
“Context-sensitive Points-to Analysis:
Is it worth it?”

by Ondřej Lhoták and Laurie Hendren

Presented by Nicholas Rudzicz

Nicholas RudziczFebruary 15, 2008 2/72

 Is context-sensitive points-to analysis worth it?

Question

Nicholas RudziczFebruary 15, 2008 3/72

 Is context-sensitive points-to analysis worth it?
 Yes.

Question

Nicholas RudziczFebruary 15, 2008 4/72

The End

Nicholas RudziczFebruary 15, 2008 5/72

The End

Nicholas RudziczFebruary 15, 2008 6/72

 Course refresher
 Motivation

 Background
 Pedantic stuff

 for(int i=0; i < num_benchmarks; i++)
 { describe_benchmark(i);
 discuss_results_of_benchmark(i); }

 Conclusions

Outline

Nicholas RudziczFebruary 15, 2008 7/72

Course refresher
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Recall this example (without pointers) from class:

main() {
g1=1;
f(); //call_1
...
g1=2;
f(); //call_2

}

f() {
g(); //call_3

}

g() {
g1 = g1+1;

}

Nicholas RudziczFebruary 15, 2008 8/72

Course refresher
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Recall this example (without pointers) from class:

main() {
g1=1;
f(); //call_1
...
g1=2;
f(); //call_2

}

f() {
g(); //call_3

}

g() {
g1 = g1+1;

}

 Interprocedural analysis
 W/out context, know nothing about g1 after calls

g1 = ?

g1 = ?

Nicholas RudziczFebruary 15, 2008 9/72

Course refresher
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Recall this example (without pointers) from class:

main() {
g1=1;
f(); //call_1
...
g1=2;
f(); //call_2

}

f() {
g(); //call_3

}

g() {
g1 = g1+1;

}

 Interprocedural analysis
 W/out context, know nothing about g1 after calls

 With context, we can make statements about g1

g1 = 2

g1 = 3

Nicholas RudziczFebruary 15, 2008 10/72

Course refresher
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Recall this example (without pointers) from class:

main() {
g1=1;
f(); //call_1
...
g1=2;
f(); //call_2

}

f() {
g(); //call_3

}

g() {
g1 = g1+1;

}

 Interprocedural analysis
 W/out context, know nothing about g1 after calls

 With context, we can make statements about g1 at the cost of
exponential code blowup or possibly infinite context strings

g1 = 2

g1 = 3

Nicholas RudziczFebruary 15, 2008 11/72

Points-to Analysis
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Similar problem with pointers
 What could p1 point to after a given call f()?
 {(pp→p), (p→x)?, (p→y)?, (q→z)}

Nicholas RudziczFebruary 15, 2008 12/72

Points-to Analysis
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Similar problem with pointers
 What could p1 point to after a given call f()?
 {(pp→p), (p→x)?, (p→y)?, (q→z)}

 We would like to perform context-sensitive analysis,
without the exponential blowup

 Binary Decision Diagrams (BDDs) provide an efficient
implementation, which we've seen

Nicholas RudziczFebruary 15, 2008 13/72

Points-to Analysis
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Similar problem with pointers
 What could p1 point to after a given call f()?
 {(pp→p), (p→x)?, (p→y)?, (q→z)}

 We would like to perform context-sensitive analysis,
without the exponential blowup

 Binary Decision Diagrams (BDDs) provide an efficient
implementation, which we've seen

 Efficient experimentation is now possible
 Forms the basis of this paper

Nicholas RudziczFebruary 15, 2008 14/72

L&H Paper: Background
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Examines the results of context-sensitive analysis

Nicholas RudziczFebruary 15, 2008 15/72

L&H Paper: Background
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Examines the results of context-sensitive analysis

 Pointer and pointer target abstractions are fixed
 Store local variable and allocation statement, respectively

Nicholas RudziczFebruary 15, 2008 16/72

L&H Paper: Background
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Examines the results of context-sensitive analysis

 Pointer and pointer target abstractions are fixed
 Store local variable and allocation statement, respectively

 Experiment with context abstraction models

Nicholas RudziczFebruary 15, 2008 17/72

L&H Paper: Background
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Examines the results of context-sensitive analysis

 Pointer and pointer target abstractions are fixed
 Store local variable and allocation statement, respectively

 Experiment with context abstraction models
 Call-site sensitivity
 Receiver object sensitivity
 Zhu & Calman, Whaley & Lam (ZCWL) algorithm

Nicholas RudziczFebruary 15, 2008 18/72

L&H Paper: Background
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Examines the results of context-sensitive analysis

 Pointer and pointer target abstractions are fixed
 Store local variable and allocation statement, respectively

 Experiment with context abstraction models
 Call-site sensitivity
 Receiver object sensitivity
 Zhu & Calman, Whaley & Lam (ZCWL) algorithm

 Call-site abstraction. No bound on length of context string, but
removes all cycles in context-insensitive graph to guarantee
context string is finite.

