
1

Control Flow Analysis

COMP 621 – Program Analysis and
Transformations
These slides have been adapted from
http://cs.gmu.edu/~white/CS640/Slides/CS640-2-02.ppt

by Professor Liz White.

How to represent the structure of the program?

 Based on the compositional structure ...
i.e. the AST ...

 As a graph – which we discover from a
sequential representation of low-level IR
statements.

Control Flow Analysis
2

2

Control Flow Analysis
3

Program Control Flow
 Control flow

Sequence of operations

Representations
 Control flow graph

 Control dependence

 Call graph

 Control flow analysis
Analyzing program to discover its control

structure

Today’s topic: CFG-based analysis

Control Flow Analysis
4

Control Flow Graph
 CFG models flow of control in the program (procedure)

 G = (N, E) as a directed graph
 Node n N: basic blocks

 A basic block is a maximal sequence of stmts with a single entry
point, single exit point, and no internal branches

 For simplicity, we assume a unique entry node n0 and a unique exit
node nf in later discussions

 Edge e=(ni, nj) E: possible transfer of control from block ni to
block nj

if (x==y)
then { … }
else { …}
….

if (x==y)

3

Control Flow Analysis
5

Basic Blocks
 Definition

A basic block is a maximal sequence of
consecutive statements with a single entry
point, a single exit point, and no internal
branches

 Basic unit in control flow analysis

Control Flow Analysis
6

Basic Blocks
 Local level of code optimizations

Redundancy elimination

Register-allocation

 Easy to do flow analysis because there are
no alternative control flow paths.

x = 2

y = x + 1

z = z + 1

4

Control Flow Analysis
7

(1) i := m – 1
(2) j := n
(3) t1 := 4 * n
(4) v := a[t1]
(5) i := i + 1
(6) t2 := 4 * i
(7) t3 := a[t2]
(8) if t3 < v goto (5)
(9) j := j – 1
(10) t4 := 4 * j
(11) t5 := a[t4]
(12) if t5 > v goto (9)
(13) if i >= j goto (23)
(14) t6 := 4*i
(15) x := a[t6]
…

Basic Block Example

• How many basic blocks
in this code fragment?
• What are they?

Control Flow Analysis
8

Basic Block Example
(1) i := m – 1
(2) j := n
(3) t1 := 4 * n
(4) v := a[t1]
(5) i := i + 1
(6) t2 := 4 * I
(7) t3 := a[t2]
(8) if t3 < v goto (5)
(9) j := j – 1
(10) t4 := 4 * j
(11) t5 := a[t4]
(12) if t5 > v goto (9)
(13) if i >= j goto (23)
(14) t6 := 4*I
(15) x := a[t6]
…

• How many basic blocks
in this code fragment?
• What are they?

5

Control Flow Analysis
9

Identify Basic Blocks
Input: A sequence of intermediate code

statements
1. Determine the leaders, the first statements of

basic blocks
• The first statement in the sequence (entry point) is a

leader
• Any statement that is the target of a branch

(conditional or unconditional) is a leader
• Any statement immediately following a branch

(conditional or unconditional) or a return is a leader

2. For each leader, its basic block is the leader
and all statements up to, but not including, the
next leader or the end of the program

Control Flow Analysis
10

(1) i := m – 1 (16) t7 := 4 * i
(2) j := n (17) t8 := 4 * j
(3) t1 := 4 * n (18) t9 := a[t8]
(4) v := a[t1] (19) a[t7] := t9
(5) i := i + 1 (20) t10 := 4 * j
(6) t2 := 4 * i (21) a[t10] := x
(7) t3 := a[t2] (22) goto (5)
(8) if t3 < v goto (5) (23) t11 := 4 * i
(9) j := j - 1 (24) x := a[t11]
(10) t4 := 4 * j (25) t12 := 4 * i
(11) t5 := a[t4] (26) t13 := 4 * n
(12) If t5 > v goto (9) (27) t14 := a[t13]
(13) if i >= j goto (23) (28) a[t12] := t14
(14) t6 := 4*i (29) t15 := 4 * n
(15) x := a[t6] (30) a[t15] := x

Example

6

Control Flow Analysis
11

(1) i := m – 1 (16) t7 := 4 * i
(2) j := n (17) t8 := 4 * j
(3) t1 := 4 * n (18) t9 := a[t8]
(4) v := a[t1] (19) a[t7] := t9
(5) i := i + 1 (20) t10 := 4 * j
(6) t2 := 4 * i (21) a[t10] := x
(7) t3 := a[t2] (22) goto (5)
(8) if t3 < v goto (5) (23) t11 := 4 * i
(9) j := j - 1 (24) x := a[t11]
(10) t4 := 4 * j (25) t12 := 4 * i
(11) t5 := a[t4] (26) t13 := 4 * n
(12) If t5 > v goto (9) (27) t14 := a[t13]
(13) if i >= j goto (23) (28) a[t12] := t14
(14) t6 := 4*i (29) t15 := 4 * n
(15) x := a[t6] (30) a[t15] := x

