“Context-sensitive Points-to Analysis:
Is it worth it?”

by Ondrej Lhotak and Laurie Hendren

Presented by Nicholas Rudzicz

Is context-sensitive points-to analysis worth it?

February 15, 2008 Nicholas Rudzicz 2/72

Is context-sensitive points-to analysis worth it?

Yes.

February 15, 2008 Nicholas Rudzicz 3/72

The End

February 15, 2008 Nicholas Rudzicz 4/72

February 15, 2008 Nicholas Rudzicz 5/72

Course refresher

Motivation

Background
Pedantic stuff

for(int i=0; i < num_benchmarks; i++)
{ describe_benchmark(i);
discuss_results_of benchmark(i); }

Conclusions

February 15, 2008 Nicholas Rudzicz 6/72

 Background

 Benchmarks (0/7) C O U I'SG l'efl’eS h e r

 Conclusion

Recall this example (without pointers) from class:

main() { f() { g0 {
gl=1; g(); //call 3 gl =gl+1;
f(); //call 1 ! }
éi=2;
f(); //call 2
)

February 15, 2008 Nicholas Rudzicz 7/72

 Background

 Benchmarks (0/7) C O U I'SG l'efl’eS h e r

 Conclusion

Recall this example (without pointers) from class:

main() { f0) 1 20 1
gl=1; g(); //call 3 gl =gl+1;
f0); /lcall_1 ! }
i R

Interprocedural analysis

W/out context, know nothing about g1 after calls

February 15, 2008 Nicholas Rudzicz 8/72

 Background

 Benchmarks (0/7) C O U I'SG l'efl’eS h e r

 Conclusion

Recall this example (without pointers) from class:

main() { () { O
Sl g(); //call 3 gl =gl+1;
f0; feall 1 3 }

} f(); //call 2 gl =3

Interprocedural analysis

W/out context, know nothing about g1 after calls
With context, we can make statements about g1

February 15, 2008 Nicholas Rudzicz 9/72

 Background

 Benchmarks (0/7) C O u I'SG l'efl'es h e r

 Conclusion

Recall this example (without pointers) from class:

main() { () { O
Sl g(); //call 3 gl =gl+1;
f0; feall 1} }

} f(); //call 2 gl =3

Interprocedural analysis

W/out context, know nothing about g1 after calls

With context, we can make statements about g1 at the cost of
exponential code blowup or possibly infinite context strings

February 15, 2008 Nicholas Rudzicz 10/72

 Background

 Benchmarks (0/7) POi ntS -tO AnalySiS

 Conclusion

Similar problem with pointers
What could p1 point to after a given call f()?
{(pp—p), (p—%)?, (p—Y)?, (q—2)}

February 15, 2008 Nicholas Rudzicz 11/72

 Background

 Benchmarks (0/7) POi ntS -tO AnalySiS

 Conclusion

Similar problem with pointers
What could p1 point to after a given call f()?

{(pp—p), (p—X)?, (p—Y)?, (q—2)§

We would like to perform context-sensitive analysis,
without the exponential blowup

Binary Decision Diagrams (BDDs) provide an efficient
Implementation, which we've seen

February 15, 2008 Nicholas Rudzicz 12/72

 Background

 Benchmarks (0/7) POi ntS -tO AnalySiS

 Conclusion

Similar problem with pointers
What could p1 point to after a given call f()?

{(pp—p), (p—X)?, (p—Y)?, (q—2)§

We would like to perform context-sensitive analysis,
without the exponential blowup

Binary Decision Diagrams (BDDs) provide an efficient
Implementation, which we've seen

Efficient experimentation is now possible

Forms the basis of this paper

February 15, 2008 Nicholas Rudzicz 13/72

* Refresher

-senchmarks 07y L&H Paper: Background

 Conclusion

Examines the results of context-sensitive analysis

February 15, 2008 Nicholas Rudzicz 14/72

* Refresher

-senchmarks 07y L&H Paper: Background

 Conclusion

Examines the results of context-sensitive analysis

Pointer and pointer target abstractions are fixed

Store local variable and allocation statement, respectively

February 15, 2008 Nicholas Rudzicz 15/72

* Refresher

-senchmarks 07y L&H Paper: Background

 Conclusion

Examines the results of context-sensitive analysis

Pointer and pointer target abstractions are fixed
Store local variable and allocation statement, respectively