● 1, 2, and 3-level context strings
● 1H – context-sensitive heap

Nicholas RudziczFebruary 15, 2008 19/72

Benchmarks
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

* from [1]

 Tests performed on several
benchmark suites

 SpecJVM 98, DaCapo
v.beta050224, Ashes

Nicholas RudziczFebruary 15, 2008 20/72

Benchmarks
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

* from [1]

 Tests performed on several
benchmark suites

 SpecJVM 98, DaCapo
v.beta050224, Ashes

 Context-insensitive
baseline tested first

 All variations of object-
sensitive, call-site, and
ZCWL-based analyses
compared against this
reference

Nicholas RudziczFebruary 15, 2008 21/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

Nicholas RudziczFebruary 15, 2008 22/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

 Context-insensitive (CI) versions ~2500-7000 contexts
 Equal to the number of methods, since each one has a

single “context”

Nicholas RudziczFebruary 15, 2008 23/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

 Context-insensitive (CI) versions ~2500-7000 contexts
 Equal to the number of methods, since each one has a

single “context”

 1-level object-sensitive (OS) and call site (CS) contexts
generate roughly 10-20 and 5-10 times the CI contexts

 1H sensitivity gives approximately the same numbers

Nicholas RudziczFebruary 15, 2008 24/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

 Context-insensitive (CI) versions ~2500-7000 contexts
 Equal to the number of methods, since each one has a

single “context”

 1-level object-sensitive (OS) and call site (CS) contexts
generate roughly 10-20 and 5-10 times the CI contexts

 1H sensitivity gives approximately the same numbers

 2-level sensitivity generates ~100-500 and ~125-350 times
the CI contexts (3-level OS generates ~1500-25,000 times)

Nicholas RudziczFebruary 15, 2008 25/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

 Context-insensitive (CI) versions ~2500-7000 contexts
 Equal to the number of methods, since each one has a

single “context”

 1-level object-sensitive (OS) and call site (CS) contexts
generate roughly 10-20 and 5-10 times the CI contexts

 1H sensitivity gives approximately the same numbers

 2-level sensitivity generates ~100-500 and ~125-350 times
the CI contexts (3-level OS generates ~1500-25,000 times)

 ZCWL generates between 2.9x104 and 2.1x1015 times the
contexts!

Nicholas RudziczFebruary 15, 2008 26/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Huge numbers of contexts
 Explicitly representing each one is a recipe for disaster

Nicholas RudziczFebruary 15, 2008 27/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Huge numbers of contexts
 Explicitly representing each one is a recipe for disaster

 Explains why previous analyses could not scale to the
benchmarks used in this case study

Nicholas RudziczFebruary 15, 2008 28/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 Many contexts can be considered equivalent

Nicholas RudziczFebruary 15, 2008 29/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 Many contexts can be considered equivalent

 Formally:

 Two method-context pairs (m
1
, c

1
) and (m

2
, c

2
) are

equivalent if m
1
 = m

2
, and any local pointer p has the same

points-to set in both contexts

Nicholas RudziczFebruary 15, 2008 30/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 Many contexts can be considered equivalent

 Formally:

 Two method-context pairs (m
1
, c

1
) and (m

2
, c

2
) are

equivalent if m
1
 = m

2
, and any local pointer p has the same

points-to set in both contexts

 If there are many equivalent contexts in an analysis,
explicitly storing each one separately is a waste

Nicholas RudziczFebruary 15, 2008 31/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 Many contexts can be considered equivalent

 Formally:

 Two method-context pairs (m
1
, c

1
) and (m

2
, c

2
) are

equivalent if m
1
 = m

2
, and any local pointer p has the same

points-to set in both contexts

 If there are many equivalent contexts in an analysis,
explicitly storing each one separately is a waste

 However, methods to determine equivalent contexts
prior to analysis have yet to be discovered