Example: Leaders

Control Flow Analysis
12

(1) i := m – 1 (16) t7 := 4 * i
(2) j := n (17) t8 := 4 * j
(3) t1 := 4 * n (18) t9 := a[t8]
(4) v := a[t1] (19) a[t7] := t9
(5) i := i + 1 (20) t10 := 4 * j
(6) t2 := 4 * i (21) a[t10] := x
(7) t3 := a[t2] (22) goto (5)
(8) if t3 < v goto (5) (23) t11 := 4 * i
(9) j := j - 1 (24) x := a[t11]
(10) t4 := 4 * j (25) t12 := 4 * i
(11) t5 := a[t4] (26) t13 := 4 * n
(12) If t5 > v goto (9) (27) t14 := a[t13]
(13) if i >= j goto (23) (28) a[t12] := t14
(14) t6 := 4*i (29) t15 := 4 * n
(15) x := a[t6] (30) a[t15] := x

Example: Basic Blocks

7

Control Flow Analysis
13

Generating CFGs
 Partition intermediate code into basic blocks

 Add edges corresponding to control flows
between blocks
 Unconditional goto

 Conditional branch – multiple edges

 Sequential flow – control passes to the next block (if
no branch at the end)

 If no unique entry node n0 or exit node nf, add
dummy nodes and insert necessary edges
 Ideally no edges entering n0; no edges exiting nf

 Simplify many analysis and transformation algorithms

Control Flow Analysis
14

(1) i := m – 1 (16) t7 := 4 * i
(2) j := n (17) t8 := 4 * j
(3) t1 := 4 * n (18) t9 := a[t8]
(4) v := a[t1] (19) a[t7] := t9
(5) i := i + 1 (20) t10 := 4 * j
(6) t2 := 4 * i (21) a[t10] := x
(7) t3 := a[t2] (22) goto (5)
(8) if t3 < v goto (5) (23) t11 := 4 * i
(9) j := j - 1 (24) x := a[t11]
(10) t4 := 4 * j (25) t12 := 4 * i
(11) t5 := a[t4] (26) t13 := 4 * n
(12) If t5 > v goto (9) (27) t14 := a[t13]
(13) if i >= j goto (23) (28) a[t12] := t14
(14) t6 := 4*i (29) t15 := 4 * n
(15) x := a[t6] (30) a[t15] := x

Example: CFG

8

Control Flow Analysis
15

CFG and HL code
I = 1
J = 1
K = 1
L = 1
repeat

if (P) then begin
J = I
if (Q) then L = 2
else L = 3
K = K + 1

end
else K = K + 2
print (I,J,K,L)
repeat

if (R) then L = L + 4
until (S)
I = I + 6

until (T)

1

2

3 7

4 5

6
8 9

10

11 12

Control Flow Analysis
16

Complications in CFG Construction
 Function calls

 Instruction scheduling may prefer function calls as
basic block boundaries

 Special functions as setjmp() and longjmp()

 Exception handling
 Ambiguous jump

 Jump r1 //target stored in register r1
 Static analysis may generate edges that never occur

at runtime
 Record potential targets if possible

 Jumps target outside the current procedure
 PASCAL, Algol: still restricted to lexically enclosing

procedure

9

Control Flow Analysis
17

 Given a CFG = <N, E>
 If there is an edge ninj E

 ni is a predecessor of nj

 nj is a successor of ni

For any node n N
 Pred(n): the set of predecessors of n

 Succ(n): the set of successors of n

 A branch node is a node that has more than one
successor

 A join node is a node that has more than one
predecessor

Nodes in CFG

A

B C

D

Control Flow Analysis
18

Depth First Traversal
 CFG is a rooted, directed graph

 Entry node as the root

 Depth-first traversal (depth-first searching)
 Idea: start at the root and explore as far/deep as

possible along each branch before backtracking

 Can build a spanning tree for the graph

 Spanning tree of a directed graph G contains all
nodes of G such that
 There is a path from the root to any node reachable in

the original graph and

 There are no cycles

10

Control Flow Analysis
19

DFS Spanning Tree Algorithm

procedure span(v) /* v is a node in the
graph */

InTree(v) = true

For each w that is a successor of v do

if (!InTree(w)) then

Add edge v w to spanning tree
span(w)

end span

 Initial: span(n0)

Control Flow Analysis
20

DFST Example

A

C

D

E F

G

I

J

B

H

Nodes are numbered
in the order visited
during the search
== depth first pre-order
numbering.

