
“Context-sensitive Points-to Analysis:
Is it worth it?”

by Ondřej Lhoták and Laurie Hendren

Presented by Nicholas Rudzicz

Nicholas RudziczFebruary 15, 2008 2/72

 Is context-sensitive points-to analysis worth it?

Question

Nicholas RudziczFebruary 15, 2008 3/72

 Is context-sensitive points-to analysis worth it?
 Yes.

Question

Nicholas RudziczFebruary 15, 2008 4/72

The End

Nicholas RudziczFebruary 15, 2008 5/72

The End

Nicholas RudziczFebruary 15, 2008 6/72

 Course refresher
 Motivation

 Background
 Pedantic stuff

 for(int i=0; i < num_benchmarks; i++)
 { describe_benchmark(i);
 discuss_results_of_benchmark(i); }

 Conclusions

Outline

Nicholas RudziczFebruary 15, 2008 7/72

Course refresher
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Recall this example (without pointers) from class:

main() {
g1=1;
f(); //call_1
...
g1=2;
f(); //call_2

}

f() {
g(); //call_3

}

g() {
g1 = g1+1;

}

Nicholas RudziczFebruary 15, 2008 8/72

Course refresher
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Recall this example (without pointers) from class:

main() {
g1=1;
f(); //call_1
...
g1=2;
f(); //call_2

}

f() {
g(); //call_3

}

g() {
g1 = g1+1;

}

 Interprocedural analysis
 W/out context, know nothing about g1 after calls

g1 = ?

g1 = ?

Nicholas RudziczFebruary 15, 2008 9/72

Course refresher
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Recall this example (without pointers) from class:

main() {
g1=1;
f(); //call_1
...
g1=2;
f(); //call_2

}

f() {
g(); //call_3

}

g() {
g1 = g1+1;

}

 Interprocedural analysis
 W/out context, know nothing about g1 after calls

 With context, we can make statements about g1

g1 = 2

g1 = 3

Nicholas RudziczFebruary 15, 2008 10/72

Course refresher
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Recall this example (without pointers) from class:

main() {
g1=1;
f(); //call_1
...
g1=2;
f(); //call_2

}

f() {
g(); //call_3

}

g() {
g1 = g1+1;

}

 Interprocedural analysis
 W/out context, know nothing about g1 after calls

 With context, we can make statements about g1 at the cost of
exponential code blowup or possibly infinite context strings

g1 = 2

g1 = 3

Nicholas RudziczFebruary 15, 2008 11/72

Points-to Analysis
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Similar problem with pointers
 What could p1 point to after a given call f()?
 {(pp→p), (p→x)?, (p→y)?, (q→z)}

Nicholas RudziczFebruary 15, 2008 12/72

Points-to Analysis
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Similar problem with pointers
 What could p1 point to after a given call f()?
 {(pp→p), (p→x)?, (p→y)?, (q→z)}

 We would like to perform context-sensitive analysis,
without the exponential blowup

 Binary Decision Diagrams (BDDs) provide an efficient
implementation, which we've seen

Nicholas RudziczFebruary 15, 2008 13/72

Points-to Analysis
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Similar problem with pointers
 What could p1 point to after a given call f()?
 {(pp→p), (p→x)?, (p→y)?, (q→z)}

 We would like to perform context-sensitive analysis,
without the exponential blowup

 Binary Decision Diagrams (BDDs) provide an efficient
implementation, which we've seen

 Efficient experimentation is now possible
 Forms the basis of this paper

Nicholas RudziczFebruary 15, 2008 14/72

L&H Paper: Background
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Examines the results of context-sensitive analysis

Nicholas RudziczFebruary 15, 2008 15/72

L&H Paper: Background
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Examines the results of context-sensitive analysis

 Pointer and pointer target abstractions are fixed
 Store local variable and allocation statement, respectively

Nicholas RudziczFebruary 15, 2008 16/72

L&H Paper: Background
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Examines the results of context-sensitive analysis

 Pointer and pointer target abstractions are fixed
 Store local variable and allocation statement, respectively

 Experiment with context abstraction models

Nicholas RudziczFebruary 15, 2008 17/72

L&H Paper: Background
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Examines the results of context-sensitive analysis

 Pointer and pointer target abstractions are fixed
 Store local variable and allocation statement, respectively

 Experiment with context abstraction models
 Call-site sensitivity
 Receiver object sensitivity
 Zhu & Calman, Whaley & Lam (ZCWL) algorithm

Nicholas RudziczFebruary 15, 2008 18/72

L&H Paper: Background
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

 Examines the results of context-sensitive analysis

 Pointer and pointer target abstractions are fixed
 Store local variable and allocation statement, respectively

 Experiment with context abstraction models
 Call-site sensitivity
 Receiver object sensitivity
 Zhu & Calman, Whaley & Lam (ZCWL) algorithm

 Call-site abstraction. No bound on length of context string, but
removes all cycles in context-insensitive graph to guarantee
context string is finite.

