COMP 621 Special Topics

Array Dependence Analysis

COMP 621 Special Topics
By
Nurudeen Lameed
nlamee@cs.mcgill.ca

Affine functions

is affine, if it can be expressed as a sum of a
constant, plus constant multiples of the
variables. i.e.

n

f=co+3cx

i=1
Array subscript expressions are usually affine
functions involving loop induction variables.

A function of one or more variables, iy, i, i,

Outline

Introduction

Basic concepts

— Affine functions

— Iteration Space

— Data Space

— Affine Array-Index functions
— Matrix formulation

Array Data-Dependence Analysis
Questions?

Affine functions(2)

Sometimes, affine functions are called linear
functions. Examples:

—ali] affine

—ali+j-1] affine

—ali*j] non-linear, not affine

—a[2*i+1, i*j] linear, non-linear; not affine

—a[blil+1]?
* Non linear (indexed subscript), not affine

Introduction — Why?

* The traditional data flow model is inadequate
for parallelization. For instance, it does not
distinguish between different executions of
the same statement in a loop.

* Array dependence analysis enables
optimization for parallelism in programs
involving arrays.

Iteration Space(1)

* Iteration space is the set of iterations, whose
ID’s are given by the values held by the loop
index variables.

for (i = 2; i <= 100; i= i+3)
Z[i] = 0;
The iteration space for the loop is the set

{2,5, 8, 11, ..., 98} — the set contains the value
of the loop index i at each iteration of the
loop.

COMP 621 Special Topics

Iteration Space(2)
* The iteration space can be normalized. For

example, the loop in the previous slide can be
written as

for (i"=0; i"<=32; i"++)
Z[2+3*i" =0;

In general, i" = (i — lowerBound) / i,

Dependence Graph

¢ Graph can be drawn to show data
dependence between statements within a

loop.
Sy for (i = 2; i<=5; ++i){ g
S,: XIi] = Y[i] + Z[i] L
Sy Ali] = X[i-1] + 1

’ } 9/

i=2_ 5 i=3 L i=4 1 i=5
2 X[2] X3 X[4]_X[5]
S; X[X[2] X[3] X[4]

w

Iteration Space(3)

* How about nested loops?
for(i=3;i<=7; i++)
for (j=6;j>=2;j=j-2)
Z[i,jl =12, j+2] + 1

The iteration space is given by the set of vectors:
{[3,6], [3,41, [3,2], [4,6], [4,4], [4,2], [5,6], [}5,4],
[5,2], [6,6], [6,4], [6,2], [7,6], [7,4], [7,2]

Q1: Rewrite the loop using normalized iteration
vectors?

Iteration space dependence Graph
* lteration space

for(i=3;i<=7; i++) depehndence
for(i=6;j>=2;j=j=2) (g;?)fmalized)
Z[i,j1 =2[i, j+2] + 1

T —

S —
]

-

e

3/6/2009

Dependence types

We consider three kinds of dependence.
— Flow dependence (true dependence)

« Avariable assigned in one statement is used
subsequently in another statement.

— Anti-dependence

* Avariable is used in one statement and reassigned in a
subsequently executed statement.

— Output dependence

* Avariable is assigned in one statement and
subsequently reassigned in another statement.

Data Space

* Array declaration specifies the data space.

« float Z[50];

declares an array whose elements are indexed by 0,
1,..49.

* Note that iteration space is different from data

space

COMP 621 Special Topics

Matrix formulation (Iteration space)

* We can represent iterations in a d-deep loop
mathematically as
{iinz9| Bi+b>0}

Where Z = set of integers; B is a d x d integer matrix; b is

an integer vector of length d, and 0 is a vector of d 0’s

for(i=0;i<=5;i++) = i20,i<5;
for(j=i;j<=7;j++) = j2i,j<7;
Z[j,i1=0; // express this in the form
//ciitcj+c20

Matrix formulation(Array Access)

« Like iteration space, array access can be
represented as Fi + f; Fand f represent the
functions of the loop-index variables.