1

11

Control Flow Analysis
21

DFST Example

A

C

D

E F

G

I

J

B

H

Nodes are numbered
in the order visited
during the search
== depth first pre-order
Numbering.

1

9

2

3

4

5

6

7
8

10

Control Flow Analysis
22

CFG Edges Classification
Edge x y in a CFG is an
 Advancing edge – if x is an ancestor of y

in the tree
Tree edge – if part of the spanning tree
Forward edge – if not part of the spanning tree

and x is an ancestor of y in the tree

 Retreating edge – if not part of the
spanning tree and y is an ancestor of x in
the tree

 Cross edge – if not part of the spanning
tree and neither is an ancestor of the other

12

Control Flow Analysis
23

DFST Example

A

C

D

E F

G

I

J

B

H

Tree Edge
Forward Edge
Retreating Edge
Cross Edge

Control Flow Analysis
24

Nodes Ordering wrt DFST
 Enhanced depth-first spanning tree algorithm:

time =0;

procedure span(v) /* v is a node in the graph */

InTree(v) = true; d[v] = ++time;

For each w that is a successor of v do

if (!InTree(w)) then

Add edge v w to spanning tree

span(w)

f[v]=++time;

end span

 Associate two numbers to each node v in the graph
 d[v]: discovery time of v in the spanning

 f[v]: finish time of v in the spanning

13

Control Flow Analysis
25

Nodes Ordering wrt DFST
 Pre-ordering

Ordering of vertices based on discovery time

 Post-ordering
Ordering of vertices based on finish time

 Reverse post-ordering
The reverse of a post-ordering, i.e. ordering of

vertices in the opposite order of their finish
time

Not the same as pre-ordering
Commonly used in forward data flow analysis

 Backward data flow analysis: RPO on the reverse
CFG

Control Flow Analysis
26

Ordering Example

D

E F

G

 Pre-ordering: DEGF

 Post-ordering: GEFD

 Reverse post-ordering: DFEG

14

Control Flow Analysis
27

Big Picture
Why care about ordering / back edges?
 CFGs are commonly used to propagate

information between nodes (basic blocks)
 Data flow analysis

 The existence of back edges / cycles in flow
graphs indicates that we may need to traverse
the graph more than once
 Iterative algorithms: when to stop? How quickly can

we stop?

 Proper ordering of nodes during iterative
algorithm assures number of passes limited by
the number of “nested” back edges

Control Flow Analysis
28

Regions in CFG – Bigger Blocks?
 Extended basic block (EBB)

 EBB is a maximal set of nodes in a CFG that contains
no join nodes other than the entry node
 A single entry and possibly multiple exits

 Some optimizations like value numbering and instruction
scheduling are more effective if applied in EBBs

15

Control Flow Analysis
29

EBB Example

A

C

D

E F

G

I

J

B

H

Max-size EBBs:
{A,B}, {C,J},
{D,E,F}, {G,H,I}

Loops?
Not that obvious…
Can use dominator-
based loop detection

16

17

18

19

20

21

Control Flow Analysis
41

Algorithm: Computing DOM
 An iterative fixed-point calculation

N is the set of nodes in the CFG
DOM(n0) = {n0} (n0 is the entry)
For all nodes x n0

