stack-storage optimization for short-lived data
a one slide summarv

Optimizine Scheme. part |

cons should not cons its areuments. part |
a Lazv Alloc is a Smart Alloc @ most obiect are short-lived

allocate them on the stack (faster than malloc)

°
Alex Gal @ those that outlive the function call are moved to the heap
COMP 621 e that's auite a short zeroth generation!
cancelled

Samuel Gélineau

cons should not cons its areuments. part I/

Chenev on the M.T.A.

Optimizing Scheme. part |l

an inexistant return is a smart return
Henrv Baker

. ; n
Samuel Gélineau Sing along!

COMP 621 Charlie on the M.T.A.

Februarv 7. 2008 oh. will he ever return?

no. he'll never return.

and his fate is still unlearned.
he's a man who'll never return!

Samuel Gélineau Samuel Gélineau




Compiling Scheme to C

Scheme and C are so different

Scheme

High-level. recursive. lots of small garbage-collected conses.

(define (reverse a-list)
(apvend (reverse (cdr a-list))
(list (car a-1list))))

I

Hand-ootimized low-level details.

void reverse(int* arrav. int leneth) {
for(int i = 0. i = leneth-1: i<i: ++i. —=i) {
swap (&(arravliil). &(arravlil)):

}

No wav our generated code can oull that sort of trick!

Samuel Gélineau

Features onlv provided bv Scheme

apart from allowing weird characters in identifiers

continuations

(define labels (make-hash-table))

(define (label name)
(call/cc (lambda (cc)
(hash-table-put! labels name cc)
(cc ’label-return-value))))

(define (goto name)
(let ((cc (hash-table-get labels name)))
(cc ’label-return-value)))

Samuel Gélineau

Features onlv provided bv C

apart from seefaults

lone imo

imp_buf handlers[MAX DEPTH] :
int handler_deoth = O:

int trv(void (*bodv) (void)) {
int error_code = setimp(handlers[++handler deothl):
if (error_code == EXIT_SUCCESS)
bodv():
return error_code:

void throw(int error_code) {
if (error_code != EXIT_SUCCESS)
loneimp(handlerslhandler deoth--1. error_code):

Samuel Gélineau

a Scheme-specific optimization

reauired bv the language definition. but not alwavs strictlv obeved

void recursive_looo() {
printf("infinite bottles of beer on the wall\n"):
recursive_looo(): // exhausts the stack

tail-call optimization

(define (recursive-loon)
(displav "infinite bottles of beer on the wall\n")
(recursive-loop)) : does not exhaust the stack!

(recursive-loop)

Samuel Gélineau




a C-specific optimization
not standard. but implemented bv most combilers

int n:

int *a = &n: *a = 42:
int *b = malloc(sizeof(int)): *b = 43:
int *c = alloca(sizeof(int)): *c = 44:

printf("%d %d %d\n". *a. *b. *c):

*a and *c are freed at the end of the block. but not *b.

Garbage-collection: when all vou have is a hammer. . .

Samuel Gélineau

Target code for tail-recursion

a bit of interpreter overhead in the compiled code

trampoline

void* ares:
void* result:
tvoedef void* (xbounce) ():

void* recursive_looon() {

printf("infinite bottles of beer o epwall\n"):

return recursive_loop:

1
void trampoline() { ‘
bounce f = recursive_looo: ‘
for(::) l
f=1£0:
\

Samuel Gélineau

Amortizing the trampoline cost

“avoid making a large number of small trampoline bounces
bv occasionallv iumping off the Empire State Building”

buncee

imp_buf trampoline:

void recursive loon() {
int _:
printf("infinite bottles of beer on the wall\n"):
if (& > STACK LIMIT)
loneimp(trampoline. (int) recursive_loop):

else
recursive_loon():

int main() {

bounce f = (bounce) setimp(trampoline):
if (f == NULL) f = &recursive loob:
£O:

Samuel Gélineau

Garbage-collecting the stack

don't throw the live variables with the bathwater

a longer zeroth generation

if (& > STACK_LIMIT) {
ec():
alloca(-STACK _SIZE):
1

recursive_looo():

Move live variables to the heap. garbage-collect the rest.
Using a copv-collector. vouneg dead nodes are collected for free!

Samuel Gélineau




Continuation-bassing-stvle Bungeeeeee!
What if the entire program was written bv a tail-call fanatic? a one slide summarv

let all calls be tail calls

(define (_if cond cc then _cc else_cc cc)
(cond cc (lambda (bool) o
(if bool
(then_cc cc)
(else_cc cc)))))

never return. never.
@ use continuation-bassing-stvle to avoid returns.

alwavs allocate on the stack.

when we run out of stack space:
s flush the dead nodes (for free)
s coov the live nodes (amortized bv the mallocs we avoided)
s flush the call stack (dec %ESP %ESP STACK SIZE)
e call the continuation

(define (_+ randl_cc rand2 cc cc)
(randl _cc (lambda (n1)
(rand2_cc (lambda (n2)
(cc (+ nl n2)))))))

Samuel Gélineau Samuel Gélineau