Experiment with context abstraction models

February 15, 2008 Nicholas Rudzicz 16/72

* Refresher

-senchmarks 07y L&H Paper: Background

 Conclusion

Examines the results of context-sensitive analysis

Pointer and pointer target abstractions are fixed
Store local variable and allocation statement, respectively

Experiment with context abstraction models

Call-site sensitivity
Receiver object sensitivity
Zhu & Calman, Whaley & Lam (ZCWL) algorithm

February 15, 2008 Nicholas Rudzicz 17/72

* Refresher

-senchmarks 07y L&H Paper: Background

 Conclusion

Examines the results of context-sensitive analysis

Pointer and pointer target abstractions are fixed
Store local variable and allocation statement, respectively
Experiment with context abstraction models
Call-site sensitivity }

e 1, 2, and 3-level context strings

Receiver object sensitivity * 1H — context-sensitive heap

Zhu & Calman, Whaley & Lam (ZCWL) algorithm

Call-site abstraction. No bound on length of context string, but
removes all cycles in context-insensitive graph to guarantee
context string is finite.

February 15, 2008 Nicholas Rudzicz 18/72

Benchmarks

 Conclusion

| Total number of | Executed melhnfjﬁ Tests performed on Several
Benchmark | classes methods | app. +lib. .

compress 41 476 | 56 463 benchmark suites

' db 32 440 | 51 483

| jack 86 812 | 291 739 SpecJVM 98, DaCapo
javac 2009 2499 | 778 1283

joss 50 1222 | 305 " v.beta050224, Ashes

| mpegaudio 88 872 | 222 637

mtrt 55 574 | 182 616

soot-c 731 3962 | 1055 1549

sablecc-| 342 2309 | 1034 1856

| polyglot 502 5785 | 2037 3093

antlr 203 3154 | 1099 1783

bloat 434 6125 | 138 1010

| chart 1077 14966 | 854 279(0)

jython 270 4915 | 1004 1858

' pmd 1546 14086 | 1817 2581

ps 202 1147 | 285 045

*from [1]

February 15, 2008 Nicholas Rudzicz 19/72

Benchmarks

Conclusion

| Total number of | Executed melhnfjﬁ Tests performed on Several
Benchmark | classes methods | app. +lib. .
compress 41 476 | 56 463 benchmark suites

' db 32 440 | 51 483

| jack 86 812 | 291 739 SpecJVM 98, DaCapo
javac 200 2499 | 778 1283

[jess 50 1222 | 305 " v.beta050224, Ashes
mpegaudio 88 872 | 222 637 i 4
e s sl 1o o Conte.xt insensitive
S001-C 731 3962 | 1055 1549 baseline tested first

| sablecc-| %42 %3{‘}5} I{‘r:_H .Ik%:':-.ﬁ o .
polyglot 202 5785 | 2037 3093 All variations of object-
antlr 203 3154 | 1099 1783 o]

' bloat 434 6125 | 138 1010 sensitive, call-site, and
chart 1077 14966 | R854 2790)

| jython 270 4915 | 1004 1858 ZCWL-based qnalysgs
pmd 1546 14086 | 1817 2581 compared against this
ps 202 1147 | 285 045 f
+ from [1] rerterence

February 15, 2008 Nicholas Rudzicz 20/72

» Refresher
e Background

Number of Contexts

 Conclusion

Simply a count of the number of contexts generated

February 15, 2008 Nicholas Rudzicz 21/72

» Refresher
e Background

: Number of Contexts

 Conclusion

Simply a count of the number of contexts generated
Context-insensitive (Cl) versions ~2500-7000 contexts

Equal to the number of methods, since each one has a
single “context”

February 15, 2008 Nicholas Rudzicz 22/72

» Refresher
e Background

: Number of Contexts

 Conclusion

Simply a count of the number of contexts generated
Context-insensitive (Cl) versions ~2500-7000 contexts

Equal to the number of methods, since each one has a
single “context”

1-level object-sensitive (OS) and call site (CS) contexts
generate roughly 10-20 and 5-10 times the CI contexts

