
14 October 2021

A Hybrid Synchronization Mechanism
for Parallel Sparse Triangular Solve
Prabhjot Sandhu, Clark Verbrugge, and Laurie Hendren

1

Sable Research Group
McGill University

Solving System of Linear Equations : An Example
Solve for y in the equation Ay = b

2

 y1 + y2 + y3 = 1
4y1 + 3y2 - y3 = 6
3y1 + 5y2 + 3y3 = 4

1

4

3

1

3

5

1

-1

3

y1

y2

y3

1

6

4

=

A y b

Solving System of Linear Equations : An Example
To Solve Ay = b, Decompose A = LU

3

1

4

3

1

3

5

1

-1

3

A

1

4

3

0

1

-2

0

0

1

L

1

0

0

1

-1

0

1

-5

-10

U

=

Solving System of Linear Equations : An Example
To Solve Ay = b, Decompose A = LU and solve LUy = b

4

1

4

3

0

1

-2

0

0

1

L

1

0

0

1

-1

0

1

-5

-10

U

y1

y2

y3

1

6

4

=

y b

Solve for x in Lx = b, and then Solve for y in Uy = x,
where L is a lower triangular matrix, and

U is an upper triangular matrix.

x

Dense Triangular Solve : Inherent Sequential Execution
Solve for x in Lx = b

5

1

4

3

0

1

-2

0

0

1

L

x1

x2

x3

1

6

4

=

x b

 x1 + 0 + 0 = 1
4x1 + x2 + 0 = 6
3x1 - 2x2 + x3 = 4

x1 = 1
x2 = 6 - 4(1) = 2
x3 = 4 - 3(1) + 2(2) = 5

Solving xi
requires all the

values
from xo to xi-1

Sparse Triangular Solve (SpTS)
Solve for x in the equation Lx = b

Lower Triangular Sparse Matrix
6

1
1

11
11

1 1
1

1
1

1
11

1

11
1

0

1

2

3

4

5

6

7

x0
x1
x2
x3
x4
x5
x6

b0
b1
b2
b3
b4
b5
b6

* =

x7 b7

Solving xi may not
require all the values

from xo to xi-1

Sparse Triangular Solve (SpTS) : Task Dependency Graph
Solve for x in the equation Lx = b

Lower Triangular Sparse Matrix
7

1
1

11
11

1 1
1

1
1

1
11

1

11
1

0

1

2

3

4

5

6

7

x0
x1
x2
x3
x4
x5
x6

b0
b1
b2
b3
b4
b5
b6

* =

x7 b7

0

1 2

53

4 6 7

Therefore, SpTS has the
potential to be computed

in parallel.

Parallel SpTS : Existing
Synchronization Methods

8

Parallel SpTS : Level-set Method
Solve for x in the equation Lx = b

1
1

11
11

1 1
1

1
1

1
11

1

11
1

0

1

2

3

4

5

6

7

• Make sets of the matrix-rows which can be solved independently and simultaneously.
• Dependency graph represents the level-set formation.
• Uses barrier synchronization.

9

0

1

6

2

4

3 5

7

Level 0

Level 1

Level 2

Level 3

Level-set formation:

Parallel SpTS : Level-set Method
Solve for x in the equation Lx = b 1

1
11

11
1 1

1
1

1
1

11

1

11
1

0

1

2

3

4

5

6

7

for each level

 for each row i inside the level in parallel

 Solve x[i]

 end for

// barrier synchronization
end for

10

0

1

6

2

4

3 5

7

Level 0

Level 1

Level 2

Level 3

Level-set formation: Works well when :
• Balanced workload among the

workers at each level.
• A small number of levels

Parallel SpTS : Synchronization-free Method
Solve for x in the equation Lx = b

1
1

11
11

1 1
1

1
1

1
11

1

11
1

0

1

2

3

4

5

6

7

for each row i in parallel

 for each dependent row j

 while atomic_read(flag[j]) != 1
 // busy−wait
 end while
 Solve x[i]

 end for

 Solve x[i]

 atomic_write(flag[i], 1)
end for

• Eliminate the pre-processing step.
• Uses atomic operations for busy-waiting.