● 1, 2, and 3-level context strings
● 1H – context-sensitive heap

Nicholas RudziczFebruary 15, 2008 19/72

Benchmarks
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

* from [1]

 Tests performed on several
benchmark suites

 SpecJVM 98, DaCapo
v.beta050224, Ashes

Nicholas RudziczFebruary 15, 2008 20/72

Benchmarks
● Refresher
● Background
● Benchmarks (0/7)
● Conclusion

* from [1]

 Tests performed on several
benchmark suites

 SpecJVM 98, DaCapo
v.beta050224, Ashes

 Context-insensitive
baseline tested first

 All variations of object-
sensitive, call-site, and
ZCWL-based analyses
compared against this
reference

Nicholas RudziczFebruary 15, 2008 21/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

Nicholas RudziczFebruary 15, 2008 22/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

 Context-insensitive (CI) versions ~2500-7000 contexts
 Equal to the number of methods, since each one has a

single “context”

Nicholas RudziczFebruary 15, 2008 23/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

 Context-insensitive (CI) versions ~2500-7000 contexts
 Equal to the number of methods, since each one has a

single “context”

 1-level object-sensitive (OS) and call site (CS) contexts
generate roughly 10-20 and 5-10 times the CI contexts

 1H sensitivity gives approximately the same numbers

Nicholas RudziczFebruary 15, 2008 24/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

 Context-insensitive (CI) versions ~2500-7000 contexts
 Equal to the number of methods, since each one has a

single “context”

 1-level object-sensitive (OS) and call site (CS) contexts
generate roughly 10-20 and 5-10 times the CI contexts

 1H sensitivity gives approximately the same numbers

 2-level sensitivity generates ~100-500 and ~125-350 times
the CI contexts (3-level OS generates ~1500-25,000 times)

Nicholas RudziczFebruary 15, 2008 25/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Simply a count of the number of contexts generated

 Context-insensitive (CI) versions ~2500-7000 contexts
 Equal to the number of methods, since each one has a

single “context”

 1-level object-sensitive (OS) and call site (CS) contexts
generate roughly 10-20 and 5-10 times the CI contexts

 1H sensitivity gives approximately the same numbers

 2-level sensitivity generates ~100-500 and ~125-350 times
the CI contexts (3-level OS generates ~1500-25,000 times)

 ZCWL generates between 2.9x104 and 2.1x1015 times the
contexts!

Nicholas RudziczFebruary 15, 2008 26/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Huge numbers of contexts
 Explicitly representing each one is a recipe for disaster

Nicholas RudziczFebruary 15, 2008 27/72

Number of Contexts
● Refresher
● Background
● Benchmarks (1/7)
● Conclusion

 Huge numbers of contexts
 Explicitly representing each one is a recipe for disaster

 Explains why previous analyses could not scale to the
benchmarks used in this case study

Nicholas RudziczFebruary 15, 2008 28/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 Many contexts can be considered equivalent

Nicholas RudziczFebruary 15, 2008 29/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 Many contexts can be considered equivalent

 Formally:

 Two method-context pairs (m
1
, c

1
) and (m

2
, c

2
) are

equivalent if m
1
 = m

2
, and any local pointer p has the same

points-to set in both contexts

Nicholas RudziczFebruary 15, 2008 30/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 Many contexts can be considered equivalent

 Formally:

 Two method-context pairs (m
1
, c

1
) and (m

2
, c

2
) are

equivalent if m
1
 = m

2
, and any local pointer p has the same

points-to set in both contexts

 If there are many equivalent contexts in an analysis,
explicitly storing each one separately is a waste

Nicholas RudziczFebruary 15, 2008 31/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 Many contexts can be considered equivalent

 Formally:

 Two method-context pairs (m
1
, c

1
) and (m

2
, c

2
) are

equivalent if m
1
 = m

2
, and any local pointer p has the same

points-to set in both contexts

 If there are many equivalent contexts in an analysis,
explicitly storing each one separately is a waste

