COMP 621 Program Analysis and Transformations
Assignment #1

Profiling and Traditional Flow Analysis
Due: Wednesday Oct 7, beginning of class

Overview:

The purpose of this assignment is two-fold. The first purpose is to participate in the collection
or creation of benchmarks that will be used later in the course for testing our optimization,
parallelization, and analysis methods. The second purpose is to give you some experience
with stating and solving dataflow problems.

Question 1: Benchmark Programs

Benchmark programs form an important part of the development of new optimization, anal-
ysis, and parallelization techniques. Without some sort of quantitative measurement, we
cannot really evaluate how well the new techniques work. In order to build up a comprehen-
sive benchmark suite, each person will provide one program that can be incorporated into
the suite.

This year, you will be using MATLAB and AspectMatlab. You learned about MATLAB
in Assignment #0, and you will be given an introduction to AspectMatlab in class. The web
page for AspectMatlab ishttp://www.sable.mcgill.ca/mclab/projects/aspect-matlab.
If you get stuck using the tools, please consult with the TAs and share your expertise with
other class mates.

When choosing your benchmark, consider the following:

e The benchmark should compute something interesting. Real applications from different
branches of Science and/or Engineering would be excellent. Applications solving toy
CS problems are not interesting.

e You can write your own benchmark or you can use code that someone else has written,
but we need to have permission for all of us to use it as a benchmark. It is even better
if we are allowed to distribute it as part of our Matlab benchmark set. Something with
an open source license is ideal.

e The benchmark should not require proprietary libraries. We need to be able to access
and optimize all of the code.

e The benchmark should spend most of its time computing (and not doing 1/0).



The benchmark should not use dynamic features that make the program hard to ana-
lyze. For example, it should not make use of functions like evalin.

The benchmark should have deterministic output that can be checked for correctness.
We need to be able to run optimized versions of the program and automatically check
that the output matches the output of the original unoptimized version. The bench-
mark should not have a GUI interface that requires human interaction to run, should
not produce graphical output, nor should it require any terminal input (we need to be
able to run the benchmarks from a script). If you need external files for input (i.e. if
you compute on some large data set), please use ASCII files which contain one array
each. The benchmark should then use the MATLAB command load. Do not use .mat
files, because it may make programs hard to analyze.

Your benchmark needs to have different inputs that allow it to run for different amounts
of time. Provide at least two inputs to correspond to a short run of (1-10) seconds,
and a long run of ;100 seconds.

Where to look for a benchmark

There are many places to look. Here are a few possibilities:

a research group at McGill using Matlab.

a program you have written in another language, translated to Matlab (this is interest-
ing, because you can compare the performance of the original implementation to your
Matlab implementation).

http://www.mathworks.com/matlabcentral/fileexchange/
http://web.mst.edu/ "gosavia/mrrl_website.html

https://github.com/trending?l=matlab

Steps you must do

(a)

(b)

Give a brief description of your benchmark which highlights the important or inter-
esting characteristics of the program. Describe it both from the scientist/engineering
point of view (why this is an interesting/important problem) and from the compiler
optimizer point of view (what features make it interesting to optimize).

Describe how to run the benchmark, and describe the required formats for inputs and
which different inputs you have provided.



(¢) Run your benchmark using a Mathworks production version of MATLAB. Run the
benchmark 10 times, then report the min, max, average and standard deviation of the
10 runs. You will probably want to write a script to do this task.

Report the version of MATLAB that you used.
Report the architecture and OS on which you did the experiments.

(d) Define an aspect using AspectMatlab which can be used to count or profile some feature
of your benchmark. This could be a very simple aspect which counts the total number
of array accesses and/or the total number of function calls. However, it could also
be something more interesting. Give the source code for your aspect and explain its
purpose.

(e) Compile your original benchmark, along with your aspect using the AspectMatlab
compiler. Report on any problems which could be improved by better static checks or
better error messages.

(f) Run the compiled/woven Matlab code using Mathworks MATLAB and report on run-
times as in (c).

(g) Discuss the results of (f). Did introducing your aspect slow down the program sub-
stantially? If so, why? Did your aspect provide you with interesting profiling results.
If so, what?

(h) Starting with the original benchmark code, profile the execution using the Matlab
profile function as documented at http://www.mathworks.com/help/techdoc/ref/
profile.html, or the IDE profiler as documented http://blogs.mathworks.com/
community/2010/02/01/speeding-up-your-program-through-profiling/.

Summarize your profile results. Based on this profile discuss which are the most im-
portant parts of the program to optimize?

(i) Based on your observations from (h), find some part of your program that you can
optimize by hand (i.e. rewrite the Matlab code for that part to be faster). Perform
the rewriting and explain why you think it will improve performance. Using your
hand-optimized code, rerun your timings for Mathworks MATLAB and report on the
results and the speedup/slowdown as compared to the unoptimized version. Discuss
your results.

What to hand in

e A file called yourLastName.tar.gz file containing a directory called benchmarkName/.
Of course, replace yourLastName with your real last name!

