Sparse Predicated Global Value Numbering

A Sparse Algorithm for 1. Introduction
Predicated Global Value Numbering

Brute Force Algorithm

Sparse Value Numbering

oW N

Karthik Gargi Additional Analyses and Balanced Value Numbering

o

Hewlett-Packard India Software Operation Putting it all Together

6. Measurements

PLDI'02 _
Monday 17 June 2002 7. Conclusions
A (O] PLDI'02 17 June 2002 2/34
SSA Optimization Framework Global Value Numbering
Routine IR
[Translate IR into SSA form]| e A value is a constant or an SSA variable

e Values can be partitioned into congruence classes

| Perform global value numbering|

[Transform IR based on results of GVN]

Congruent values are identical for any possible
execution of a routine

| Translate IR out of SSA form] e Every congruence class has a representative value

Optimized IR called a leader

(D} PLDI'02 17 June 2002 3/34 (D} PLDI'02 17 June 2002 4/34

nnnnnnnnnnnn

Global Value Numbering (continued)

e Analysis phase - does not modify IR

e Inputs
— Routine in SSA form
e Outputs

— Congruence classes of routine

Values in every congruence class

Leader of every congruence class

— Congruence class of every value

(D} PLDI'02 17 June 2002 5/34

nnnnnn

Global Value Numbering (continued)

e GVN can be unified with:

— Constant folding
— Algebraic simplification

— Unreachable code elimination

e The results of GVN are used to perform:

Unreachable code elimination

Constant propagation

— Copy propagation

Redundancy elimination

(D} PLDI'02 17 June 2002 6/34

nnnnnn

Brute Force Algorithm
1. Make all SSA variables have the value T

2. Clear hash table to map expressions to values
3. For all instructions V «— X op Y in RPO:
Let E be the expression: Value-of(X) op Value-of(Y)

Perform a hash table lookup on E:
e If lookup is successful, make its result the value of V

e Otherwise set the value of V to V itself,
and update hash table to map E onto V

4. Repeat steps 2. and 3. until there are
no more changes in values

(D} PLDI'02 17 June 2002 7/34

nnnnnn

Brute Force Algorithm (example, pass 1)

Var Value Var Value +
I <1

I] T II II Jp—1
AERREAY ,,
12 T 12 I] ; TS
- - Ji 2 1,13
2 | ! 2 I Jo — ¢(J1, J3)
LT I | I I3—Ih+1
‘{3’ T ‘]3 [3 J3— Jo+1

Expr Value +

I — [1

(D} PLDI'02 17 June 2002 8/34

nnnnnn

Brute Force Algorithm (example, passes 2 and 3)

Var Value Var Value
Jo Jo !
Lo LD i
.]2 I] ‘]2 [2 I2 <—(;5((I]_,I3))
Jo — o(J1, J3
515 515 Is— I +1
VRS VRS Jz— Jo+1
Expr Value +
I — []
phill 1) > Iy
]2+ /] —» 13
(D} PLDI'02 17 June 2002 9/34

nnnnnn

Brute Force Algorithm (continued)

e This is Taylor Simpson's hash based RPO algorithm (1996)

e Achieves the same result as partitioning algorithm
of Alpern, Wegman and Zadeck (1988)

e Makes the optimistic assumption - all values are initially
congruent, until proven otherwise

e Only an optimistic algorithm can discover the
congruence of I3 and J3 in the previous example

e Takes O(C) passes where C is the loop connectedness
of the SSA def-use graph

(D} PLDI'02 17 June 2002 10/34

nnnnnn

Sparse Value Numbering

1. Initialize as in Brute Force
2. Touch instructions of start block
3. For all instructions I in RPO:

If I is touched:
e Wipe it
e Process it as in Brute Force

e If its value has changed, touch its consumers
(found from SSA def-use chains)