11

• Effective for GPUs.

Limitations of the existing methods

• Large number of level-sets -> costly barrier synchronization.

• Small and varied number of components per level -> waste the assigned CPU
resources.

• Uneven distribution of non-zeros among the rows -> load imbalance.

Level-set method

Synchronization-free method

• Highly impractical for CPUs due to the heavy use of expensive atomic and busy-
waiting operations on the limited number of threads.

12

Our Objective

Why WebAssembly?

1. A new low-level target language for the web.

2. Building efficient web-based sparse matrix kernels for ML.

Improve the performance of parallel SpTS for WebAssembly on CPUs

13

How?

1. Avoid synchronization barriers !

2. Minimize the use of atomic operations as much as possible !

No synchronization barriers

• Keep the pre-processing step of level-set method.

• Why? A systematic way to guarantee: the threads
at the same level can make progress
independently and simultaneously.

• Spatial locality benefits from the level-set
formation.

• Additionally, allow each thread to immediately
process the next level after the completion of its
work at the current level.

But with level-set formation

14

0

1

6

2

4

3 5

7

Level 0

Level 1

Level 2

Level 3

Level-set formation:

Our Technique : Two
Synchronization Modes

• no-busy-wait (default) : when the current working level of the thread (local_level) is equal to
the maximum working level achieved by all the threads (global_level).

• busy-wait : when local_level is greater than global_level, indicating that the thread is
presently working in the advanced levels.

• Each thread can dynamically switch between the two modes as many times as required.

no-busy-wait busy-wait

start

local_level > global_level

local_level == global_level

15

An example to contrast the parallel SpTS workflow

Level-set Method :

Our Hybrid Method :

A tuple (current_level, row, column) represents the values of these parameters for each thread.
1

1
11

11
1 1

1
1

1
1

11

1

11
1

0

1

2

3

4

5

6

7

16

0

1

6

2

4

3 5

7

Level 0

Level 1

Level 2

Level 3

Level-set formation:
(0, 0, 0) (1, 1, 0) (1, 1, 1) (2, 3, 1) (2, 3, 3) (3, 4, 1) (3, 4, 3) (3, 4, 4)T1

(2, 5, 2)(1, 2, 0) (1, 2, 2) (2, 5, 0) (2, 5, 1) (3, 6, 5) (3, 6, 6)(2, 5, 5)T2

(3, 7, 3) (3, 7, 7)T3

(0, 0, 0) (1, 1, 0) (1, 1, 1) (2, 3, 1) (2, 3, 3) (3, 4, 1) (3, 4, 3)T1

(2, 5, 2)(1, 2, 0) (1, 2, 2) (2, 5, 0) (2, 5, 1) (3, 6, 5) (3, 6, 6)(2, 5, 5)T2

(3, 7, 3) (3, 7, 7)T3

Time

idle thread no-busy-wait busy-wait

(3, 4, 4)

T1

T2

T3
T1

T1 T2

T1

T2

T1

T1
T2

T1 T2
T1

T3

T2

busy-wait synchronization mode
Classify required-rows into 4 exhaustive categories : allows progress

Previous level

row?

Computation

Intra-thread
row?

Advanced
worker?

Yes

No No

YesYes

No
Start• Previous-level rows

• Intra-thread rows

• Advanced-worker
inter-thread rows

• Inter-thread rows

(0, 0, 0) (1, 1, 0) (1, 1, 1) (2, 3, 1) (2, 3, 3) (3, 4, 1) (3, 4, 3)T1

(2, 5, 2)(1, 2, 0) (1, 2, 2) (2, 5, 0) (2, 5, 1) (3, 6, 5) (3, 6, 6)(2, 5, 5)T2

(3, 7, 3) (3, 7, 7)T3

(3, 4, 4)

17

0

1

6

2

4

3 5

7

Level 0

Level 1

Level 2

Level 3

Level-set formation:

Time

idle thread no-busy-wait busy-wait

SpTS Performance Comparison
Our Hybrid Method vs Level-set Method
Machine : Intel Core i7-3930K with 6 3.20GHz cores, 12MB last-level cache and 16GB memory,
running Ubuntu Linux 18.04.5
Input : 1957 real-life sparse matrices from The SuiteSparse Matrix Collection.
Storage Format : CSR (Compressed Sparse Row)
Target Language : WebAssembly & JavaScript
Execution Environment : Chrome 92 headless browser

