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 Course refresher
 Motivation

 Background
 Pedantic stuff

 for(int i=0; i < num_benchmarks; i++)
 { describe_benchmark(i);
 discuss_results_of_benchmark(i); }

 Conclusions

Outline
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Course refresher
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Recall this example (without pointers) from class:

main() {
g1=1;
f();  //call_1
...
g1=2;
f();  //call_2

}

f() { 
g();   //call_3

}

g() { 
g1 = g1+1; 

}
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 Recall this example (without pointers) from class:

main() {
g1=1;
f();  //call_1
...
g1=2;
f();  //call_2

}

f() { 
g();   //call_3

}

g() { 
g1 = g1+1; 

}

 Interprocedural analysis
 W/out context, know nothing about g1 after calls

 With context, we can make statements about g1 at the cost of 
exponential code blowup or possibly infinite context strings

g1 = 2

g1 = 3
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 Similar problem with pointers
 What could p1 point to after a given call f()?
 {(pp→p), (p→x)?, (p→y)?, (q→z)}
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 Similar problem with pointers
 What could p1 point to after a given call f()?
 {(pp→p), (p→x)?, (p→y)?, (q→z)}

 We would like to perform context-sensitive analysis, 
without the exponential blowup

 Binary Decision Diagrams (BDDs) provide an efficient 
implementation, which we've seen

 Efficient experimentation is now possible
 Forms the basis of this paper
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L&H Paper: Background
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Examines the results of context-sensitive analysis

 Pointer and pointer target abstractions are fixed
 Store local variable and allocation statement, respectively

 Experiment with context abstraction models
 Call-site sensitivity
 Receiver object sensitivity
 Zhu & Calman, Whaley & Lam (ZCWL) algorithm

 Call-site abstraction. No bound on length of context string, but 
removes all cycles in context-insensitive graph to guarantee 
context string is finite. 

● 1, 2, and 3-level context strings
● 1H – context-sensitive heap
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* from [1]

 Tests performed on several 
benchmark suites

 SpecJVM 98, DaCapo 
v.beta050224, Ashes
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* from [1]

 Tests performed on several 
benchmark suites

 SpecJVM 98, DaCapo 
v.beta050224, Ashes

 Context-insensitive 
baseline tested first

 All variations of object-
sensitive, call-site, and 
ZCWL-based analyses 
compared against this 
reference



Nicholas RudziczFebruary 15, 2008 21/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated



Nicholas RudziczFebruary 15, 2008 22/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

 Context-insensitive (CI) versions ~2500-7000 contexts
 Equal to the number of methods, since each one has a 

single “context”



Nicholas RudziczFebruary 15, 2008 23/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

 Context-insensitive (CI) versions ~2500-7000 contexts
 Equal to the number of methods, since each one has a 

single “context”

 1-level object-sensitive (OS) and call site (CS) contexts 
generate roughly 10-20 and 5-10 times the CI contexts 

 1H sensitivity gives approximately the same numbers



Nicholas RudziczFebruary 15, 2008 24/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

 Context-insensitive (CI) versions ~2500-7000 contexts
 Equal to the number of methods, since each one has a 

single “context”

 1-level object-sensitive (OS) and call site (CS) contexts 
generate roughly 10-20 and 5-10 times the CI contexts 

 1H sensitivity gives approximately the same numbers

 2-level sensitivity generates ~100-500 and ~125-350 times 
the CI contexts (3-level OS generates ~1500-25,000 times)



Nicholas RudziczFebruary 15, 2008 25/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

 Context-insensitive (CI) versions ~2500-7000 contexts
 Equal to the number of methods, since each one has a 

single “context”

 1-level object-sensitive (OS) and call site (CS) contexts 
generate roughly 10-20 and 5-10 times the CI contexts 

 1H sensitivity gives approximately the same numbers

 2-level sensitivity generates ~100-500 and ~125-350 times 
the CI contexts (3-level OS generates ~1500-25,000 times)

 ZCWL generates between 2.9x104 and 2.1x1015 times the 
contexts!
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Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Huge numbers of contexts
 Explicitly representing each one is a recipe for disaster

 Explains why previous analyses could not scale to the 
benchmarks used in this case study
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 Many contexts can be considered equivalent

 Formally: 

 Two method-context pairs (m
1
, c

1
) and (m

2
, c

2
) are 

equivalent if m
1
 = m

2
, and any local pointer p has the same 

points-to set in both contexts

 If there are many equivalent contexts in an analysis, 
explicitly storing each one separately is a waste

 However, methods to determine equivalent contexts 
prior to analysis have yet to be discovered
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Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 In counting the number of equivalent contexts 
generated in the previous benchmarks, the potential 
for drastic improvements was highlighted

 1-level OS- and CS-based analyses dropped to only 
~8-10 and 2-3 times the CI contexts