 However, methods to determine equivalent contexts
prior to analysis have yet to be discovered

Nicholas RudziczFebruary 15, 2008 32/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

Nicholas RudziczFebruary 15, 2008 33/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

 1-level OS- and CS-based analyses dropped to only
~8-10 and 2-3 times the CI contexts

 From 10-20 and 5-10 times, previously

Nicholas RudziczFebruary 15, 2008 34/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

 1-level OS- and CS-based analyses dropped to only
~8-10 and 2-3 times the CI contexts

 From 10-20 and 5-10 times, previously

 Maximum of 33.8 times the CI contexts in the case of
3-level OS analysis (from 13,289, previously)

Nicholas RudziczFebruary 15, 2008 35/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

 1-level OS- and CS-based analyses dropped to only
~8-10 and 2-3 times the CI contexts

 From 10-20 and 5-10 times, previously

 Maximum of 33.8 times the CI contexts in the case of
3-level OS analysis (from 13,289, previously)

 ZCWL showed the greatest improvement:

Nicholas RudziczFebruary 15, 2008 36/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

 1-level OS- and CS-based analyses dropped to only
~8-10 and 2-3 times the CI contexts

 From 10-20 and 5-10 times, previously

 Maximum of 33.8 times the CI contexts in the case of
3-level OS analysis (from 13,289, previously)

 ZCWL showed the greatest improvement: from
between 2.9x104 and 2.1x1015 times to only ~3-7

Nicholas RudziczFebruary 15, 2008 37/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 Finding equivalent contexts a priori would clearly
benefit analysis

Nicholas RudziczFebruary 15, 2008 38/72

Equivalent Contexts
● Refresher
● Background
● Benchmarks (2/7)
● Conclusion

 Finding equivalent contexts a priori would clearly
benefit analysis

 Notes:
 OS-based analysis generated (~3x) more equivalent

contexts, which would likely make it more precise than CSs
 Longer context strings led to an exponential increase in

space required, but only minimal precision improvements
 ZCWL models cycles insensitively; thus drastically reducing

the number of equivalent contexts generated

Nicholas RudziczFebruary 15, 2008 39/72

Distinct Points-to sets
● Refresher
● Background
● Benchmarks (3/7)
● Conclusion

 Can be seen as a rough approximation of the space-
efficiency of BDDs

Nicholas RudziczFebruary 15, 2008 40/72

Distinct Points-to sets
● Refresher
● Background
● Benchmarks (3/7)
● Conclusion

 Can be seen as a rough approximation of the space-
efficiency of BDDs

 In nearly all types of context abstraction (OS-, CS-,
and ZCWL-based), there is no significant advantage
over CI analysis

Nicholas RudziczFebruary 15, 2008 41/72

Distinct Points-to sets
● Refresher
● Background
● Benchmarks (3/7)
● Conclusion

 Can be seen as a rough approximation of the space-
efficiency of BDDs

 In nearly all types of context abstraction (OS-, CS-,
and ZCWL-based), there is no significant advantage
over CI analysis

 However, 1-level context sensitive heap abstractions led to
an 11-fold increase.

 Points-to sets are pairs of abstract objects and contexts,
rather than simply the objects themselves

Nicholas RudziczFebruary 15, 2008 42/72

Distinct Points-to sets
● Refresher
● Background
● Benchmarks (3/7)
● Conclusion

 Can be seen as a rough approximation of the space-
efficiency of BDDs

 In nearly all types of context abstraction (OS-, CS-,
and ZCWL-based), there is no significant advantage
over CI analysis

 However, 1-level context sensitive heap abstractions led to
an 11-fold increase.

 Points-to sets are pairs of abstract objects and contexts,
rather than simply the objects themselves

 Representing points-to sets less critical than efficiently
representing contexts

Nicholas RudziczFebruary 15, 2008 43/72

Reachable Methods
● Refresher
● Background
● Benchmarks (4/7)
● Conclusion

 Reducing the number of reachable methods allows
dead-code elimination

Nicholas RudziczFebruary 15, 2008 44/72

Reachable Methods
● Refresher
● Background
● Benchmarks (4/7)
● Conclusion

 Reducing the number of reachable methods allows
dead-code elimination

 Context-sensitive graphs were created, then context
“projected” away to enable comparison

Nicholas RudziczFebruary 15, 2008 45/72

Reachable Methods
● Refresher
● Background
● Benchmarks (4/7)
● Conclusion

 Reducing the number of reachable methods allows
dead-code elimination

 Context-sensitive graphs were created, then context
“projected” away to enable comparison