4. Repeat step 3. until there are no more touched instructions

(D} PLDI'02 17 June 2002 11/34

nnnnnn

Sparse Value Numbering (continued)

e After every pass, values are the
same as for Brute Force

e First pass processes 6 Il —1
instructions, and leaves the Jl — 1
definitions of I> and J, touched

e Second pass processes 4 Y

instructions, and leaves the
definitions of I, and J, touched Iy ¢)(Ilv I3)

Jo — ¢(J1, J3)

e Third pass processes 2

instructions, and confirms I3+~ I +1

fixed point J3 — Jo+1
e ~1.5X faster than Brute Force

for this example

(D} PLDI'02 17 June 2002 12/34

nnnnnn

Sparse Value Numbering (continued)

e Faster than Brute Force because it does not
process all instructions in every pass

e Has to examine every instruction to check if it is touched,
but this is much faster than processing it

e Does not clear hash table between passes

e When the leader of a congruence class
is moved to a new congruence class:

— Touch the definitions of the remaining members
of the old class

— Choose one of them to be the new leader of the old class

(D} PLDI'02 17 June 2002 13/34

nnnnnn

Sparse Value Numbering (continued)
e For acyclic code, takes one pass

e For cyclic code, when the optimistic assumption is confirmed,
takes almost one pass

e For cyclic code when the optimistic assumption is rejected,
takes anywhere up to one less pass than Brute Force

e Measurements from SPEC CINT2000 C benchmarks:

— Value numbering (unified with additional analyses)
takes < 4% of total optimization time

— 1.98 passes per routine on average

— Speedup due to sparseness is 1.23—1.57

(D} PLDI'02 17 June 2002 14/34

nnnnnn

Algebraic Transformations

e Before looking up an expression in the hash table:
— Perform constant folding
— Perform algebraic simplification
— Perform global reassociation
— Apply distributive law

e If any value of a congruence class is defined to be a constant,
make that constant the leader of the congruence class

(D} PLDI'02 17 June 2002 15/34

nnnnnn

Algebraic Transformations (continued)

e First pass sets value of I

to1l
e Ignoring I3, value of I, is
also 1 I;] —1
e Constant folding evaluates
I3 to 1 v
e Second pass processes Io — ¢(I1,13)
definition of I I3 « bitwise-and(Io, 1) ‘
e The value of I remains 1
e Hence I3 has the value 1 +

e Almost one pass to reach
fixed point

(D} PLDI'02 17 June 2002 16/34

nnnnnn

Unreachable Code Elimination

e Assume start block is initially reachable

e Assume all other blocks and edges are initially unreachable

Wipe but do not process, touched but
unreachable instructions

e Examine jump instructions also:

— If an outedge cannot be followed, it remains unreachable

— Otherwise it becomes and remains reachable

e Once an edge becomes reachable, so do its target blocks

e Ignore operands of ¢-functions carried by unreachable edges.

(D} PLDI'02 17 June 2002 17/34

nnnnnn

Unreachable Code Elimination (continued)

Constant folding evaluates the

predicate I; # 0 to true I <1
if (I #0)
e SO edges Fq and E> remain E
unreachable trM\l
L | =2
e So I is ignored when evaluating >

the definition of I3

I3 — ¢(I1,12) |

Hence I3 has the value 1

(D] PLDI'02 17 June 2002

nnnnnn

18/34

Balanced Value Numbering

e Pessimistic in congruence of values - assumes all values
are non-congruent until proven otherwise

e Optimistic in reachability
e To perform balanced value numbering:

— Treat every cyclic ¢-function as a unique value
— Terminate after the first pass

e On SPEC CINT2000 C benchmarks:

— As fast as pessimistic value numbering
— Almost as strong as optimistic value numbering

— Runs 1.39-1.90 times faster than optimistic
value numbering

(D} PLDI'02 17 June 2002 19/34

nnnnnn

Value Inference

The use of I in block By is
dominated by edge E;

e The predicate J; # 0 has

Iy —J1 40
the value false at edge E;

if (J1 # 0)

e S0 Jj has the value O at edge trM b
FE4q and block B; Bl

e [1 is congruent to Jq

e SO I7 has the value O at edge
FE1 and block By

e Hence K7 has the value O

(D] PLDI'02 17 June 2002

nnnnnn

20/34

Value Inference (continued)
e Algorithm:
Before looking up an expression in the hash table:
For each operand X of the expression:
1. Start from the block B containing the expression
2. Go up the dominator tree looking for an edge E such that:

(a) E dominates B

(b) E is the true outedge from a jump instruction
with predicate Y = Z

(c) Y is congruent to X

3. If such an FE is found, then replace X by Z

e Only dominator tree based approach can be
completely unified with value numbering

(D} PLDI'02 17 June 2002 21/34

nnnnnn

Value Inference (continued)

e Two ways to determine dominance relationships:

— Complete algorithm - incrementally build
reachable dominator tree

— Practical algorithm - use dominator tree of routine

Cannot ignore unreachable code
Cannot perform inferences along back edges

e When the reachability or predicate of an edge B;— B, changes,
touch potentially affected instructions:

— Complete algorithm - touch all instructions
of blocks dominated by block By

— Practical algorithm - touch all instructions
downstream in RPO of block By

(D} PLDI'02 17 June 2002 22/34

nnnnnn

Value Inference (continued)

e Value inference can take O(E?) time in the worst case,
where E is the number of edges in the CFG

e Sufficient to perform value inference on operands
of = or # predicates of jump instructions

e Track the number of such values in every congruence class

e Perform value inference only on values
in classes with positive counts

e Results of value inference can be cached
across multiple uses in a block

e Measurements from SPEC CINT2000 C benchmarks:

Value inference visits 0.91 blocks per instruction on average

(D} PLDI'02 17 June 2002 23/34

nnnnnn

Predicate Inference

e Similar to value inference

e The predicate J; = 0 in
) . I —J; 40
block By is dominated by (] 0
e The predicate I; # 0 has true

the value false at edge E; Bq|if (J; =0)

e [1 is congruent to J;

e SO the predicate J; = 0 has
the value true in block Bq

(D} PLDI'02 17 June 2002 24/34

nnnnnn

P-Predication

e Problem: when are Ig and Dl‘ . ‘
I}, congruent? T

e Rewrite Iy as: if P; then Iy
else if P> then I, else if ... Eq E>

e P; is true when and only
when control reaches B;
along D1—---—FE1—B;1 D ‘ . ‘

e Similarly I}, is: if P then I 1
else if P, then I} else if ... S

e Iy is congruent to I{) if I;
is congruent to I and P;
is congruent to P]’-

By| Ip— ¢(I1,12,...) |

By Iy — ¢(I},15,...) |

(D} PLDI'02 17 June 2002 25/34

nnnnnn

d-Predication (continued)
e Predicate of block By defined as: PV Py V...

e Two ¢-functions are congruent if their arguments are
congruent and either their blocks are identical or the
predicates of their blocks are congruent

e To compute the predicate of block Bj:

— Find its immediate dominator D;
— Traverse all reachable paths from block D; to block By

— Combine predicates of jumps encountered during traversal
e Restrictions:

— Block By must postdominate block Dq
— Back edges can not be traversed

(D} PLDI'02 17 June 2002 26/34

nnnnnn

d-Predication (continued)

e To determine the predicate By if (Kl = O)
of block By, start from true
block By Bp[T; — 1] Ba[I] < 2|
e Traverse the paths
B1—B>— B4 and
I I, I
B1—B3—By By |f3(?{fb§&16)2)

e The predicate of block By
is: (K1 #0)V (K1 =0)

e The predicate of block By
is identical

try/\'\false
Bs|J1 — 1| Bg|J1 — 2]

e Hence J3 is congruent to I3 B7‘ J3 — ¢(J1, J2) ‘

(D} PLDI'02 17 June 2002 27/34

nnnnnn

d-Predication (continued)

e Compute predicates of touched blocks only

e Compute predicate of block before processing
instructions of block

e When the reachability or predicate of an edge B1— B>
changes, touch potentially affected blocks:

