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Introduction – Why?

• The traditional data flow model is inadequate 
for parallelization. For instance, it does not 
distinguish between different executions of 
the same statement in a loop.

• Array dependence analysis enables 
optimization for parallelism in programs 
involving arrays.

Affine functions

• A function of one or more variables, i1, i2, …, in
is affine, if it can be expressed as a sum of a 
constant, plus constant multiples of the 
variables. i.e. 

n

f = c0 + ∑ cixi
i = 1

• Array subscript expressions are usually affine 
functions involving loop induction variables.

Affine functions(2)

• Sometimes, affine functions are called linear 
functions. Examples:

– a[ i ] affine

– a[ i+j -1 ] affine

– a[ i*j ]  non-linear, not affine

– a[ 2*i+1, i*j ] linear, non-linear; not affine

– a[ b[i] + 1 ] ?

• Non linear (indexed subscript), not affine

Iteration Space(1)

• Iteration space is the set of iterations, whose 
ID’s are given by the values held by the loop 
index variables.

for (i = 2; i <= 100;  i= i+3)

Z[i] = 0;

The iteration space for the loop is the set 

{2, 5, 8, 11, … , 98} – the set contains the value 
of the loop index i at each iteration of the 
loop.
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Iteration Space(2)

• The iteration space can be normalized. For 
example, the loop in the previous slide can be 
written as

for (in = 0; in <= 32; in ++)

Z[2 + 3* in] = 0;

In general, in = (i – lowerBound) / istep

Iteration Space(3)

• How about nested loops?
for (i = 3; i <= 7;  i++)

for (j = 6; j >= 2; j = j – 2 )
Z[i, j] = Z[i, j+2] + 1

The iteration space is given by the set of vectors:
{[3,6], [3,4], [3,2], [4,6], [4,4], [4,2], [5,6], [5,4], 

[5,2], [6,6], [6,4], [6,2], [7,6], [7,4], [7,2]}

Q1: Rewrite the loop using normalized iteration 
vectors?

Dependence types

• We consider three kinds of dependence.
– Flow dependence (true dependence)

• A variable assigned in one statement is used 
subsequently in another statement.

– Anti-dependence
• A variable is used in one statement and reassigned in a 

subsequently executed statement.

– Output dependence
• A variable is assigned in one statement and 

subsequently reassigned in another statement.

Dependence Graph

• Graph can be drawn to show data 
dependence between statements within a 
loop.

S1: for (i = 2; i<= 5; ++i){

S2: X[i] = Y[i] + Z[i]

S3:    A[i] = X[i-1] + 1

}

i=2 i=3 i=4 i=5

S2:   X[2]     X[3]       X[4]     X[5]

S3:   X[1]     X[2]      X[3]     X[4]           

1 1 1

Iteration space dependence Graph

for (i = 3; i <= 7;  i++)

for (j = 6; j >= 2; j = j – 2 )

Z[i, j] = Z[i, j+2] + 1

• Iteration space 
dependence 
graph 
(normalized)

Data Space

• Array declaration specifies the data space.

• float Z[50];

declares an array whose elements are indexed by 0, 
1 , .. 49.

• Note that iteration space is different from data 
space
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Matrix formulation (Iteration space)

• We can represent iterations in a d-deep loop 
mathematically as

{ i in Zd | Bi + b ≥ 0}  

Where Z = set of integers; B is a d x d integer matrix; b is 
an integer vector of length d, and 0 is a vector of d 0’s

for ( i = 0; i <= 5; i++)  i ≥ 0, i ≤ 5;

for ( j = i; j <= 7; j++)    j ≥ i, j ≤ 7;  

Z[j, i] = 0; // express this in the form

// ci.i + cj.j + c ≥ 0

Matrix formulation(2)

• i ≥ 0                   1.i + 0.j + 0 ≥ 0
• i ≤ 5                  -1.i + 0.j + 5 ≥ 0
• j ≥ i                   -1.i + 1.j + 0 ≥ 0
• j ≤ 7                   0.i - 1.j + 7 ≥ 0
Thus, 

1       0                       0              0
-1       0        i              5              0
-1       1        j     +      0      ≥      0
0       -1                      7              0

Affine Array Access

• Affine functions provide a mapping from the 
iteration space to data space; they make it 
easier to identify iterations that map to the 
same data.