 Results underwhelming: maximum of 13 methods
fewer than CI approach

Nicholas RudziczFebruary 15, 2008 46/72

Reachable Methods
● Refresher
● Background
● Benchmarks (4/7)
● Conclusion

 Reducing the number of reachable methods allows
dead-code elimination

 Context-sensitive graphs were created, then context
“projected” away to enable comparison

 Results underwhelming: maximum of 13 methods
fewer than CI approach

 Results were slightly better for OS-based analysis
 Node-visitor algorithms where certain types of nodes will

never be reached
 Heap abstractions improve performance on dynamically-

allocated objects

Nicholas RudziczFebruary 15, 2008 47/72

Call Edges
● Refresher
● Background
● Benchmarks (5/7)
● Conclusion

 Measures call graph in terms of number of call edges
as opposed to number of reachable methods

 Again, having fewer call edges is desirable

Nicholas RudziczFebruary 15, 2008 48/72

Call Edges
● Refresher
● Background
● Benchmarks (5/7)
● Conclusion

 Measures call graph in terms of number of call edges
as opposed to number of reachable methods

 Again, having fewer call edges is desirable

 As with reachable-method analysis, no significant
improvement is detected...

Nicholas RudziczFebruary 15, 2008 49/72

Call Edges
● Refresher
● Background
● Benchmarks (5/7)
● Conclusion

 Measures call graph in terms of number of call edges
as opposed to number of reachable methods

 Again, having fewer call edges is desirable

 As with reachable-method analysis, no significant
improvement is detected...

 ...except in sableccj benchmark w/ 1-level OS

Nicholas RudziczFebruary 15, 2008 50/72

Call Edges
● Refresher
● Background
● Benchmarks (5/7)
● Conclusion

 Measures call graph in terms of number of call edges
as opposed to number of reachable methods

 Again, having fewer call edges is desirable

 As with reachable-method analysis, no significant
improvement is detected...

 ...except in sableccj benchmark w/ 1-level OS

 Benchmark uses tree traversal with numerous
this.getParent() calls. W/out context, this could
generate a huge number of potential call edges

Nicholas RudziczFebruary 15, 2008 51/72

Call Edges
● Refresher
● Background
● Benchmarks (5/7)
● Conclusion

 Measures call graph in terms of number of call edges
as opposed to number of reachable methods

 Again, having fewer call edges is desirable

 As with reachable-method analysis, no significant
improvement is detected...

 ...except in sableccj benchmark w/ 1-level OS

 Benchmark uses tree traversal with numerous
this.getParent() calls. W/out context, this could
generate a huge number of potential call edges

 17,925 call edges in CI analysis, only ~5100 in context
sensitive test

Nicholas RudziczFebruary 15, 2008 52/72

Virtual Call Resolution
● Refresher
● Background
● Benchmarks (6/7)
● Conclusion

 At compile time, virtual calls introduce potential call
edges between pointers and any number of targets

Nicholas RudziczFebruary 15, 2008 53/72

Virtual Call Resolution
● Refresher
● Background
● Benchmarks (6/7)
● Conclusion

 At compile time, virtual calls introduce potential call
edges between pointers and any number of targets

 Reducing potential polymorphism of call sites reduces
the amount of call edges generated

 In effect, a subset of the call-edge problem, previously

Nicholas RudziczFebruary 15, 2008 54/72

Virtual Call Resolution
● Refresher
● Background
● Benchmarks (6/7)
● Conclusion

 At compile time, virtual calls introduce potential call
edges between pointers and any number of targets

 Reducing potential polymorphism of call sites reduces
the amount of call edges generated

 In effect, a subset of the call-edge problem, previously

 Fully resolving a call site (i.e., removing
polymorphism) means it can be replaced by cheaper
static methods, allowing further optimization

Nicholas RudziczFebruary 15, 2008 55/72

Virtual Call Resolution
● Refresher
● Background
● Benchmarks (6/7)
● Conclusion

 Again, relatively small improvements

Nicholas RudziczFebruary 15, 2008 56/72

Virtual Call Resolution
● Refresher
● Background
● Benchmarks (6/7)
● Conclusion

 Again, relatively small improvements

 CS-based optimization performs as well as, but never
better, than OS-based

Nicholas RudziczFebruary 15, 2008 57/72

Virtual Call Resolution
● Refresher
● Background
● Benchmarks (6/7)
● Conclusion

 Again, relatively small improvements

 CS-based optimization performs as well as, but never
better, than OS-based

 Once again, sableccj provides a good example

 Some devirtualization can be handled by any context-
sensitive analysis

 A further set of devirtualization requires OS
 A final set requires context-sensitive heap objects

