
COMP 621 Special Topics 3/6/2009

1

Array Dependence Analysis

COMP 621 Special Topics
By

Nurudeen Lameed
nlamee@cs.mcgill.ca

Outline

• Introduction
• Basic concepts

– Affine functions
– Iteration Space
– Data Space
– Affine Array-Index functions
– Matrix formulation

• Array Data-Dependence Analysis
• Questions?

Introduction – Why?

• The traditional data flow model is inadequate
for parallelization. For instance, it does not
distinguish between different executions of
the same statement in a loop.

• Array dependence analysis enables
optimization for parallelism in programs
involving arrays.

Affine functions

• A function of one or more variables, i1, i2, …, in
is affine, if it can be expressed as a sum of a
constant, plus constant multiples of the
variables. i.e.

n

f = c0 + ∑ cixi
i = 1

• Array subscript expressions are usually affine
functions involving loop induction variables.

Affine functions(2)

• Sometimes, affine functions are called linear
functions. Examples:

– a[i] affine

– a[i+j -1] affine

– a[i*j] non-linear, not affine

– a[2*i+1, i*j] linear, non-linear; not affine

– a[b[i] + 1] ?

• Non linear (indexed subscript), not affine

Iteration Space(1)

• Iteration space is the set of iterations, whose
ID’s are given by the values held by the loop
index variables.

for (i = 2; i <= 100; i= i+3)

Z[i] = 0;

The iteration space for the loop is the set

{2, 5, 8, 11, … , 98} – the set contains the value
of the loop index i at each iteration of the
loop.

COMP 621 Special Topics 3/6/2009

2

Iteration Space(2)

• The iteration space can be normalized. For
example, the loop in the previous slide can be
written as

for (in = 0; in <= 32; in ++)

Z[2 + 3* in] = 0;

In general, in = (i – lowerBound) / istep

Iteration Space(3)

• How about nested loops?
for (i = 3; i <= 7; i++)

for (j = 6; j >= 2; j = j – 2)
Z[i, j] = Z[i, j+2] + 1

The iteration space is given by the set of vectors:
{[3,6], [3,4], [3,2], [4,6], [4,4], [4,2], [5,6], [5,4],

[5,2], [6,6], [6,4], [6,2], [7,6], [7,4], [7,2]}

Q1: Rewrite the loop using normalized iteration
vectors?

Dependence types

• We consider three kinds of dependence.
– Flow dependence (true dependence)

• A variable assigned in one statement is used
subsequently in another statement.

– Anti-dependence
• A variable is used in one statement and reassigned in a

subsequently executed statement.

– Output dependence
• A variable is assigned in one statement and

subsequently reassigned in another statement.

Dependence Graph

• Graph can be drawn to show data
dependence between statements within a
loop.

S1: for (i = 2; i<= 5; ++i){

S2: X[i] = Y[i] + Z[i]

S3: A[i] = X[i-1] + 1

}

i=2 i=3 i=4 i=5

S2: X[2] X[3] X[4] X[5]

S3: X[1] X[2] X[3] X[4]

1 1 1

Iteration space dependence Graph

for (i = 3; i <= 7; i++)

for (j = 6; j >= 2; j = j – 2)

Z[i, j] = Z[i, j+2] + 1

• Iteration space
dependence
graph
(normalized)

Data Space

• Array declaration specifies the data space.

• float Z[50];

declares an array whose elements are indexed by 0,
1 , .. 49.

• Note that iteration space is different from data
space

COMP 621 Special Topics 3/6/2009

3

Matrix formulation (Iteration space)

• We can represent iterations in a d-deep loop
mathematically as

{ i in Zd | Bi + b ≥ 0}

Where Z = set of integers; B is a d x d integer matrix; b is
an integer vector of length d, and 0 is a vector of d 0’s

for (i = 0; i <= 5; i++)  i ≥ 0, i ≤ 5;

for (j = i; j <= 7; j++)  j ≥ i, j ≤ 7;

Z[j, i] = 0; // express this in the form

// ci.i + cj.j + c ≥ 0

Matrix formulation(2)

• i ≥ 0 1.i + 0.j + 0 ≥ 0
• i ≤ 5 -1.i + 0.j + 5 ≥ 0
• j ≥ i -1.i + 1.j + 0 ≥ 0
• j ≤ 7 0.i - 1.j + 7 ≥ 0
Thus,

1 0 0 0
-1 0 i 5 0
-1 1 j + 0 ≥ 0
0 -1 7 0

Affine Array Access

• Affine functions provide a mapping from the
iteration space to data space; they make it
easier to identify iterations that map to the
same data.