Inside this directory you should have a sub-directory called src/ which contains your
source code (the original version), all the inputs, all the outputs, a README that



describes how to compile and run your benchmark. Also include a sub-directory called
aspect/ that contains the source code for your aspect, also with a README describing
your aspect. Finally, include a sub-directory called improved/ that contains the source
code of your hand-optimized benchmark, along with a README summarizing the
differences between this version and the orig/ version. Also include an info.json file
which contains following keys:

{

"name": "benchmark name",

"version": "1.0",

"sources": "benchmarkName/src",

"runPath": "benchmarkName/src/driverFileName.m",
"tags": ["Fall2015_COMP621",array_growing]

}

Please change name, sources, runPath and tags with appropriate values. Please include
the tag ”"Fall2015_.COMP621”, and then other tags can have following values which
describe the characteristics of the benchmark. For example, if the benchmark has a
recursive function, tags will contain a ”recursion” entry.

feval

eval
array_growing
structure
function_handle
lambda

end
nested_function
subfunction
global_variable
persistent_variable
recursion
Complex

Thus, your file should be something like hendren. tar.gz and when unzipped it should
create a directory structure like:

/fibonacci
/src
README
<otherfiles>
/aspect



README
<otherfiles>
/improved
README
<otherfiles>
/info.json

Send a link to this file, or as an attachment, to erick.lavoie@mail .mcgill.ca. Indi-
cate on the title of the message cs621 Matlab Benchmark. Please make sure to send

just one copy but if you must update what you’ve already handed in, indicate this in
the subject line with the word UPDATE.

e A hardcopy of your answers to all parts of this question. Please try to print in a
paper-saving fashion. (You do not need to print your benchmark code)

Question 2: Putting analysis to practice

Assume the following simplified C-like language which also has some Matlab-like features.

<stmt_seq> ::= <empty_stmt> | <stmt> <stmt_seq>

<stmt> ::= <basic_stmt> ; |
if ( <cond_expr> ) <stmt> else <stmt> |
while ( <cond_expr> ) do <stmt> |
do <stmt> while ( <cond_expr> ) ; |
{ <stmt_seq> }

<basic_stmt> ::= <id> = <id_const> <bin_op> <id_const> |
<id> = <id_const> |
<id> = read_int() |
<id> = read_double() |
<id> = read_array( <id_const>, <id_const> ) |
<id> = <id_const> |
int( <int_const> ) |
sum( <id> ) |
transpose ( <id> ) |
write( <id> ) |
break

<cond_expr> ::= <id_const> <relop> <id_const>



<id_const> = <id> | <int_const> | <double_const> | <array_const>
<bin_op> = + | x| -1/ | mod
<rel_op> = < | > | =] >=| == I=

This language has three types of variables, scalar integers, scalar doubles and two-
dimensional arrays of doubles.

Scalar integers are created via a call to an integer creator, (i.e. int(3)), or via read_int.

Scalar doubles are created via a real constant (i.e. 3, 3.0 or 3el0), or via read_double.
Note that 3 denotes the same double value as 3.0.

Arrays of doubles are created via the array constant (i.e. [3.0, 4.0; 5.0, 6.0] would
create a 2x2 array), or via read_array.

The rel_op operators must get two scalar arguments, and the result is always the integer
1 for true or the integer 0 false, these values are used to determine control flow. The bin_op
operators can have arguments of any of three data types.

The typing rules are dynamic (i.e. checked at run-time) and are summarized as follows:

int bin_op int -> int

int bin_op double —> int
double bin_op int -> int
double bin_op double -> double
array bin_op array -> array
sum(array) -> double
transpose(array) -> array

int rel_op int -> int

double rel_op double —> int

Any other combination of argument types gives a runtime error.

Consider the following example program.

n = read_int();
m = read_int();
X = read_array(m,n);
y = read_array(n,m)
if (n > m)

{ s =0;

do {
tl = x * y;
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9: t2 = sum(tl);

10: t3 = s + t2;

11: n=n-1;

12: } while (n > 0);

13: write(s);

14: }

15: else

16: {p=1;

17: i=0;

18: x_tr = transpose(x);
19: while (i < n)

20: { t1 = sun(x);

21: X =x + t1;

22: t2 = sum(x_tr);
22: if (£2 < 0)

24: break; % breaks out of closest enclosing loop
25: p = tl x t2;

26: i=1+1;

27: +

28: write(p);

29: }

30: write(n);

(a) Draw a typical control flow graph (CFG) that could be used to represent the entire
program fragment, putting the statements in basic blocks where possible. Function
calls do not break basic blocks.

(b) Indicate the extended basic blocks for the CFG you created in part (a). Draw the
Dominator Tree for the CFG from part (a). Identify the loops, explaining how how
found them.

(c) Assuming that we can represent a definition by a pair (varname,lineno), (i.e. the defini-
tion at line 4 would be (y,4)), what are the set of definitions that may reach the input
of lines 5, 7, 8, 12, 16, 18, 24, 28 and 30 in the example program? As an example, the
set of definitions reaching the input of line 2 is { (n,1) } .

(d) Based on reaching definitions, what optimizaton(s) could be done on the example pro-
gram?

(e) What variables are live at the input of lines 30, 28, 26, 22, 18, 16, 13, 10, 7, 5 and 1 in
the example program?

(f) We can define a variable x to be super live at program point p if x will be used (before
being redefined) and all paths from p to the end. Give the definition of super live



analysis for the example language, using the steps for defining an analysis you learned
in class.

(g) Give a small program fragment which contains the statement x = y and on some path
y is integer, whereas on another path y is double. In this case x will sometimes be
integer, and sometimes double.

(h) Give a small program fragment containing a loop which contains the statement x =
transpose(y), where y has an array type on one path and integer type on another
path. In this case there is at least one path that leads to a run-time type error.

(i) Define a static analysis which approximates for each statement, the set of possible type
each variable could have on input, and on output of the statement. Show the results
of your analysis on the two examples from (g) and (h).

(j) Describe two potential uses of the analysis you defined in (i).

What to hand in

e A hardcopy of your answers to all parts of this question.