1 H sensitivity gives approximately the same numbers

February 15, 2008 Nicholas Rudzicz 23/72

» Refresher
e Background

Number of Contexts

 Conclusion

Simply a count of the number of contexts generated
Context-insensitive (Cl) versions ~2500-7000 contexts

Equal to the number of methods, since each one has a
single “context”

1-level object-sensitive (OS) and call site (CS) contexts
generate roughly 10-20 and 5-10 times the CI contexts

1 H sensitivity gives approximately the same numbers

2-level sensitivity generates ~100-500 and ~125-350 times
the CI contexts (3-level OS generates ~1500-25,000 times)

February 15, 2008 Nicholas Rudzicz 24/72

* Refresher

L packaround Number of Contexts

 Conclusion

Simply a count of the number of contexts generated
Context-insensitive (Cl) versions ~2500-7000 contexts

Equal to the number of methods, since each one has a
single “context”

1-level object-sensitive (OS) and call site (CS) contexts
generate roughly 10-20 and 5-10 times the CI contexts

1 H sensitivity gives approximately the same numbers

2-level sensitivity generates ~100-500 and ~125-350 times
the CI contexts (3-level OS generates ~1500-25,000 times)

ZCWL generates between 2.9x10* and 2.1x10" times the
contexts!

February 15, 2008 Nicholas Rudzicz 25/72

» Refresher
e Background

: Number of Contexts

 Conclusion

Huge numbers of contexts

Explicitly representing each one 1s a recipe for disaster

February 15, 2008 Nicholas Rudzicz 26/72

» Refresher
e Background

: Number of Contexts

 Conclusion

Huge numbers of contexts
Explicitly representing each one 1s a recipe for disaster

Explains why previous analyses could not scale to the
benchmarks used 1n this case study

February 15, 2008 Nicholas Rudzicz 27/72

» Refresher
e Background

. Equivalent Contexts

 Conclusion

Many contexts can be considered equivalent

February 15, 2008 Nicholas Rudzicz 28/72

» Refresher
e Background

. Equivalent Contexts

 Conclusion

Many contexts can be considered equivalent
Formally:

Two method-context pairs (m,, ¢,) and (m,, c,) are
equivalent if m, = m,, and any local pointer p has the same

points-to set in both contexts

February 15, 2008 Nicholas Rudzicz 29/72

» Refresher
e Background

. Equivalent Contexts

 Conclusion

Many contexts can be considered equivalent
Formally:

Two method-context pairs (m,, ¢,) and (m,, c,) are
equivalent if m, = m,, and any local pointer p has the same

points-to set in both contexts

If there are many equivalent contexts in an analysis,
explicitly storing each one separately is a waste

February 15, 2008 Nicholas Rudzicz 30/72

» Refresher
e Background

. Equivalent Contexts

 Conclusion

Many contexts can be considered equivalent
Formally:

Two method-context pairs (m,, ¢,) and (m,, c,) are
equivalent if m, = m,, and any local pointer p has the same

points-to set in both contexts

If there are many equivalent contexts in an analysis,
explicitly storing each one separately is a waste

However, methods to determine equivalent contexts
prior to analysis have yet to be discovered

February 15, 2008 Nicholas Rudzicz 31/72

» Refresher
e Background

Equivalent Contexts

 Conclusion

In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

February 15, 2008 Nicholas Rudzicz 32/72

» Refresher
e Background

Equivalent Contexts

 Conclusion

In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

1-level OS- and CS-based analyses dropped to only
~8-10 and 2-3 times the CIl contexts

From 10-20 and 5-10 times, previously

February 15, 2008 Nicholas Rudzicz 33/72

* Refresher

M-t Equivalent Contexts

 Conclusion

In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

1-level OS- and CS-based analyses dropped to only
~8-10 and 2-3 times the CIl contexts

From 10-20 and 5-10 times, previously

Maximum of 33.8 times the CI| contexts in the case of
3-level OS analysis (from 13,289, previously)

February 15, 2008 Nicholas Rudzicz 34/72

* Refresher

M-t Equivalent Contexts

 Conclusion

In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

1-level OS- and CS-based analyses dropped to only
~8-10 and 2-3 times the CIl contexts

From 10-20 and 5-10 times, previously

Maximum of 33.8 times the CI| contexts in the case of
3-level OS analysis (from 13,289, previously)

