A Hybrid Synchronization Mechanism
for Parallel Sparse Triangular Solve

Prabhjot Sandhu, Clark Verbrugge, and Laurie Hendren

AW eI e o S
MG 1 1 1

Sable Research Group
McGill U iversity

w McGill

14 October 2021

Solving System of Linear Equations : An Example
Solve for y in the equation Ay =b

A y b

yi+ y2 + ys =1 b 4 1
Ay + 3y2 - y3= 6 » 4 3 - V2 = o
3Y1 T 5YZ T 3YS = 3 5 A3 V3 A

Solving System of Linear Equations : An Example
To Solve Ay =b, Decompose A =LU

A L U
T 1 1 T 0 O T 1 1
4 3 - = 4 1 O O -1 -5
3 5 3 3 -2 1 O 0O -10

Solving System of Linear Equations : An Example
To Solve Ay =b, Decompose A=LU and solve LUy =Db

L U y b

1T O O 1T 1 1 V1 1

4 1 O O -1 -5 Y2 = O

3 -2 1 O O -10 Y3 4
X

Solve for x in Lx =b, and then Solve for y in Uy =X,
where L is a lower triangular matrix, and
U is an upper triangular matrix.

Dense Triangular Solve : Inherent Sequential Execution

SolveforxinLx=Db

L X b
SO] In i
1 0 0 Xi 1 Vg
requires all the
4 1 0O X2 = values
3 -2 1 X3 4 ﬁ‘()m X() tO Xj-1
x1+ O+ 0O =1 X1 =1

Ax1+ X0 + O= 6 » Xo= 6-4(1)=2
3X1-2X2+ x3= 4 Xx3=4-3(1)+2(2)=5

Sparse Triangular Solve (SpTS)

Solve for x in the equation Lx=b

~N O O A~ WD

1 X0 bo
1 1 X1 b1
1 1 X, b Solving x; may not
1 1) X require all the values
® B — 3 from X, tO X,

1 1 1 Xy oy
1 1 1 1 X5 bs
1 1 X6 b6
1 1 X7 b7

Lower Triangular Sparse Matrix

~N O O A~ WD

Sparse Triangular Solve (SpTS) : Task Dependency Graph

Solve for x in the equation Lx=b

v v
1
1 1
1 1

1 1

1 1 1
1 1 1 1

1 1
1 1

Lower Triangular Sparse Matrix

Therefore, SpTS has the
potential to be computed
in parallel.

Parallel SpT'S : Existing
Synchronization Methods

Parallel SpTS: Level-set Method

Solve for x in the equation Lx=b

* Make sets of the matrix-rows which can be solved independently and simultaneously.
* Dependency graph represents the level-set formation.

Level-set formation:

* Uses barrier synchronization.

0 1

11

> 1 |1

3 1 1

4| 1 1
5101 1 1
6 1 1
!

1 1 OXOR O

Parallel SpTS: Level-set Method

Level-set formation:

Level O

Solve for x in the equation Lx=b o 1| |

11 1

Works well when : 2 i

* Balanced workload among the 3 1 1

workers at each level. 4 T 1 1 1

* A small number of levels 5 1 1 1 1
6 1 1
7 1 1

for each level

for each row 1 1nside the level 1in parallel
Solve x[1]
end for

// barrier synchronization

end for

Parallel SpTS : Synchronization-free Method

Solve for x in the equation Lx=b

* Eliminate the pre-processing step. e Effective for GPUs

* Uses atomic operations for busy-waiting.

for each row 1 1n parallel

—

~N~N OO o0 A WO N -~ O

for each dependent row j

while atomic read(flag[j]) '= 1

end Whi%? 1 1 1
Solve x[1] 1 1 1
d £

en or 1 1

Solve x[1]

atomic write(flag[i], 1)

end for

Limitations of the existing methods

Level-set method

 Large number of level-sets -> costly barrier synchronization.

* Small and varied number of components per level -> waste the assigned CPU
resources.

* Uneven distribution of non-zeros among the rows -> load imbalance.

Synchronization-free method

* Highly impractical for CPUs due to the heavy use of expensive atomic and busy-
waiting operations on the limited number of threads.

12

Our Objective

Improve the performance of parallel SpTS for WebAssembly on CPUs

How?
1. Avoid synchronization barriers !

2. Minimize the use of atomic operations as much as possible !

Why WebAssembly?

