
Optimizing Scheme, part I
cons should not cons its arguments, part I

a Lazy Alloc is a Smart Alloc

Alex Gal

COMP 621

cancelled

Samuel Gélineau

stack-storage optimization for short-lived data
a one slide summary

most object are short-lived

allocate them on the stack (faster than malloc)

those that outlive the function call are moved to the heap

that’s quite a short zeroth generation!

Samuel Gélineau

Optimizing Scheme, part II
an inexistant return is a smart return

Samuel Gélineau

COMP 621

February 7, 2008

Samuel Gélineau

cons should not cons its arguments, part II
Cheney on the M.T.A.

Henry Baker

ACM Sigplan Notices 30(9), 1995

Sing along!

Charlie on the M.T.A.

oh, will he ever return?
no, he’ll never return,
and his fate is still unlearned,
he’s a man who’ll never return!

Samuel Gélineau

cons should not cons its arguments, part II
Cheney on the M.T.A.

Henry Baker

ACM Sigplan Notices 30(9), 1995Sing along!

Charlie on the M.T.A.

oh, will he ever return?
no, he’ll never return,
and his fate is still unlearned,
he’s a man who’ll never return!

Samuel Gélineau

Compiling Scheme to C
Scheme and C are so different

Scheme

High-level, recursive, lots of small garbage-collected conses.

(define (reverse a-list)
(append (reverse (cdr a-list))

(list (car a-list))))

C

Hand-optimized low-level details.

void reverse(int* array, int length) {
for(int i = 0, j = length-1; i<j; ++i, --j) {
swap(&(array[i]), &(array[j]));

}
}

No way our generated code can pull that sort of trick!
Samuel Gélineau

Features only provided by Scheme
apart from allowing weird characters in identifiers

continuations

(define labels (make-hash-table))

(define (label name)
(call/cc (lambda (cc)

(hash-table-put! labels name cc)
(cc ’label-return-value))))

(define (goto name)
(let ((cc (hash-table-get labels name)))
(cc ’label-return-value)))

Samuel Gélineau

Features only provided by C
apart from segfaults

longjmp

jmp buf handlers[MAX DEPTH];
int handler depth = 0;

int try(void (*body)(void)) {
int error code = setjmp(handlers[++handler depth]);
if (error code == EXIT SUCCESS)
body();

return error code;
}

void throw(int error code) {
if (error code != EXIT SUCCESS)
longjmp(handlers[handler depth--], error code);

}

Question to the audience

C-only?
Isn’t this equivalent to an escape continuation?

Almost, but the abstraction level is different.

Samuel Gélineau

Features only provided by C
apart from segfaults

longjmp

jmp buf handlers[MAX DEPTH];
int handler depth = 0;

int try(void (*body)(void)) {
int error code = setjmp(handlers[++handler depth]);
if (error code == EXIT SUCCESS)
body();

return error code;
}

void throw(int error code) {
if (error code != EXIT SUCCESS)
longjmp(handlers[handler depth--], error code);

}

Question to the audience

C-only?
Isn’t this equivalent to an escape continuation?

Almost, but the abstraction level is different.

Samuel Gélineau

Features only provided by C
apart from segfaults

longjmp

jmp buf handlers[MAX DEPTH];
int handler depth = 0;

int try(void (*body)(void)) {
int error code = setjmp(handlers[++handler depth]);
if (error code == EXIT SUCCESS)
body();

return error code;
}

void throw(int error code) {
if (error code != EXIT SUCCESS)
longjmp(handlers[handler depth--], error code);

}

Question to the audience

C-only?
Isn’t this equivalent to an escape continuation?

Almost, but the abstraction level is different.

Samuel Gélineau

a Scheme-specific optimization
required by the language definition, but not always strictly obeyed

C

void recursive loop() {
recursive loop(); // exhausts the stack
printf("infinite bottles of beer on the wall\n");

}

tail-call optimization

Scheme

(define (recursive-loop)
(recursive-loop) ; exhausts the stack
(display "infinite bottles of beer on the wall\n"))

(recursive-loop)

Question to the audience

Language definitions usually specify semantics,
not optimizations.

What pushed the language designers to do this?

Lack of iteration. If recursion is to take on the
role of for-loops, they better be efficient.

Samuel Gélineau

a Scheme-specific optimization
required by the language definition, but not always strictly obeyed

C

void recursive loop() {

printf("infinite bottles of beer on the wall\n");
recursive loop(); // still exhausts the stack

}

tail-call optimization

Scheme

(define (recursive-loop)

(display "infinite bottles of beer on the wall\n")
(recursive-loop)) ; does not exhaust the stack!