ZCWL showed the greatest improvement:

February 15, 2008 Nicholas Rudzicz 35/72

* Refresher

ottt Equivalent Contexts

 Conclusion

In counting the number of equivalent contexts
generated in the previous benchmarks, the potential
for drastic improvements was highlighted

1-level OS- and CS-based analyses dropped to only
~8-10 and 2-3 times the CIl contexts

From 10-20 and 5-10 times, previously

Maximum of 33.8 times the CI| contexts in the case of
3-level OS analysis (from 13,289, previously)

ZCWL showed the greatest improvement: from
between 2.9x10% and 2.1x10" times to only ~3-7

February 15, 2008 Nicholas Rudzicz 36/72

» Refresher
e Background

. Equivalent Contexts

 Conclusion

Finding equivalent contexts a priori would clearly
benefit analysis

February 15, 2008 Nicholas Rudzicz 37/72

* Refresher

M-t Equivalent Contexts

 Conclusion

Finding equivalent contexts a priori would clearly
benefit analysis

Notes:

OS-based analysis generated (~3x) more equivalent
contexts, which would likely make it more precise than CSs

Longer context strings led to an exponential increase In
space required, but only minimal precision improvements

ZCWL models cycles insensitively; thus drastically reducing
the number of equivalent contexts generated

February 15, 2008 Nicholas Rudzicz 38/72

» Refresher
e Background

Distinct Points-to sets

 Conclusion

Can be seen as a rough approximation of the space-
efficiency of BDDs

February 15, 2008 Nicholas Rudzicz 39/72

* Refresher

AL Distinct Points-to sets

 Conclusion

Can be seen as a rough approximation of the space-
efficiency of BDDs

In nearly all types of context abstraction (OS-, CS-,
and ZCWL-based), there is no significant advantage
over Cl analysis

February 15, 2008 Nicholas Rudzicz 40/72

* Refresher

AL Distinct Points-to sets

 Conclusion

Can be seen as a rough approximation of the space-
efficiency of BDDs

In nearly all types of context abstraction (OS-, CS-,
and ZCWL-based), there is no significant advantage
over Cl analysis

However, 1-level context sensitive heap abstractions led to
an 11-fold increase.

Points-to sets are pairs of abstract objects and contexts,
rather than simply the objects themselves

February 15, 2008 Nicholas Rudzicz 41/72

» Refresher
 Background

Distinct Points-to sets

 Conclusion

Can be seen as a rough approximation of the space-
efficiency of BDDs

In nearly all types of context abstraction (OS-, CS-,
and ZCWL-based), there is no significant advantage
over Cl analysis

However, 1-level context sensitive heap abstractions led to
an 11-fold increase.

Points-to sets are pairs of abstract objects and contexts,
rather than simply the objects themselves

Representing points-to sets less critical than efficiently
representing contexts

February 15, 2008 Nicholas Rudzicz 42/72

* Refresher

L packaround Reachable Methods

 Conclusion

Reducing the number of reachable methods allows
dead-code elimination

February 15, 2008 Nicholas Rudzicz 43/72

* Refresher

L packaround Reachable Methods

 Conclusion

Reducing the number of reachable methods allows
dead-code elimination

Context-sensitive graphs were created, then context
“projected” away to enable comparison

February 15, 2008 Nicholas Rudzicz 44/72

* Refresher

L packaround Reachable Methods

 Conclusion

Reducing the number of reachable methods allows
dead-code elimination

Context-sensitive graphs were created, then context
“projected” away to enable comparison

Results underwhelming: maximum of 13 methods
fewer than Cl approach

February 15, 2008 Nicholas Rudzicz 45/72

* Refresher

L packground Reachable Methods

 Conclusion

Reducing the number of reachable methods allows
dead-code elimination

Context-sensitive graphs were created, then context
“projected” away to enable comparison

Results underwhelming: maximum of 13 methods
fewer than Cl approach

Results were slightly better for OS-based analysis

Node-visitor algorithms where certain types of nodes will
never be reached

Heap abstractions improve performance on dynamically-
allocated objects

February 15, 2008 Nicholas Rudzicz 46/72

* Refresher

:Background Ca" Edges

 Conclusion

Measures call graph in terms of number of call edges
as opposed to number of reachable methods

Again, having fewer call edges is desirable

February 15, 2008 Nicholas Rudzicz 47/72

* Refresher

:Background Ca" Edges

 Conclusion

Measures call graph in terms of number of call edges
as opposed to number of reachable methods

Again, having fewer call edges is desirable

As with reachable-method analysis, no significant
Improvement is detected...