• An array access is affine if:

– the bounds of the loop and the index of each
dimension of the array are affine expressions of
loop variables and symbolic constants.

• Affine access can also be represented as
matrix-vector calculation.

Matrix formulation(Array Access)

• Like iteration space, array access can be
represented as Fi + f; F and f represent the
functions of the loop-index variables.

• Formally, an array access, A= <F, f, B, b>;
where i = index variable vector; A maps i
within the bounds

Bi + b ≥ 0

to the array element location

Fi + f

Matrix formulation (Array Access-2)

Access Affine Expression

X[i, j] 1 0 i 0
0 1 j 0

X[6 – j*2] i
0 2 j 6

X[1,5] 0 0 i 1
0 0 j 5

X[0, i-5, 2*i + j] 0 0 i 0
1 0 j -5
2 1 0

Array Dependence Analysis(1)

• Consider two static accesses A in a d-deep
loop nest and A’ in a d’-deep loop nest
respectively defined as

A= <F, f, B, b> and A’ = <F’, f’, B’, b’>

A and A’ are data dependent if

– Bi ≥ 0 ; B’i’ ≥ 0 and

– Fi + f = F’i’ + f’

– (and i ≠ i’ for dependencies between instances of
the same static access)

COMP 621 Special Topics 3/6/2009

4

Array Dependence Analysis(2)

for (i = 1; i < 10; i++) {

X[i] = X[i-1]

}

To find all the data dependences, we check if

1. X[i-1] and X[i] refer to the same location;

2. different instances of X[i] refer to the same
location.

For 1, we solve for i and i’ in

1 ≤ i ≤ 10, 1 ≤ i’ ≤ 10 and i – 1 = i’

Array Dependence Analysis(3)

For 2, we solve for i and i’ in

1 ≤ i ≤ 10, 1 ≤ i’ ≤ 10, i = i’ and i ≠ i’ (between
different dynamic accesses)

There is a dependence since there exist integer
solutions to 1. e.g. (i=2, i’=1), (i=3,i’=2). 9 solutions
exist.

There is no dependences among different instances
of X[i] because 2 has no solutions!

Array Dependence Analysis(4)

• Array data dependence basically requires
finding integer solutions to a system(often
refers to as dependence system) consisting of
equalities and inequalities.

• Equalities are derived from array accesses.

• Inequalities from the loop bounds.

• It is an integer linear programming problem.

• ILP is an NP-Complete problem.

• Several Heuristics have been developed.

Question 2

• Q2: Rewrite this loop using normalized
iteration space?

for (i = 2; i <= 50; i= i+5)

Z[i] = 0;

Solution Q2

• The iteration space for the loop is the set

{ 2, 7, 12, … , 47} – the set contains the value of
the loop index i at different iteration of the
loop. The normalized version of the loop is

for (in = 0; in <= 9; in++)

Z[5*in + 2] = 0;

Question 3

For the following loop

for (i = 1; i <= 6; i= i++)

X[i] = X[6-i];

indicate all the

1. Flow dependences (True dependences)

2. Anti-dependences

3. Output dependences

COMP 621 Special Topics 3/6/2009

5

Solution Q3

• Flow dependence:

– { (X[1], 1  5), (X[2], 2  4) }

• Anti-dependence:

– { (X[5], 1  5), (X[4], 2  4), (X[3], 3  3) }

• Output-dependence:

– {}

i=1 i=2 i=3 i=4 i=5 i=6

X[1] = X[5] X[2] = X[4] X[3] = X[3] X[4] = X[2] X[5] = X[1] X[6] = X[0]

References

• Alfred V. Aho, Monica S. Lam, Ravi Sethi and
Jeffrey D. Ullman, 2007. “Compilers:
Principles, Techniques, and Tools”. (2nd
Edition). Addison-Wesley, CA.

• Michael Wolfe, 1989. “Optimizing Super-
compilers for Supercomputers”.MIT Press.

• Michael Wolfe, 1996. “High Performance
Compilers for Parallel Computing“. Addison-
Wesley, CA.