(recursive-loop)

Question to the audience

Language definitions usually specify semantics,
not optimizations.

What pushed the language designers to do this?

Lack of iteration. If recursion is to take on the
role of for-loops, they better be efficient.

Samuel Gélineau

a Scheme-specific optimization
required by the language definition, but not always strictly obeyed

C

void recursive loop() {

printf("infinite bottles of beer on the wall\n");
recursive loop(); // still exhausts the stack

}

tail-call optimization

Scheme

(define (recursive-loop)

(display "infinite bottles of beer on the wall\n")
(recursive-loop)) ; does not exhaust the stack!

(recursive-loop)

Question to the audience

Language definitions usually specify semantics,
not optimizations.

What pushed the language designers to do this?

Lack of iteration. If recursion is to take on the
role of for-loops, they better be efficient.

Samuel Gélineau

a Scheme-specific optimization
required by the language definition, but not always strictly obeyed

C

void recursive loop() {

printf("infinite bottles of beer on the wall\n");
recursive loop(); // still exhausts the stack

}

tail-call optimization

Scheme

(define (recursive-loop)

(display "infinite bottles of beer on the wall\n")
(recursive-loop)) ; does not exhaust the stack!

(recursive-loop)

Question to the audience

Language definitions usually specify semantics,
not optimizations.

What pushed the language designers to do this?

Lack of iteration. If recursion is to take on the
role of for-loops, they better be efficient.

Samuel Gélineau

a C-specific optimization
not standard, but implemented by most compilers

C

{
int n;
int *a = &n; *a = 42;
int *b = malloc(sizeof(int)); *b = 43;
int *c = alloca(sizeof(int)); *c = 44;
printf("%d %d %d\n", *a, *b, *c);

}

*a and *c are freed at the end of the block, but not *b.

Scheme

Garbage-collection: when all you have is a hammer. . .

Samuel Gélineau

Target code for tail-recursion
a bit of interpreter overhead in the compiled code

trampoline

void* args;
void* result;
typedef void* (*bounce)();

void* recursive loop() {
printf("infinite bottles of beer on the wall\n");
return recursive loop;

}

void trampoline() {
bounce f = recursive loop;
for(;;)
f = f();

}

Question to the audience

Can local variables be passed as arguments to a tail-call?

With pass-by-value only.
conses cannot be allocated on the stack.

Samuel Gélineau

Target code for tail-recursion
a bit of interpreter overhead in the compiled code

trampoline

void* args;
void* result;
typedef void* (*bounce)();

void* recursive loop() {
printf("infinite bottles of beer on the wall\n");
return recursive loop;

}

void trampoline() {
bounce f = recursive loop;
for(;;)
f = f();

}

Question to the audience

Can local variables be passed as arguments to a tail-call?

With pass-by-value only.
conses cannot be allocated on the stack.

Samuel Gélineau

Target code for tail-recursion
a bit of interpreter overhead in the compiled code

trampoline

void* args;
void* result;
typedef void* (*bounce)();

void* recursive loop() {
printf("infinite bottles of beer on the wall\n");
return recursive loop;

}

void trampoline() {
bounce f = recursive loop;
for(;;)
f = f();

}

Question to the audience

Can local variables be passed as arguments to a tail-call?

With pass-by-value only.
conses cannot be allocated on the stack.

Samuel Gélineau

Amortizing the trampoline cost
“avoid making a large number of small trampoline bounces
by occasionally jumping off the Empire State Building”

bungee

jmp buf trampoline;

void recursive loop() {
int ;
printf("infinite bottles of beer on the wall\n");
if (& > STACK LIMIT)
longjmp(trampoline, (int) recursive loop);

else
recursive loop();

}

int main() {
bounce f = (bounce) setjmp(trampoline);
if (f == NULL) f = &recursive loop;
f();

}

Question to the audience

Now, can local variables be passed by reference?

No, since the bungee jump will unpredictably free them.
Still no alloca optimization in sight.

Samuel Gélineau

Amortizing the trampoline cost
“avoid making a large number of small trampoline bounces
by occasionally jumping off the Empire State Building”

bungee

jmp buf trampoline;

void recursive loop() {
int ;
printf("infinite bottles of beer on the wall\n");
if (& > STACK LIMIT)
longjmp(trampoline, (int) recursive loop);

else
recursive loop();

}

int main() {
bounce f = (bounce) setjmp(trampoline);
if (f == NULL) f = &recursive loop;
f();

}

Question to the audience

Now, can local variables be passed by reference?