February 15, 2008 Nicholas Rudzicz 48/72

* Refresher

:Background Ca" Edges

 Conclusion

Measures call graph in terms of number of call edges
as opposed to number of reachable methods

Again, having fewer call edges is desirable

As with reachable-method analysis, no significant
Improvement is detected...

...except in sablecc-j benchmark w/ 1-level OS

February 15, 2008 Nicholas Rudzicz 49/72

* Refresher

:Background Ca" Edges

 Conclusion

Measures call graph in terms of number of call edges
as opposed to number of reachable methods

Again, having fewer call edges is desirable

As with reachable-method analysis, no significant
Improvement is detected...

...except in sablecc-j benchmark w/ 1-level OS

Benchmark uses tree traversal with numerous
this.getParent () calls. W/out context, this could

generate a huge number of potential call edges

February 15, 2008 Nicholas Rudzicz 50/72

* Refresher

:Background Ca" Edges

 Conclusion

Measures call graph in terms of number of call edges
as opposed to number of reachable methods

Again, having fewer call edges is desirable

As with reachable-method analysis, no significant
Improvement is detected...

...except in sablecc-j benchmark w/ 1-level OS

Benchmark uses tree traversal with numerous
this.getParent () calls. W/out context, this could

generate a huge number of potential call edges

17,925 call edges in Cl analysis, only ~5100 in context
sensitive test

February 15, 2008 Nicholas Rudzicz 51/72

» Refresher
e Background

Virtual Call Resolution

 Conclusion

At compile time, virtual calls introduce potential call
edges between pointers and any number of targets

February 15, 2008 Nicholas Rudzicz 52/72

» Refresher
e Background

Virtual Call Resolution

 Conclusion

At compile time, virtual calls introduce potential call
edges between pointers and any number of targets

Reducing potential polymorphism of call sites reduces
the amount of call edges generated

In effect, a subset of the call-edge problem, previously

February 15, 2008 Nicholas Rudzicz 53/72

» Refresher
e Background

Virtual Call Resolution

 Conclusion

At compile time, virtual calls introduce potential call
edges between pointers and any number of targets

Reducing potential polymorphism of call sites reduces
the amount of call edges generated

In effect, a subset of the call-edge problem, previously

Fully resolving a call site (i.e., removing

polymorphism) means it can be replaced by cheaper
static methods, allowing further optimization

February 15, 2008 Nicholas Rudzicz 54/72

» Refresher
e Background

: Virtual Call Resolution

 Conclusion

Again, relatively small improvements

February 15, 2008 Nicholas Rudzicz 55/72

» Refresher
e Background

Virtual Call Resolution

 Conclusion

Again, relatively small improvements

CS-based optimization performs as well as, but never
better, than OS-based

February 15, 2008 Nicholas Rudzicz 56/72

» Refresher
e Background

: Virtual Call Resolution

 Conclusion

Again, relatively small improvements

CS-based optimization performs as well as, but never
better, than OS-based

Once again, sablecc-j provides a good example

Some devirtualization can be handled by any context-
sensitive analysis

A further set of devirtualization requires OS

A final set requires context-sensitive heap objects

February 15, 2008 Nicholas Rudzicz 57/72

* Refresher

Cast Safety

 Conclusion

In an OO language, a cast cannot fail if the pointer that
it is casting can only point to variables that are
subtypes of the cast

February 15, 2008 Nicholas Rudzicz 58/72

* Refresher

Cast Safety

 Conclusion

In an OO language, a cast cannot fail if the pointer that
it is casting can only point to variables that are
subtypes of the cast

Presumably, proving that certain casts cannot fail reduces
the number of exceptional call edges (Comments?)