Nicholas RudziczFebruary 15, 2008 58/72

Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 In an OO language, a cast cannot fail if the pointer that
it is casting can only point to variables that are
subtypes of the cast

Nicholas RudziczFebruary 15, 2008 59/72

Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 In an OO language, a cast cannot fail if the pointer that
it is casting can only point to variables that are
subtypes of the cast

 Presumably, proving that certain casts cannot fail reduces
the number of exceptional call edges (Comments?)

Nicholas RudziczFebruary 15, 2008 60/72

Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Once again, we see modest improvements with
context sensitivity, particularly with OS analysis and
context sensitive heap abstractions

Nicholas RudziczFebruary 15, 2008 61/72

Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Once again, we see modest improvements with
context sensitivity, particularly with OS analysis and
context sensitive heap abstractions

 In polyglot benchmark, the number of potentially
failing casts is reduced from 3539 (CI) to 1017.

Nicholas RudziczFebruary 15, 2008 62/72

Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Once again, we see modest improvements with
context sensitivity, particularly with OS analysis and
context sensitive heap abstractions

 In polyglot benchmark, the number of potentially
failing casts is reduced from 3539 (CI) to 1017.

 This benchmark involves a large class hierarchy, in
which each subclass implements a copy() method

 Using OS, receiver objects performing the casts can
be determined, and cast safety made more precise

Nicholas RudziczFebruary 15, 2008 63/72

Cast Safety
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Once again, we see modest improvements with
context sensitivity, particularly with OS analysis and
context sensitive heap abstractions

 In polyglot benchmark, the number of potentially
failing casts is reduced from 3539 (CI) to 1017.

 This benchmark involves a large class hierarchy, in
which each subclass implements a copy() method

 Using OS, receiver objects performing the casts can
be determined, and cast safety made more precise

 Further, OS heap abstractions can more accurately
model casts in dynamically-allocated objects

Nicholas RudziczFebruary 15, 2008 64/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Is context-sensitive points-to analysis worth it?
 Yes

Nicholas RudziczFebruary 15, 2008 65/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Is context-sensitive points-to analysis worth it?
 Yes, and now we have seen how

Nicholas RudziczFebruary 15, 2008 66/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Is context-sensitive points-to analysis worth it?
 Yes, and now we have seen how

 Generally, context-sensitive points-to analysis:
 improved call-graph precision slightly
 improved virtual call resolution even more
 led to major precision improvements in cast safety analysis

Nicholas RudziczFebruary 15, 2008 67/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Is context-sensitive points-to analysis worth it?
 Yes, and now we have seen how

 Generally, context-sensitive points-to analysis:
 improved call-graph precision slightly
 improved virtual call resolution even more
 led to major precision improvements in cast safety analysis

 OS-based approaches were never less precise than
CS-based ones, and scaled better than the latter when
context string length was increased

Nicholas RudziczFebruary 15, 2008 68/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Is context-sensitive points-to analysis worth it?
 Yes, and now we have seen how

 Generally, context-sensitive points-to analysis:
 improved call-graph precision slightly
 improved virtual call resolution even more
 led to major precision improvements in cast safety analysis

 OS-based approaches were never less precise than
CS-based ones, and scaled better than the latter when
context string length was increased

 The ZCWL algorithm was never more precise than OS

Nicholas RudziczFebruary 15, 2008 69/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Extending the context strings for OS-based analysis
gave only modest performance increases, but context-
sensitive heaps gave, in the best case, significant
improvements

Nicholas RudziczFebruary 15, 2008 70/72

Conclusion
● Refresher
● Background
● Benchmarks (7/7)
● Conclusion

 Extending the context strings for OS-based analysis
gave only modest performance increases, but context-
sensitive heaps gave, in the best case, significant
improvements

 However, efficiently implementing 1H-object-sensitive
analysis without BDDs requires further work

Nicholas RudziczFebruary 15, 2008 71/72

Critique
● Refresher
● Background
● Benchmarks
● Conclusion

 Discussion of ZCWL algorithm and context-sensitive
heaps would benefit the reader

 Are benchmarks particularly suited to OS-based
analysis? Are there no benchmarks for which a CS-
based approach would show greater improvement?

Nicholas RudziczFebruary 15, 2008 72/72