Nicholas RudziczFebruary 15, 2008 32/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

Nicholas RudziczFebruary 15, 2008 33/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

 1-level OS- and CS-based analyses dropped to only
~8-10 and 2-3 times the CI contexts

 From 10-20 and 5-10 times, previously

Nicholas RudziczFebruary 15, 2008 34/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

 1-level OS- and CS-based analyses dropped to only
~8-10 and 2-3 times the CI contexts

 From 10-20 and 5-10 times, previously

 Maximum of 33.8 times the CI contexts in the case of
3-level OS analysis (from 13,289, previously)

Nicholas RudziczFebruary 15, 2008 35/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

 1-level OS- and CS-based analyses dropped to only
~8-10 and 2-3 times the CI contexts

 From 10-20 and 5-10 times, previously

 Maximum of 33.8 times the CI contexts in the case of
3-level OS analysis (from 13,289, previously)

 ZCWL showed the greatest improvement:

Nicholas RudziczFebruary 15, 2008 36/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

 1-level OS- and CS-based analyses dropped to only
~8-10 and 2-3 times the CI contexts

 From 10-20 and 5-10 times, previously

 Maximum of 33.8 times the CI contexts in the case of
3-level OS analysis (from 13,289, previously)

 ZCWL showed the greatest improvement: from
between 2.9x104 and 2.1x1015 times to only ~3-7

Nicholas RudziczFebruary 15, 2008 37/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 Finding equivalent contexts a priori would clearly
benefit analysis

Nicholas RudziczFebruary 15, 2008 38/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 Finding equivalent contexts a priori would clearly
benefit analysis

 Notes:
 OS-based analysis generated (~3x) more equivalent

contexts, which would likely make it more precise than CSs
 Longer context strings led to an exponential increase in

space required, but only minimal precision improvements
 ZCWL models cycles insensitively; thus drastically reducing

the number of equivalent contexts generated

Nicholas RudziczFebruary 15, 2008 39/72

Distinct Points-to sets
● Refresher
● Background
● Benchmarks (3/7)
● Conclusion

 Can be seen as a rough approximation of the space-
efficiency of BDDs

Nicholas RudziczFebruary 15, 2008 40/72

Distinct Points-to sets
● Refresher
● Background
● Benchmarks (3/7)
● Conclusion

 Can be seen as a rough approximation of the space-
efficiency of BDDs

 In nearly all types of context abstraction (OS-, CS-,
and ZCWL-based), there is no significant advantage
over CI analysis

Nicholas RudziczFebruary 15, 2008 41/72

Distinct Points-to sets
● Refresher
● Background
● Benchmarks (3/7)
● Conclusion

 Can be seen as a rough approximation of the space-
efficiency of BDDs

 In nearly all types of context abstraction (OS-, CS-,
and ZCWL-based), there is no significant advantage
over CI analysis

 However, 1-level context sensitive heap abstractions led to
an 11-fold increase.

 Points-to sets are pairs of abstract objects and contexts,
rather than simply the objects themselves

Nicholas RudziczFebruary 15, 2008 42/72

Distinct Points-to sets
● Refresher
● Background
● Benchmarks (3/7)
● Conclusion

 Can be seen as a rough approximation of the space-
efficiency of BDDs

 In nearly all types of context abstraction (OS-, CS-,
and ZCWL-based), there is no significant advantage
over CI analysis

 However, 1-level context sensitive heap abstractions led to
an 11-fold increase.

 Points-to sets are pairs of abstract objects and contexts,
rather than simply the objects themselves

 Representing points-to sets less critical than efficiently
representing contexts

Nicholas RudziczFebruary 15, 2008 43/72

Reachable Methods
● Refresher
● Background
● Benchmarks (4/7)
● Conclusion

 Reducing the number of reachable methods allows
dead-code elimination

Nicholas RudziczFebruary 15, 2008 44/72

Reachable Methods
● Refresher
● Background
● Benchmarks (4/7)
● Conclusion

 Reducing the number of reachable methods allows
dead-code elimination

 Context-sensitive graphs were created, then context
“projected” away to enable comparison

Nicholas RudziczFebruary 15, 2008 45/72

Reachable Methods
● Refresher
● Background
● Benchmarks (4/7)
● Conclusion

 Reducing the number of reachable methods allows
dead-code elimination

 Context-sensitive graphs were created, then context
“projected” away to enable comparison