No, since the bungee jump will unpredictably free them.
Still no alloca optimization in sight.

Samuel Gélineau

Amortizing the trampoline cost
“avoid making a large number of small trampoline bounces
by occasionally jumping off the Empire State Building”

bungee

jmp buf trampoline;

void recursive loop() {
int ;
printf("infinite bottles of beer on the wall\n");
if (& > STACK LIMIT)
longjmp(trampoline, (int) recursive loop);

else
recursive loop();

}

int main() {
bounce f = (bounce) setjmp(trampoline);
if (f == NULL) f = &recursive loop;
f();

}

Question to the audience

Now, can local variables be passed by reference?

No, since the bungee jump will unpredictably free them.
Still no alloca optimization in sight.

Samuel Gélineau

Garbage-collecting the stack
don’t throw the live variables with the bathwater

a longer zeroth generation

if (& > STACK LIMIT) {
gc();
alloca(-STACK SIZE);

}
recursive loop();

Move live variables to the heap, garbage-collect the rest.
Using a copy-collector, young dead nodes are collected for free!

Question to the audience

Now, can local variables be passed by reference?

No, since not all calls are tail-calls!

Samuel Gélineau

Garbage-collecting the stack
don’t throw the live variables with the bathwater

a longer zeroth generation

if (& > STACK LIMIT) {
gc();
alloca(-STACK SIZE);

}
recursive loop();

Move live variables to the heap, garbage-collect the rest.
Using a copy-collector, young dead nodes are collected for free!

Question to the audience

Now, can local variables be passed by reference?

No, since not all calls are tail-calls!

Samuel Gélineau

Garbage-collecting the stack
don’t throw the live variables with the bathwater

a longer zeroth generation

if (& > STACK LIMIT) {
gc();
alloca(-STACK SIZE);

}
recursive loop();

Move live variables to the heap, garbage-collect the rest.
Using a copy-collector, young dead nodes are collected for free!

Question to the audience

Now, can local variables be passed by reference?

No, since not all calls are tail-calls!

Samuel Gélineau

Continuation-passing-style
What if the entire program was written by a tail-call fanatic?

let all calls be tail calls

(define (if cond cc then cc else cc cc)
(cond cc (lambda (bool)

(if bool
(then cc cc)
(else cc cc)))))

(define (+ rand1 cc rand2 cc cc)
(rand1 cc (lambda (n1)

(rand2 cc (lambda (n2)
(cc (+ n1 n2)))))))

Samuel Gélineau

Bungeeeeee!
a one slide summary

never return. never.
use continuation-passing-style to avoid returns.
always allocate on the stack.
when we run out of stack space:

flush the dead nodes (for free)
copy the live nodes (amortized by the mallocs we avoided)
flush the call stack (dec %ESP %ESP STACK SIZE)
call the continuation

Question to the audience

What is the difference between part I’s optimization
and part II’s?

Part I’s allowed baby nodes to die on the stack,
but longer-lived nodes had to be evicted to the heap.

Part II’s continuation-passing-style allows teen nodes
to die on the stack too. Hurray!

Samuel Gélineau

Bungeeeeee!
a one slide summary

never return. never.
use continuation-passing-style to avoid returns.
always allocate on the stack.
when we run out of stack space:

flush the dead nodes (for free)
copy the live nodes (amortized by the mallocs we avoided)
flush the call stack (dec %ESP %ESP STACK SIZE)
call the continuation

Question to the audience

What is the difference between part I’s optimization
and part II’s?

Part I’s allowed baby nodes to die on the stack,
but longer-lived nodes had to be evicted to the heap.

Part II’s continuation-passing-style allows teen nodes
to die on the stack too. Hurray!

Samuel Gélineau

Bungeeeeee!
a one slide summary

never return. never.
use continuation-passing-style to avoid returns.
always allocate on the stack.
when we run out of stack space:

flush the dead nodes (for free)
copy the live nodes (amortized by the mallocs we avoided)
flush the call stack (dec %ESP %ESP STACK SIZE)
call the continuation

Question to the audience

What is the difference between part I’s optimization
and part II’s?

Part I’s allowed baby nodes to die on the stack,
but longer-lived nodes had to be evicted to the heap.

Part II’s continuation-passing-style allows teen nodes
to die on the stack too. Hurray!

Samuel Gélineau

