
COMP 621 Program Analysis and Transformations
Assignment #2

Using the McLab Framework for Analysis and Profiling

Due: Monday October 26, 2015

Overview:

The purpose of this assignment is to give you some practice designing flow analyses, and
to familiarize you with the McLab analysis framework, so you will be comfortable with it
for your course project. You have been given an introduction to the system during the lec-
ture. Chapter 5 of Jesse Doherty’s master’s thesis (http://www.sable.mcgill.ca/mclab/
projects/mcsaf/) contains a detailed description of the analysis framework.

Please feel free to ask questions of the graduate students in my research lab, the TA
during his office hours, and also feel free to share information with your classmates on the
MyCourses discussion board. The objective of this assignment is to get everyone comfortable
with the environment - so don’t spend a lot of time getting stuck on some small technical
issue.

We will provide everyone in the class with some benchmarks which are known to run
correctly with McLab.

Question 1 - Measuring code coverage

Code coverage is a metric which measures roughly how much (and which parts) of the source
code of a program was exercised in a given execution of that program. There exist many
different flavors of coverage data, for example describing which functions were called, which
statements which executed, which branches or control flow paths were taken.

MATLAB’s profiler, which you used in assignment 1, does provide some limited coverage
information. It can tell you, for each function, which lines were executed. Here’s an example.
Suppose you have a function test:

function test()

x = 1;

y = 2;

if x < y

disp(’then branch’)

else

disp(’else branch’)

end

end

1

Then you can get coverage information like this:

>> profile on

>> test()

>> profile off

>> stats = profile(’info’)

>> stats.FunctionTable(1).ExecutedLines

ans =

2 1 0

3 1 0

4 1 0

5 1 0

9 1 0

Here the left column contains line numbers, the middle column corresponds to how many
times that line was executed, and the third column corresponds to how much time was spent
on that line (we don’t care about this). Lines 2 and 3 correspond to the assignments, line 4
was the comparison, line 5 is the then branch, and line 9 is the end of the function.

Notice that lines that could have been executed but weren’t, like line 7, aren’t included
in the table. This is bad. Typically you want to know which lines were executable, so that
you have some meaningful measure of how much of the code was executed, e.g. 4/5 lines.
You can’t just take the number of lines in the file because you don’t want to count blank
lines, comments, and otherwise meaningless lines (like lines 6 and 8, which just consist of
the ’else’ and ’end’ keywords). (There’s an undocumented function, callstats, which among
other things lets you get at an array of executable lines for a file, but it’s brittle, and doesn’t
handle subfunctions and nested functions well.)

For this question, you should implement your own line coverage collection mechanism
using McLab. Each node in the Natlab AST contains the line number of the first token
corresponding to it in the original file (it’s not perfect information, but in practice it tends
to be good enough). You can get at the line number by calling the getStartLine() method,
which is defined on all nodes.

This information can then be ”injected” in the program by instrumenting each statement
so that, if it’s executed, the fact that that line was executed is recorded somewhere (perhaps
in some global data structure). Before the program exits, it can use this information to
generate a coverage report. For our purposes, this can just be a plain text file, each line
consisting of filename, line number, and 1 or 0 for executed or not executed.

For simplicity, you can use the same overall structure we saw in class for the profiler
example – a driver function written in MATLAB, and a source to source transformation
which is aware of what that driver function expects.

2



If you like (i.e. optional), you can enrich your tool to profile more information, such as
the frequency of each instruction, or the loop depth of each instruction.

You should submit a short description of your approach, your source code, and some
examples showing the pretty-printed IR before and after inserting the coverage collecting
statements, as well as the coverage reports you generated for them. You should also produce
a coverage report for your benchmark program (from assignment 1).

Question 2 - Implementing an Analysis in McLab

McLab provides a structured flow analysis framework that can be used to implement both
forward and backward analyses. For this question you can choose one of the following
analyses to implement. However, you are strongly encouraged to suggest your own analysis,
just give a clear definition of it, and make sure it is not an analysis that already exists in
McSaf. The problems below are listed in increasing levels of difficulty.

• Possibly Not-Defined Analysis: In MATLAB variables may not be defined before
they are used. For example, in the following programming fragment a is defined only
on the if branch and b is defined only on the else branch.

if (exp)

a = ones(3);

else

b = ones(3);

endif

S: a(1) = b(1) // both a and b are possibly not defined

Try this program and see what it does when exp is true, and when exp is false. This
should show you that knowing whether a variable is possible not defined is useful for
developing back-ends and other analyses.

• IsInteger Analysis: The base type of variables in MATLAB is double, however often
variables will only contain integer values (and hence can be stored more efficiently).
Write an analysis, that determines at each program point, if a variable is: (1) integer
(all values stored in this variable are integer at this program point) or (2) top (the
types of the values stored in this variable are unknown).

• Range Analysis: For array-based programs it is very useful to know the range of
values which summarizes the values a variable may have at a program point. Ranges
are usually approximated as a pair [low, high], which indicates that the variable must
have a value ≥ low and ≤ high.

3

You should implement the analysis and use the pretty printing mechanism to print out
the results of your program for several small illustrative examples. Choose the examples to
illustrate the subtle points of your analysis and to show that it is correct for these cases.

For the purposes of this question you should submit a short description of your approach
to implementing the analysis, the source code for your implementation (only those files you
implemented), and several small example programs with the pretty-printed analysis results.

Question 3 - Suggest and define a useful analysis

In this question you do not need to implement the analysis, but you do need to invent the
analysis and give some guidelines as to how it should be implemented (of course, you can
implement it if you like).

The challenge is to suggest an analysis that could be used to either enable some optmizing
transformation in Matlab; or could be used to provide information to the programmer that
would be useful for program understanding, program debugging, or refactoring.

Motivate the need for your analysis with an example program.

Describe your analysis using the 6 steps for an analysis. If you implement the analysis,
show the results of running the analysis.

What to hand in

Hand in a print-out of your answers for each question at the beginning of class.

4