 Results underwhelming: maximum of 13 methods
fewer than CI approach

Nicholas RudziczFebruary 15, 2008 46/72

Reachable Methods
● Refresher
● Background
● Benchmarks (4/7)
● Conclusion

 Reducing the number of reachable methods allows
dead-code elimination

 Context-sensitive graphs were created, then context
“projected” away to enable comparison

 Results underwhelming: maximum of 13 methods
fewer than CI approach

 Results were slightly better for OS-based analysis
 Node-visitor algorithms where certain types of nodes will

never be reached
 Heap abstractions improve performance on dynamically-

allocated objects

Nicholas RudziczFebruary 15, 2008 47/72

Call Edges
● Refresher
● Background
● Benchmarks (5/7)
● Conclusion

 Measures call graph in terms of number of call edges
as opposed to number of reachable methods

 Again, having fewer call edges is desirable

Nicholas RudziczFebruary 15, 2008 48/72

Call Edges
● Refresher
● Background
● Benchmarks (5/7)
● Conclusion

 Measures call graph in terms of number of call edges
as opposed to number of reachable methods

 Again, having fewer call edges is desirable

 As with reachable-method analysis, no significant
improvement is detected...

Nicholas RudziczFebruary 15, 2008 49/72

Call Edges
● Refresher
● Background
● Benchmarks (5/7)
● Conclusion

 Measures call graph in terms of number of call edges
as opposed to number of reachable methods

 Again, having fewer call edges is desirable

 As with reachable-method analysis, no significant
improvement is detected...

 ...except in sablecc­j benchmark w/ 1-level OS

Nicholas RudziczFebruary 15, 2008 50/72

Call Edges
● Refresher
● Background
● Benchmarks (5/7)
● Conclusion

 Measures call graph in terms of number of call edges
as opposed to number of reachable methods

 Again, having fewer call edges is desirable

 As with reachable-method analysis, no significant
improvement is detected...

 ...except in sablecc­j benchmark w/ 1-level OS

 Benchmark uses tree traversal with numerous
this.getParent() calls. W/out context, this could
generate a huge number of potential call edges

Nicholas RudziczFebruary 15, 2008 51/72

Call Edges
● Refresher
● Background
● Benchmarks (5/7)
● Conclusion

 Measures call graph in terms of number of call edges
as opposed to number of reachable methods

 Again, having fewer call edges is desirable

 As with reachable-method analysis, no significant
improvement is detected...

 ...except in sablecc­j benchmark w/ 1-level OS

 Benchmark uses tree traversal with numerous
this.getParent() calls. W/out context, this could
generate a huge number of potential call edges

 17,925 call edges in CI analysis, only ~5100 in context
sensitive test

Nicholas RudziczFebruary 15, 2008 52/72

Virtual Call Resolution
● Refresher
● Background
● Benchmarks (6/7)
● Conclusion

 At compile time, virtual calls introduce potential call
edges between pointers and any number of targets

Nicholas RudziczFebruary 15, 2008 53/72

Virtual Call Resolution
● Refresher
● Background
● Benchmarks (6/7)
● Conclusion

 At compile time, virtual calls introduce potential call
edges between pointers and any number of targets

 Reducing potential polymorphism of call sites reduces
the amount of call edges generated

 In effect, a subset of the call-edge problem, previously

Nicholas RudziczFebruary 15, 2008 54/72

Virtual Call Resolution
● Refresher
● Background
● Benchmarks (6/7)
● Conclusion

 At compile time, virtual calls introduce potential call
edges between pointers and any number of targets

 Reducing potential polymorphism of call sites reduces
the amount of call edges generated

 In effect, a subset of the call-edge problem, previously

 Fully resolving a call site (i.e., removing
polymorphism) means it can be replaced by cheaper
static methods, allowing further optimization

Nicholas RudziczFebruary 15, 2008 55/72

Virtual Call Resolution
● Refresher
● Background
● Benchmarks (6/7)
● Conclusion

 Again, relatively small improvements

Nicholas RudziczFebruary 15, 2008 56/72

Virtual Call Resolution
● Refresher
● Background
● Benchmarks (6/7)
● Conclusion

 Again, relatively small improvements

 CS-based optimization performs as well as, but never
better, than OS-based

Nicholas RudziczFebruary 15, 2008 57/72

Virtual Call Resolution
● Refresher
● Background
● Benchmarks (6/7)
● Conclusion

 Again, relatively small improvements

 CS-based optimization performs as well as, but never
better, than OS-based

 Once again, sablecc­j provides a good example

 Some devirtualization can be handled by any context-
sensitive analysis

 A further set of devirtualization requires OS
 A final set requires context-sensitive heap objects