1. A new low-level target language for the web.

2. Building efficient web-based sparse matrix kernels for ML.

13

No synchronization barriers

But with level-set formation Level-set formation:

Keep the pre-processing step of level-set method. Level 0

Why? A systematic way to guarantee: the threads
at the same level can make progress
independently and simultaneously.

Spatial locality benefits from the level-set

formation. Level 2

Additionally, allow each thread to immediately

process the next level after the completion of its ° e 0 -evel 3

work at the current level.

14

start

local level > global level

Our Technique : Two
Synchronization Modes @SY walt @

local level == global level

®* no-busy-wait (default) : when the current working level of the thread (local _level) is equal to
the maximum working level achieved by all the threads (global _level).

®* busy-wait : when local level is greater than global_level, indicating that the thread is
presently working in the advanced levels.

® Each thread can dynamically switch between the two modes as many times as required. .

An example to contrast the parallel SpT'S workflow

A tuple (current_level, row, column) represents the values of these parameters for each thread.

o o0 A~ W N -~ O

7 1|

Level-set formation:

T1 T1

idle thread no-busy-wait busy-wait
Time
Level-set Method :

(0,0,0)1 (1,1,0) | (1,1,1) | (2, 3,1) | (2, 3, 3) (3,4,1) 1(3,4,3)[(3, 4, 4)

1,2,0)1 (1,2,2) |(2, 5, 0) | (2,51 12,52 (2,5 5)|(3,6,5)|(3, 6, 6) |

(3,7,3) (3,7, 7) |
Our Hybrid Method :

(0, O, 0) | 1,1,0) | (1,1,1) 1(2,3,1)1(2,3,3)| (3,4,1) (3,4,3)]|(3, 4, 4)|

(1, 2, O) | (1,2,2) (2,5, 0) | (2,5,1) (2,5 2) (2,5 5)|(3,6,5)|(3, 6, 6)

(3,7,3) (3,77)

16

busy-wait synchronization mode

Classify required-rows into 4 exhaustive categories : allows progress

* Previous-level rows
e Intra-thread rows

 Advanced-worker
inter-thread rows

* Inter-thread rows

Level-set formation:

Level O

[Start >< Previous level

[Computation]

idle thread

------------ T | (0, O, o)l (1,1,0) | (1,1,1) | (2,3,1)

(2, 3, 3)

Level 1

no-busy-wait

(3,4,1) (3,4, 3)

busy-wait

(3, 4, 4) |

(1, 2, O) | (1,2,2) | (2,5, 0) | (2,5, 1)

(2,5,2) |(2,5,5)

Level 2

Level 3 T3

(3,7,3) (3,77)

—-s - r e e - e Time

17

SpTS Performance Speedup

SpTS Performance Comparison

Our Hybrid Method vs Level-set Method : higher is better

Machine: Intel Core i7-3930K with 6 3.20GHz cores, 12MB last-level cache and 16 GB memory,
running Ubuntu Linux 18.04.5

Input: 1957 real-life sparse matrices from The SuiteSparse Matrix Collection.

Storage Format : CSR (Compressed Sparse Row)

Target Language : WebAssembly & JavaScript

Execution Environment : Chrome 92 headless browser .
Substantial amount of workload per thread

3.5 - 2 35 - E O - LU
10° B | : O --=- |2
-) - | |
3.0 " g 30 0 3
2.5 - 2 g2s- |
30 =
2.0- " £ 2.0
2 =)
e | | 10% § Tt 15-
SOre) 2 = a. wee,
1.0 - ‘CB)- e:\,"}ﬁ:‘:@\ . ; 101 & 1.0 +- -
Q- !
Ww I
0.9 1 T T 10° 0.57 e Aoy l. —rrrr—— T —
104 10° 104 10° 10° 107 108 10° 102 103 104 10° 10° 107 108 10°

CSR Working Set (bytes) CSR Working Set (bytes)

s s -
(- (- (-
(- RS wn

(-
o
N

Average number of rows per level

—_
oo

Below 1

Matrices where level-set method performs better than hybrid method

Level-set Hybrid
Matrix N nnz nlevels | N/nlevels | Performance | Performance |Speedup
(GFLOPS) | (GFLOPS)
t2dal_e | 4257 | 4257 1 4257 1.70 1.52 0.89x
bcspwrO8| 1624 | 3837 14 116 0.89 0.74 0.83x
NSinotshownin - 3dla | 20360 | 265113 | 633 32.2 1.32 1.22 0.92x
e
b exdata_1 | 6001 | 1137751 | 1501 | 3.99 1.47 1.37 0.93x

* Large number of rows per level -> substantial amount of workload for each thread.
* Nearly balanced workload among the threads at each level (NS) -> insignificant cost of barrier synchronization.

