cfg is a set of nodes So Including a header node h with the following properties: from any node in S there is a path to h there is a path from h to any node in S • there is no edge from any node outside 5 to any node inside 5, except for h.

Control Flow Analysis

Dominator Example								
		initial	iteration1					
	0	{0}	{0}					
	1	N	$\{1\} + (Dom(0) \cap Dom(9)) = \{0,1\}$					
	2	N	$\{2\}$ + Dom(1) = $\{0,1,2\}$					
	3	N	${3} + (Dom(1) \cap Dom(2) \cap Dom(8) \cap Dom(4)) = {0,1,3}$					
	4	Ν	$\{4\}$ + (Dom(3) \cap Dom(7)) = $\{0,1,3,4\}$					
	5	N	$\{5\}$ + Dom(4) = $\{0,1,3,4,5\}$					
	6	Ν	$\{6\}$ + Dom(4) = $\{0,1,3,4,6\}$					
	7	Ν	{7} + (Dom(5) ∩ Dom(6) ∩ Dom(10)) = {0,1,3,4,7}					
	8	N	{8} + Dom(7) = {0,1,3,4,7,8}					
	9	N	{9} + Dom(8) = {0,1,3,4,7,8,9}					
	10	N	{10} + Dom(8) = {0,1,3,4,7,8,10}					
Control Flow Analysis			42					

Dominator Example								
_		Dom						
	Block	initial	iteration1	iteration2				
	0	{0}	{0}	{0}				
	1	N	{0,1}	{0,1}				
	2	N	{0,1,2}	{0,1,2}				
	3	N	{0,1,3}	{0,1,3}				
	4	N	{0,1,3,4}	{0,1,3,4}				
	5	N	{0,1,3,4,5}	{0,1,3,4,5}				
	6	N	{0,1,3,4,6}	{0,1,3,4,6}				
	7	N	{0,1,3,4,7}	{0,1,3,4,7}				
	8	N	{0,1,3,4,7,8}	{0,1,3,4,7,8}				
	9	Ν	{0,1,3,4,7,8,9}	{0,1,3,4,7,8,9}				
	10	N	{0,1,3,4,7,8,10}	{0,1,3,4,7,8,10}				
Control Flow Analysis				43				

Computing IDOM from DOM

- For each node *n*, initially set IDOM(*n*) = DOM(*n*)-{*n*} (SDOM - strict dominators)
- For each node p in IDOM(n), see if p has dominators other than itself also included in IDOM(n): if so, remove them from IDOM(n)
- The immediate dominator *m* of *n* is the strict dominator of *n* that is closest to *n*

Control Flow Analysis

44

- o Basic blocks identification
- CFG traversal
 - Depth-first spanning tree
 - Vertex ordering
- CFG analysis
 - Important regions: EBB and loop
 - Dominators
 - Dominance frontiers
- Additional references
 - Advanced compiler design and implementation, by S. Muchinick, Morgan Kaufmann

Control Flow Analysis

65