February 15, 2008 Nicholas Rudzicz 59/72

* Refresher

Cast Safety

 Conclusion

Once again, we see modest improvements with
context sensitivity, particularly with OS analysis and
context sensitive heap abstractions

February 15, 2008 Nicholas Rudzicz 60/72

* Refresher

:Background CaSt Safety

 Conclusion

Once again, we see modest improvements with
context sensitivity, particularly with OS analysis and
context sensitive heap abstractions

In polyglot benchmark, the number of potentially
failing casts is reduced from 3539 (CI) to 1017.

February 15, 2008 Nicholas Rudzicz 61/72

* Refresher

Cast Safety

 Conclusion

Once again, we see modest improvements with
context sensitivity, particularly with OS analysis and
context sensitive heap abstractions

In polyglot benchmark, the number of potentially
failing casts is reduced from 3539 (CI) to 1017.

This benchmark involves a large class hierarchy, in
which each subclass implements a copy() method

Using OS, receiver objects performing the casts can
be determined, and cast safety made more precise

February 15, 2008 Nicholas Rudzicz 62/72

* Refresher

Cast Safety

 Conclusion

Once again, we see modest improvements with
context sensitivity, particularly with OS analysis and
context sensitive heap abstractions

In polyglot benchmark, the number of potentially
failing casts is reduced from 3539 (CI) to 1017.

This benchmark involves a large class hierarchy, in
which each subclass implements a copy() method

Using OS, receiver objects performing the casts can
be determined, and cast safety made more precise

Further, OS heap abstractions can more accurately
model casts in dynamically-allocated objects

February 15, 2008 Nicholas Rudzicz 63/72

» Refresher
e Background

* Benchmarks (7/7) COHC' USiOn

Is context-sensitive points-to analysis worth it?

Yes

February 15, 2008 Nicholas Rudzicz 64/72

» Refresher
e Background

* Benchmarks (7/7) COHC' USiOn

Is context-sensitive points-to analysis worth it?

Yes, and now we have seen how

February 15, 2008 Nicholas Rudzicz 65/72

» Refresher
e Background

* Benchmarks (7/7) COHC' USiOn

Is context-sensitive points-to analysis worth it?
Yes, and now we have seen how
Generally, context-sensitive points-to analysis:

improved call-graph precision slightly
Improved virtual call resolution even more
led to major precision improvements in cast safety analysis

February 15, 2008 Nicholas Rudzicz 66/72

* Refresher

» Back d .
- Benchmarks (717) Conclusion

Is context-sensitive points-to analysis worth it?
Yes, and now we have seen how
Generally, context-sensitive points-to analysis:
improved call-graph precision slightly
Improved virtual call resolution even more
led to major precision improvements in cast safety analysis

OS-based approaches were never less precise than
CS-based ones, and scaled better than the latter when
context string length was increased

February 15, 2008 Nicholas Rudzicz 67/72

* Refresher

» Back d .
- Benchmarks (717) Conclusion

Is context-sensitive points-to analysis worth it?
Yes, and now we have seen how
Generally, context-sensitive points-to analysis:

improved call-graph precision slightly
Improved virtual call resolution even more
led to major precision improvements in cast safety analysis

OS-based approaches were never less precise than
CS-based ones, and scaled better than the latter when
context string length was increased

The ZCWL algorithm was never more precise than OS

February 15, 2008 Nicholas Rudzicz 68/72

* Refresher

» Back d .
- Benchmarks (717) Conclusion

Extending the context strings for OS-based analysis
gave only modest performance increases, but context-
sensitive heaps gave, in the best case, significant
Improvements

February 15, 2008 Nicholas Rudzicz 69/72

* Refresher

» Back d .
- Benchmarks (717) Conclusion

Extending the context strings for OS-based analysis
gave only modest performance increases, but context-
sensitive heaps gave, in the best case, significant
Improvements

However, efficiently implementing 1H-object-sensitive
analysis without BDDs requires further work

February 15, 2008 Nicholas Rudzicz 70/72

» Refresher
e Background

« Benchmarks Critique

Discussion of ZCWL algorithm and context-sensitive
heaps would benefit the reader

Are benchmarks particularly suited to OS-based
analysis? Are there no benchmarks for which a CS-
based approach would show greater improvement?

February 15, 2008 Nicholas Rudzicz 71/72

The End

February 15, 2008 Nicholas Rudzicz 72/72