DOM(x) = N

Until no more changes to dominator sets
for all nodes x n0

DOM(x) = { x } + (∩ DOM(P)) for all predecessors P of x

 At termination, node d in DOM(n) iff d dominates n

Control Flow Analysis
42

Dominator Example

1

2

3

4

5 6

7

8

9 10

0
initial iteration1

0 {0} {0}

1 N {1} + (Dom(0) Dom(9)) = {0,1}

2 N {2} + Dom(1) = {0,1,2}

3 N {3} + (Dom(1) Dom(2) Dom(8)
Dom(4)) = {0,1,3}

4 N {4} + (Dom(3) Dom(7)) = {0,1,3,4}

5 N {5} + Dom(4) = {0,1,3,4,5}

6 N {6} + Dom(4) = {0,1,3,4,6}

7 N {7} + (Dom(5) Dom(6) Dom(10)) =
{0,1,3,4,7}

8 N {8} + Dom(7) = {0,1,3,4,7,8}

9 N {9} + Dom(8) = {0,1,3,4,7,8,9}

10 N {10} + Dom(8) = {0,1,3,4,7,8,10}

22

Control Flow Analysis
43

Dominator Example

1

2

3

4

5 6

7

8

9 10

Block

Dom

initial iteration1 iteration2
0 {0} {0} {0}

1 N {0,1} {0,1}

2 N {0,1,2} {0,1,2}

3 N {0,1,3} {0,1,3}

4 N {0,1,3,4} {0,1,3,4}

5 N {0,1,3,4,5} {0,1,3,4,5}

6 N {0,1,3,4,6} {0,1,3,4,6}

7 N {0,1,3,4,7} {0,1,3,4,7}

8 N {0,1,3,4,7,8} {0,1,3,4,7,8}

9 N {0,1,3,4,7,8,9} {0,1,3,4,7,8,9}

10 N {0,1,3,4,7,8,10} {0,1,3,4,7,8,10}

0

Control Flow Analysis
44

Computing IDOM from DOM

1. For each node n, initially set IDOM(n) =
DOM(n)-{n} (SDOM - strict dominators)

2. For each node p in IDOM(n), see if p has
dominators other than itself also included in
IDOM(n): if so, remove them from IDOM(n)

 The immediate dominator m of n is the strict
dominator of n that is closest to n

23

Control Flow Analysis
45

I-Dominator Example

1

2

3

4

5 6

7

8

9 10

Block

IDom

initial (SDOM)

0 {} {}

1 {0} {0}

2 {0,1} {1} //0 - 1’s dominator

3 {0,1} {1} //0 - 1’s dominator

4 {0,1,3} {3} // 0,1 - 3’s dominators

5 {0,1,3,4} {4} // 0,1,3 - 4’s dominators

6 {0,1,3,4} {4} // 0,1,3 - 4’s dominators

7 {0,1,3,4} {4} // 0,1,3 - 4’s dominators

8 {0,1,3,4,7} {7} // 0,1,3,4 - 7’s dominators

9 {0,1,3,4,7,8} {8} // 0,1,3,4,7 - 8’s dominators

10 {0,1,3,4,7,8} {8} // 0,1,3,4,7 - 8’s dominators

0

Control Flow Analysis
46

Post-Dominance
 Related concept

 Node d of a CFG post-dominates node n if
every path from n to the exit node passes
through d (d pdom n)
Pdom(n): the set of post-dominators of node n

Every node post-dominates itself: n
Pdom(n)

 Each node n has a unique immediate post
dominator m

24

Control Flow Analysis
47

Post-dominator Example

1

2

3

4

5 6

7

8

9 10

Block Pdom IPdom
1 {3,4,7,8,10,exit} 3

2 {2,3,4,7,8,10,exit} 3

3 {3,4,7,8,10,exit} 4

4 {4,7,8,10,exit} 7

5 {5,7,8,10,exit} 7

6 {6,7,8,10,exit} 7

7 {7,8,10,exit} 8

8 {8,10,exit} 10

9 {1,3,4,7,8,10,exit} 1

10 {10,exit} exitexit

Control Flow Analysis
48

CFG
1

2

3 7

4 5

6
8 9

10

11 12

exit

exit

12

11

910

8

762

1 3 4 5

25

Control Flow Analysis
49

Natural Loops
 Natural loops that are suitable for improvement

have two essential properties:
 A loop must have a single entry point called header

 There must be at least one way to iterate the loop, i.e.,
at least one path back to the header

 Identifying natural loops
 Searching for back edges (nd) in CFG whose

heads dominate their tails
 For an edge ab, b is the head and a is the tail

 A back edge flows from a node n to one of n’s dominators d

 The natural loop for that edge is {d}+the set of nodes
that can reach n without going through d
 d is the header of the loop

Control Flow Analysis
50

Back Edge Example

1

2

3

4

5 6

7

8

9 10

Block Dom IDom
1 1 —

2 1,2 1

3

4

5

6

7

8

9

10

1,3 1

1,3,4 3

1,3,4,5 4

1,3,4,6 4

1,3,4,7 4

1,3,4,7,8 7

1,3,4,7,8,9 8

1,3,4,7,8,10 8Back edges?

26

Control Flow Analysis
51

Identifying Natural Loops
 Given a back edge nd, the natural loop of the

edge includes
 Node d
 Any node that can reach n without going through d

 Loop construction
 Set loop={d}
 Add n into loop if n ≠d
 Consider each node m≠d that we know is in loop,

make sure that m’s predecessors are also inserted in
loop

Control Flow Analysis
52

Natural Loops Example

1

2

3

4

5 6

7

8

9 10

Back edge Natural loop

107

74

43

83

91

{7,10,8}

{4,7,5,6

10,8}

{3,4,7,5,6,10,8}

{1,9,8,7,5,6,

10,4,3,2}

 Why neither {3,4} nor
{4,5,6,7} is a natural loop?