• An array access is affine if:

– the bounds of the loop and the index of each 
dimension of the array are affine expressions of 
loop variables and symbolic constants.

• Affine access can also be represented as 
matrix-vector calculation.

Matrix formulation(Array Access)

• Like iteration space, array access can be 
represented as Fi + f; F and f represent the 
functions of the loop-index variables.

• Formally, an array access, A= <F, f, B, b>; 
where i = index variable vector; A maps i
within the bounds

Bi + b ≥ 0

to the array element location

Fi + f

Matrix formulation (Array Access-2)

Access Affine Expression

X[i, j] 1    0     i              0
0    1     j              0

X[6 – j*2] i
0    2     j              6

X[1,5] 0    0     i              1
0    0     j              5

X[0, i-5, 2*i + j] 0    0      i              0
1    0      j              -5
2    1                      0

Array Dependence Analysis(1)

• Consider two static accesses A in a d-deep 
loop nest and A’ in a d’-deep loop nest 
respectively defined as 

A= <F, f, B, b> and A’ = <F’, f’, B’, b’>

A and A’ are data dependent if

– Bi ≥ 0 ; B’i’ ≥  0 and 

– Fi + f  = F’i’ + f’  

– (and i ≠ i’ for dependencies between instances of 
the same static access)
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Array Dependence Analysis(2)

for (i = 1; i < 10; i++) {

X[i] = X[i-1]

}

To find all the data dependences, we check if

1. X[i-1]  and X[i] refer to the same location;

2. different instances of X[i] refer to the same 
location.

For 1, we solve for i and i’ in

1 ≤ i ≤ 10, 1 ≤ i’ ≤ 10 and i – 1 = i’

Array Dependence Analysis(3)

For 2, we solve for i and i’ in

1 ≤ i ≤ 10, 1 ≤ i’ ≤ 10, i = i’ and i ≠ i’ (between 
different dynamic accesses)

There is a dependence since there exist integer 
solutions to 1. e.g. (i=2, i’=1), (i=3,i’=2). 9 solutions 
exist.

There is no dependences among different instances 
of X[i] because 2 has no solutions!

Array Dependence Analysis(4)

• Array data dependence basically requires 
finding integer solutions to a system( often 
refers to as dependence system) consisting of 
equalities and inequalities.

• Equalities are derived from array accesses.

• Inequalities from the loop bounds.

• It is an integer linear programming problem.

• ILP is an NP-Complete problem.

• Several Heuristics have been developed.

Question 2

• Q2: Rewrite this loop using normalized 
iteration space?

for (i = 2; i <= 50;  i= i+5)

Z[i] = 0;

Solution Q2

• The iteration space for the loop is the set 

{ 2, 7, 12, … , 47} – the set contains the value of 
the loop index i at different iteration of the 
loop. The normalized version of the loop is

for (in = 0; in <= 9;  in++)

Z[5*in + 2] = 0;

Question 3

For the following loop

for (i = 1;  i <= 6;  i= i++)

X[i] = X[6-i];

indicate all the 

1. Flow dependences (True dependences)

2. Anti-dependences

3. Output dependences
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Solution Q3

• Flow dependence:

– { (X[1], 1  5), (X[2], 2  4) }

• Anti-dependence:

– { (X[5], 1  5), (X[4], 2  4), (X[3], 3  3) }

• Output-dependence:

– {}

i=1 i=2 i=3 i=4 i=5 i=6

X[1] = X[5] X[2] = X[4] X[3] = X[3] X[4] = X[2] X[5] = X[1] X[6] = X[0]
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