Nicholas RudziczFebruary 15, 2008 58/72

Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 In an OO language, a cast cannot fail if the pointer that
it is casting can only point to variables that are
subtypes of the cast

Nicholas RudziczFebruary 15, 2008 59/72

Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 In an OO language, a cast cannot fail if the pointer that
it is casting can only point to variables that are
subtypes of the cast

 Presumably, proving that certain casts cannot fail reduces
the number of exceptional call edges (Comments?)

Nicholas RudziczFebruary 15, 2008 60/72

Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Once again, we see modest improvements with
context sensitivity, particularly with OS analysis and
context sensitive heap abstractions

Nicholas RudziczFebruary 15, 2008 61/72

Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Once again, we see modest improvements with
context sensitivity, particularly with OS analysis and
context sensitive heap abstractions

 In polyglot benchmark, the number of potentially
failing casts is reduced from 3539 (CI) to 1017.

Nicholas RudziczFebruary 15, 2008 62/72

Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Once again, we see modest improvements with
context sensitivity, particularly with OS analysis and
context sensitive heap abstractions

 In polyglot benchmark, the number of potentially
failing casts is reduced from 3539 (CI) to 1017.

 This benchmark involves a large class hierarchy, in
which each subclass implements a copy() method

 Using OS, receiver objects performing the casts can
be determined, and cast safety made more precise

Nicholas RudziczFebruary 15, 2008 63/72

Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Once again, we see modest improvements with
context sensitivity, particularly with OS analysis and
context sensitive heap abstractions

 In polyglot benchmark, the number of potentially
failing casts is reduced from 3539 (CI) to 1017.

 This benchmark involves a large class hierarchy, in
which each subclass implements a copy() method

 Using OS, receiver objects performing the casts can
be determined, and cast safety made more precise

 Further, OS heap abstractions can more accurately
model casts in dynamically-allocated objects

Nicholas RudziczFebruary 15, 2008 64/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Is context-sensitive points-to analysis worth it?
 Yes

Nicholas RudziczFebruary 15, 2008 65/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Is context-sensitive points-to analysis worth it?
 Yes, and now we have seen how

Nicholas RudziczFebruary 15, 2008 66/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Is context-sensitive points-to analysis worth it?
 Yes, and now we have seen how

 Generally, context-sensitive points-to analysis:
 improved call-graph precision slightly
 improved virtual call resolution even more
 led to major precision improvements in cast safety analysis

Nicholas RudziczFebruary 15, 2008 67/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Is context-sensitive points-to analysis worth it?
 Yes, and now we have seen how

 Generally, context-sensitive points-to analysis:
 improved call-graph precision slightly
 improved virtual call resolution even more
 led to major precision improvements in cast safety analysis

 OS-based approaches were never less precise than
CS-based ones, and scaled better than the latter when
context string length was increased

Nicholas RudziczFebruary 15, 2008 68/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Is context-sensitive points-to analysis worth it?
 Yes, and now we have seen how

 Generally, context-sensitive points-to analysis:
 improved call-graph precision slightly
 improved virtual call resolution even more
 led to major precision improvements in cast safety analysis

 OS-based approaches were never less precise than
CS-based ones, and scaled better than the latter when
context string length was increased

 The ZCWL algorithm was never more precise than OS

Nicholas RudziczFebruary 15, 2008 69/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Extending the context strings for OS-based analysis
gave only modest performance increases, but context-
sensitive heaps gave, in the best case, significant
improvements

Nicholas RudziczFebruary 15, 2008 70/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Extending the context strings for OS-based analysis
gave only modest performance increases, but context-
sensitive heaps gave, in the best case, significant
improvements

 However, efficiently implementing 1H-object-sensitive
analysis without BDDs requires further work

Nicholas RudziczFebruary 15, 2008 71/72

Critique
● Refresher
● Background
● Benchmarks
● Conclusion

 Discussion of ZCWL algorithm and context-sensitive
heaps would benefit the reader

 Are benchmarks particularly suited to OS-based
analysis? Are there no benchmarks for which a CS-
based approach would show greater improvement?

Nicholas RudziczFebruary 15, 2008 72/72