* Formally, an array access, A= <F, f, B, b>;
where i = index variable vector; A maps i
within the bounds

Bi+b>0
to the array element location
Fi+f

3/6/2009

Matrix formulation(2) Affine Array Access
. | 20 <4=m) 1.i. + 0.j' +020 * Affine functions provide a mapping from the
*i<5 4 -1i+0j+520 . ; d th ke
‘i 1i+1j+020 |ter§t|on ?pacg to. ata .space, they make it
‘<7 0.i-1j+720 easier to identify iterations that map to the
Thus same data.
1 0 0 0 * An array access is affine if:
@ 0 ['J 5 0 — the bounds of the loop and the index of each
A3 ||of | C dimension of the array are affine expressions of
0 -1 7 0 : .
loop variables and symbolic constants.
« Affine access can also be represented as
matrix-vector calculation.
Matrix formulation (Array Access-2) Array Dependence Analysis(1)
[amsss ——— anetpresion |
X, [1 0} H - H * Consider two static accesses A in a d-deep
] 0 1 ‘J £ loop nest and A’ in a d’-deep loop nest
lo 2 H * (o] respectively defined as
X(1,5] [o 0} m & H A=<F,f B,b>and A’ =<F, f, B’, b’>
0 0l 5
X(0, -5, 2% +]] 0 0 [.} 0 A and A’ are data dependent if
{;ﬂ d +H —Bi20;B¥' > 0and
—Fi+f =Fi +f

— (andi # i’ for dependencies between instances of
the same static access)

COMP 621 Special Topics

Array Dependence Analysis(2)

for (i=1;i<10; i++) {
X[i] = X[i-1]
}
To find all the data dependences, we check if

1. X[i-1] and X[i] refer to the same location;

2. different instances of X[i] refer to the same
location.

For 1, we solve foriand i’ in
1<i<10,1<i"<10andi-1=7¥

Question 2

* Q2: Rewrite this loop using normalized
iteration space?

for (i = 2; i <= 50; i=i+5)
Z[i]=0;

Array Dependence Analysis(3)

For 2, we solve foriand i’ in
1<i<10,1<i"<10,i=i"andizi (between
different dynamic accesses)

There is a dependence since there exist integer
solutions to 1. e.g. (i=2, i’=1), (i=3,i’=2). 9 solutions
exist.

There is no dependences among different instances
of X[i] because 2 has no solutions!

Solution Q2

* The iteration space for the loop is the set

{2,7,12, ..., 47} — the set contains the value of
the loop index i at different iteration of the
loop. The normalized version of the loop is

for (in=0;i"<=9; i"++)
Z[5*i" + 2] = 0;

3/6/2009

Array Dependence Analysis(4)

Array data dependence basically requires
finding integer solutions to a system(often
refers to as dependence system) consisting of
equalities and inequalities.

Equalities are derived from array accesses.
Inequalities from the loop bounds.

It is an integer linear programming problem.
ILP is an NP-Complete problem.

Several Heuristics have been developed.

Question 3

For the following loop

for(i=1; i<=6; i=i++)
X[i] = X[6-i];

indicate all the

1. Flow dependences (True dependences)

2. Anti-dependences

3. Output dependences

COMP 621 Special Topics

Solution Q3

i=4

References

X[1]=X[5] X[2]=X[4] X[31=X[3] X[4]=X[2] X[5]=X[1] X[6]=X[O]

e Alfred V. Aho, Monica S. Lam, Ravi Sethi and

Flow dependence: Jeffrey D. Ullman, 2007. “Compilers:

—{(X[1], 1> 5), (X[2],2 > 4) } Principles, Techniques, and Tools”. (2nd

A dpemilnee: Edition). Addison-Wesley, CA.

—{(X[5], 1> 5), (X[4], 2 > 4), (X[3],3 > 3) } * Michael Wolfe, 1989. “Optimizing Super-

e A compilers for Supercomputers”.MIT Press.

-0 * Michael Wolfe, 1996. “High Performance
Compilers for Parallel Computing”. Addison-
Wesley, CA.

3/6/2009