* Small number of rows per level with large number of non-zeros per row (NS) -> minimal parallelism but likely
reduced the cost of barrier synchronization. 19

Above 1

Matrices where hybrid method performs better than level-set method

Level-set Hybrid
Matrix N nnz nlevels | N/nlevels | Performance | Performance | Speedup
(GFLOPS) (GFLOPS)
lung?2 109460 | 273647 479 228.5 1.47 2.28 1.55x
~ |delaunay_n17| 131072 | 524248 910 144 1.36 1.82 1.34x
NS : not shown in
the table, e40r0100 | 17281 | 257727 | 512 337 1.49 2.06 1.38x
investigated
separately smt 25710 | 1887646 | 4646 5.5 1.27 172 1.35x

* Large number of levels -> increased the cost of barrier synchronization for level-set method.
* Small to moderate number of rows per level -> limited amount of workload for each thread.

* Uneven distribution of rows among the levels (NS) -> limits the amount of workload per thread and waste CPU
resources at the barriers.

* Hybrid method benefits by allowing the threads to move to further levels to perform some feasible computatio%c.)

Closetol

Matrices where hybrid method performs similar to level-set method

NS : not shown in

the table,
investigated
separately

Level-set Hybrid
Matrix N nnz nlevels | N/nlevels |Performance| Performance| Speedup
(GFLOPS) (GFLOPS)
t3dl e 20360| 20360 1 20360 1.87 1.83 0.98x
mbeacxc 496 30309 214 2.3 0.76 0.76 1.00x
coPapersCiteseer (434102| 16470822 | 8087 53.7 2.26 2.24 0.99x
kron-g500-logn18(262144110844830| 1820 144 1.21 119 0.98x

* Presence of diagonal matrices in both Below 1 and Close to 1 categories -> overhead of our method becomes
insignificant for the large matrices with small number of levels.

* Large number of levels with little imbalanced workload (NS) -> overhead cancels out the performance gain.

21

Summary

* We employ the level-set formation without barrier synchronization, and make
minimal use of expensive atomic operations by dynamically switching between the
two synchronization modes as required.

* We evaluate the performance of hybrid method over level-set method using our
WebAssembly implementations on around 2000 sparse matrices.

* Our evaluations show the potential of our method to support the adaptive
synchronization techniques in the future.

22

Future Directions

* Explore more sparse storage formats and apply optimization techniques like SIMD.

* Employ the upcoming synchronization constructs like floating-point atomics from the
rapidly evolving WebAssembly instruction set.

* Investigate pertinent matrix structure features to develop an adaptive synchronization
method (I mean build a “sorting hat”!) in the future (and perhaps call our strategy to be
“Ravenclaw”).

Contact us:

Prabhjot Sandhu, prabhjot.sandhu@mail.mcgill.ca
PhD student advised by Prof. Clark Verbrugge and previously by Laurie Hendren,

School of Computer Science, McGill University, Montreal.

Webpage : www.cs.mcgill.ca/~psandh3 23

mailto:prabhjot.sandhu@mail.mcgill.ca
http://www.cs.mcgill.ca/~psandh3

kxtras

busy-wait synchronization mode

(f32.load (local.get $csr_val))
(i32.load (local.get $csr_col))
(local.set $required_-row)
(i32.atomic.load (local.get
(local.get S$required_-row)
(i32.le-s)
if
(i32.load (i32.add (local.get S$row_worker_index) (i32.shl
(i32.const 2))))
(local.set $worker)
(local.get $worker)
(local.get $current_worker)
(i32.ne)
if
(i32.1load (i32.add (local.get
) (i32.const 2))))
(local.set 8$required-level)
(loop $busy_-wait_loop
(local.get $required-level)
(i32.atomic.load (i32.add (local.get
$worker) (i32.const 2))))
(i32.gt_s)
(br_if $busy-wait_-loop)

$global_-row_-index))

$row_level_index) (i32.shl

)

end
end
(f32.load (i32.add (local.get 8$x) (i32.shl
(f32.mul)

$worker_level_index)

(local.get $required_row)

(local.get S$required_-row

(i32.shl (local.get

(local.get $required-row) (i32.const 2))))

24