18

: higher is better

Substantial amount of workload per thread

Below 1
Matrices where level-set method performs better than hybrid method

Matrix N nnz nlevels N/nlevels
Level-set

Performance
(GFLOPS)

Hybrid
Performance

(GFLOPS)
Speedup

t2dal_e 4257 4257 1 4257 1.70 1.52 0.89x

bcspwr08 1624 3837 14 116 0.89 0.74 0.83x

t3dl_a 20360 265113 633 32.2 1.32 1.22 0.92x

exdata_1 6001 1137751 1501 3.99 1.47 1.37 0.93x

• Large number of rows per level -> substantial amount of workload for each thread.

• Nearly balanced workload among the threads at each level (NS) -> insignificant cost of barrier synchronization.

• Small number of rows per level with large number of non-zeros per row (NS) -> minimal parallelism but likely
reduced the cost of barrier synchronization. 19

NS : not shown in
the table,

investigated
separately

Above 1
Matrices where hybrid method performs better than level-set method

Matrix N nnz nlevels N/nlevels
Level-set

Performance
(GFLOPS)

Hybrid
Performance

(GFLOPS)
Speedup

lung2 109460 273647 479 228.5 1.47 2.28 1.55x

delaunay_n17 131072 524248 910 144 1.36 1.82 1.34x

e40r0100 17281 257727 512 33.7 1.49 2.06 1.38x

smt 25710 1887646 4646 5.5 1.27 1.72 1.35x

• Large number of levels -> increased the cost of barrier synchronization for level-set method.

• Small to moderate number of rows per level -> limited amount of workload for each thread.

• Uneven distribution of rows among the levels (NS) -> limits the amount of workload per thread and waste CPU
resources at the barriers.

• Hybrid method benefits by allowing the threads to move to further levels to perform some feasible computation.20

NS : not shown in
the table,

investigated
separately

Close to 1
Matrices where hybrid method performs similar to level-set method

Matrix N nnz nlevels N/nlevels
Level-set

Performance
(GFLOPS)

Hybrid
Performance

(GFLOPS)
Speedup

t3dl_e 20360 20360 1 20360 1.87 1.83 0.98x

mbeacxc 496 30309 214 2.3 0.76 0.76 1.00x

coPapersCiteseer 434102 16470822 8087 53.7 2.26 2.24 0.99x

kron-g500-logn18 262144 10844830 1820 144 1.21 1.19 0.98x

• Presence of diagonal matrices in both Below 1 and Close to 1 categories -> overhead of our method becomes
insignificant for the large matrices with small number of levels.

• Large number of levels with little imbalanced workload (NS) -> overhead cancels out the performance gain.

21

NS : not shown in
the table,

investigated
separately

Summary

• We employ the level-set formation without barrier synchronization, and make
minimal use of expensive atomic operations by dynamically switching between the
two synchronization modes as required.

• We evaluate the performance of hybrid method over level-set method using our
WebAssembly implementations on around 2000 sparse matrices.

• Our evaluations show the potential of our method to support the adaptive
synchronization techniques in the future.

22

Future Directions

• Explore more sparse storage formats and apply optimization techniques like SIMD.

• Employ the upcoming synchronization constructs like floating-point atomics from the
rapidly evolving WebAssembly instruction set.

• Investigate pertinent matrix structure features to develop an adaptive synchronization
method (I mean build a “sorting hat”!) in the future (and perhaps call our strategy to be
“Ravenclaw”).

Contact us :
Prabhjot Sandhu, prabhjot.sandhu@mail.mcgill.ca
PhD student advised by Prof. Clark Verbrugge and previously by Laurie Hendren,
School of Computer Science, McGill University, Montreal.
Webpage : www.cs.mcgill.ca/~psandh3 23

mailto:prabhjot.sandhu@mail.mcgill.ca
http://www.cs.mcgill.ca/~psandh3

Extras
busy-wait synchronization mode

24