27

Control Flow Analysis
53

Inner Loops
 A useful property of natural loops: unless two

loops have the same header, they are either
disjoint or one is entirely contained (nested
within) the other

 An inner loop is a loop that contains no other
loops
 Good optimization candidate
 The inner loop of the previous example: {7,8,10}

B0 B1

B2

B3

Control Flow Analysis
54

Dominance Frontiers
 For a node n in CFG, DF(n) denotes the

dominance frontier set of n
 DF(n) contains all nodes x s.t. n dominates an

immediate predecessor of x but does not strictly
dominate x

 For this to happen, there is some path from node n to
x, n… y x where (n DOM y) but !(n SDOM x)

 Informally, DF(n) contains the first nodes reachable
from n that n does not strictly dominate, on each CFG
path leaving n

 Used in SSA calculation and redundancy
elimination

28

Control Flow Analysis
55

Dominance Frontier for Node 7

Paths of interest:
7 4
7 8 3
7 8 9 1
7 8 10 7

DF(7)={1,3,4,7}

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

Control Flow Analysis
56

Dominance Frontier for Node 4

Paths of interest:
DF(4)={1,3,4}

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

29

Control Flow Analysis
57

Computing Dominance Frontiers
 Easiest way:

DF(x) = SUCC(DOM-1(x)) – SDOM-1(x) where
SUCC(x) = set of successors of x in the CFG

But not the most efficient

 Observation
Nodes in a DF must be join nodes

The predecessor of any join node j must have
j in its DF unless it dominates j

The dominators of j’s predecessors must have
j in their DF sets unless they also dominate j

Control Flow Analysis
58

Computing Dominance Frontiers
for all nodes n, initialize DF(n) =Ø

for all nodes n
if n has multiple predecessors, then

for each predecessor p of n
runner = p
while (runner IDom(n))

DF(runner) = DF(runner) {n}
runner = IDom(runner)

 First identify join nodes j in CFG
 Starting with j’s predecessors, walk up the dominator tree

until we reach the immediate dominator of j
 Node j should be included in the DF set of all the nodes we pass

by except for j’s immediate dominator

30

Control Flow Analysis
59

Computing Dominance Frontier

Join node 1:
runner = 0 = IDom(1)
runner = 9 : DF(9) += {1}

runner = 8 : DF(8) += {1}
runner = 7 : DF(7) += {1}
runner = 4 : DF(4) += {1}
runner = 3 : DF(3) += {1}
runner = 1 : DF(1) += {1}
runner = 0 = IDom(1)

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

0

Control Flow Analysis
60

Computing Dominance Frontier

Join node 3:
runner = 1 = IDom(3)
runner = 2: DF(2) += {3}
runner = 4: DF(4) += {3}

runner = 3: DF(3) += {3}
runner = 8 : DF(8) += {3}

runner = 7 : DF(7) += {3}

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

0

31

Control Flow Analysis
61

Computing Dominance Frontier

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

0

Join node 7:
runner = 5: DF(5) += {7}
runner = 6: DF(6) += {7}
runner = 10: DF(10) += {7}

runner = 8: DF(8) += {7}
runner = 7: DF(7) += {7}

Join node 4:
runner = 3 = IDom(4)
runner = 7: DF(7) += {4}

runner = 4: DF(4) += {4}

Control Flow Analysis
62

Dominance Frontier Example

1

2

3

4

5 6

7

8

9 10

Block DF
1 {1}

2 {3}

3 {1,3}

4 {1,3,4}

5 {7}

6 {7}

7 {1,3,4,7}

8 {1,3,7}

9 {1}

10 {7}

0

32

Control Flow Analysis
63

Example 2
1

2

3 7

4 5

6
8 9

10

11 12

Bloc
k

DF

1

2

3

4

5

6

7

8

9

10

11

12

Control Flow Analysis
64

Dominator-based Analysis
 Idea

Use dominators to discover loops for
optimization

 Advantages
Sufficient for use by iterative data-flow

analysis and optimizations
Least time-intensive to implement
Favored by most current optimizing compilers

 Alternative approach
 Interval-based analysis/structural analysis

33

Control Flow Analysis
65

Summary
 CFG construction

 Basic blocks identification

 CFG traversal
 Depth-first spanning tree
 Vertex ordering

 CFG analysis
 Important regions: EBB and loop
 Dominators
 Dominance frontiers

 Additional references
 Advanced compiler design and implementation, by S.

Muchinick, Morgan Kaufmann