— Complete algorithm - touch all blocks
that postdominate block Bs

— Practical algorithm - touch all blocks
downstream in RPO of block By

e Measurements from SPEC CINT2000 C benchmarks:

&d-predication visits 0.16 blocks per instruction on average

(D} PLDI'02 17 June 2002 28/34

nnnnnn

Putting it all Together

e Unifies sparse value numbering with constant folding,
algebraic simplification, unreachable code elimination,
global reassociation, value inference, predicate inference,
and ¢-predication

e Worst case time complexity:
— Balanced value numbering - O(E2(E + 1))
— Optimistic value numbering:

Acyclic CFG - O(E2(E + 1))
Cyclic CFG - O(CE2(E + 1))

e Measurements from SPEC CINT2000 C benchmarks:

Unified algorithm takes < 4% of total optimization time

(D} PLDI'02 17 June 2002 29/34

nnnnnn

Measurements
Unified algorithm on SPEC CINT2000 C benchmarks:
e Value numbering (unified with additional analyses)
takes < 4% of total optimization time
e Runs 1.23—1.57 times faster when sparseness is enabled

e Runs 1.15-1.32 times faster when global reassociation, value
inference, predicate inference and ¢-predication are disabled

e Runs 1.39-1.90 times faster with balanced value numbering
e 1.98 passes per routine on average

e Blocks visited per instruction on average:

Value inference - 0.91
Predicate inference - 0.38
d-predication - 0.16
(D) PLDI'02 17 June 2002 30/34

nnnnnn

Measurements (continued)

Unified algorithm vs. Click's strongest algorithm (1995)
on SPEC CINT2000 C benchmarks:

100 — + Unreachable values x 0 x 6103
® 50— i+ Constant values 4+ 0 x 5868
.i:') R Congruence classes ¢ 0 x 5852
3 20— Total number of routines 6138
2 et
< 10 — T+
o i X+
B +
g 2 | X k4
S 1o ot Mot obx 0 x b b

0 20 40 60 80 100
Improvement

(D} PLDI'02 17 June 2002 31/34

nnnnnn

Measurements (continued)

Unified algorithm vs. Wegman and Zadeck's
sparse conditional constant propagation algorithm:

100 H + +Unreachable values x 0 x 6103
® 50 — Constant values 4+ 0 x 5853
S T Total number of routines 6138
3 207 x + +
e 10 + +
ey
; Sk X + + I
g 2 — X Xtk
S 1 XXd X RREHRK X R
| | | | | | |
1 2 5} 10 20 50 100
Improvement
(D) PLDI'02 17 June 2002 32/34

nnnnnn

Measurements (continued) Conclusions

e Sparse value numbering is practical and efficient

Unified algorithm: optimistic vs. balanced value numbering . .
Balanced value numbering is a good tradeoff between

12 compilation time and optimization strength

Unreachable values x 0 x 6136
3 10 — Constant values + 0 x 6128 e Sparse value numbering can be unified with
£ g — Congruence classes ¢ 0 x 6117 id £ additi | |
§ Total number of routines 6138 a wide range ot additional analyses
% 6 — e The unified algorithm offers modest improvements
5 4 over existing methods
~
£ 24+ +
g + O+ + X + + * Thank you to Laurie Hendren for helping
0 | | | | | | | | to prepare and presenting this slide set.
1 2 5 10 20 50 100 200
Improvement Questions or comments regarding this work may
please be sent to the author at kg@india.hp.com
(D) PLDI'02 17 June 2002 33/34 (D) PLDI'02 17 June 2002 34/34

Pavent e

Examples of Differences - Unreachable Values (Unified vs.

Click)
if (X '= 0)
e Benchmark: 176.gcc
. X i if (X '= 0)
e Routine: try combine (instruc-
tion combiner) 1
e Unreachable values: ese
— Click 95: 0
— Unified algorithm: 100 o
if (X < 64)
— Improvement: 100
e Source: Predicate inference
if (X >= 64)

A PLDI'02 17 June 2002 35/34

nnnnnn