 From 10-20 and 5-10 times, previously

 Maximum of 33.8 times the CI contexts in the case of 
3-level OS analysis (from 13,289, previously)

 ZCWL showed the greatest improvement: from 
between 2.9x104 and 2.1x1015 times to only ~3-7
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Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 Finding equivalent contexts a priori would clearly 
benefit analysis

 Notes:
 OS-based analysis generated (~3x) more equivalent 

contexts, which would likely make it more precise than CSs
 Longer context strings led to an exponential increase in 

space required, but only minimal precision improvements
 ZCWL models cycles insensitively; thus drastically reducing 

the number of equivalent contexts generated
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Distinct Points-to sets
● Refresher
● Background
● Benchmarks (3/7)
● Conclusion

 Can be seen as a rough approximation of the space-
efficiency of BDDs

 In nearly all types of context abstraction (OS-, CS-, 
and ZCWL-based), there is no significant advantage 
over CI analysis

 However, 1-level context sensitive heap abstractions led to 
an 11-fold increase. 

 Points-to sets are pairs of abstract objects and contexts, 
rather than simply the objects themselves

 Representing points-to sets less critical than efficiently 
representing contexts
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Reachable Methods
● Refresher
● Background
● Benchmarks (4/7)
● Conclusion

 Reducing the number of reachable methods allows 
dead-code elimination

 Context-sensitive graphs were created, then context 
“projected” away to enable comparison

 Results underwhelming: maximum of 13 methods 
fewer than CI approach

 Results were slightly better for OS-based analysis
 Node-visitor algorithms where certain types of nodes will 

never be reached
 Heap abstractions improve performance on dynamically-

allocated objects
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as opposed to number of reachable methods

 Again, having fewer call edges is desirable
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Call Edges
● Refresher
● Background
● Benchmarks (5/7)
● Conclusion

 Measures call graph in terms of number of call edges 
as opposed to number of reachable methods

 Again, having fewer call edges is desirable

 As with reachable-method analysis, no significant 
improvement is detected...

 ...except in sablecc­j benchmark w/ 1-level OS

 Benchmark uses tree traversal with numerous 
this.getParent() calls. W/out context, this could 
generate a huge number of potential call edges

 17,925 call edges in CI analysis, only ~5100 in context 
sensitive test
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 At compile time, virtual calls introduce potential call 
edges between pointers and any number of targets

 Reducing potential polymorphism of call sites reduces 
the amount of call edges generated

 In effect, a subset of the call-edge problem, previously

 Fully resolving a call site (i.e., removing 
polymorphism) means it can be replaced by cheaper 
static methods, allowing further optimization
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Virtual Call Resolution
● Refresher
● Background
● Benchmarks (6/7)
● Conclusion

 Again, relatively small improvements

 CS-based optimization performs as well as, but never 
better, than OS-based

 Once again, sablecc­j provides a good example

 Some devirtualization can be handled by any context-
sensitive analysis

 A further set of devirtualization requires OS
 A final set requires context-sensitive heap objects
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 In an OO language, a cast cannot fail if the pointer that 
it is casting can only point to variables that are 
subtypes of the cast
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Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 In an OO language, a cast cannot fail if the pointer that 
it is casting can only point to variables that are 
subtypes of the cast

 Presumably, proving that certain casts cannot fail reduces 
the number of exceptional call edges (Comments?)
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Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Once again, we see modest improvements with 
context sensitivity, particularly with OS analysis and 
context sensitive heap abstractions

 In polyglot benchmark, the number of potentially 
failing casts is reduced from 3539 (CI) to 1017.

 This benchmark involves a large class hierarchy, in 
which each subclass implements a copy() method

 Using OS, receiver objects performing the casts can 
be determined, and cast safety made more precise

 Further, OS heap abstractions can more accurately 
model casts in dynamically-allocated objects
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 Is context-sensitive points-to analysis worth it?
 Yes, and now we have seen how

 Generally, context-sensitive points-to analysis:
 improved call-graph precision slightly
 improved virtual call resolution even more
 led to major precision improvements in cast safety analysis

 OS-based approaches were never less precise than 
CS-based ones, and scaled better than the latter when 
context string length was increased

 The ZCWL algorithm was never more precise than OS
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 Extending the context strings for OS-based analysis 
gave only modest performance increases, but context-
sensitive heaps gave, in the best case, significant 
improvements
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Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Extending the context strings for OS-based analysis 
gave only modest performance increases, but context-
sensitive heaps gave, in the best case, significant 
improvements

 However, efficiently implementing 1H-object-sensitive 
analysis without BDDs requires further work
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Critique
● Refresher
● Background
● Benchmarks
● Conclusion

 Discussion of ZCWL algorithm and context-sensitive 
heaps would benefit the reader

 Are benchmarks particularly suited to OS-based 
analysis? Are there no benchmarks for which a CS-
based approach would show greater improvement?
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