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Background : Sparse Matrix Storage Formats

@ A sparse matrix : a

matrix in which most of

the elements are zero.

o Basic sparse storage
formats :

e Coordinate Format
(CO0)

e Compressed Sparse
Row Format (CSR)

e Diagonal Format
(DIA)

e ELLPACK Format
(ELL)

:

CO0O0:

row@i1
col [ 021320
val |16 2 7 35

DIA :
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val |16 2 7 3 5 4

ELL :

data

indices

2 35
7] -4
2.0

[3

23 April 2020

2/21



@ y = Ax, where A is a sparse matrix and the input vector x and output
vector y are dense.

@ Working set size : sizeof(A) + sizeof(x) + sizeof(y)




@ Web-enabled devices everywhere!




Why Sparse Matrices on the Web?
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@ Web-enabled devices everywhere!

@ Various compute-intensive
applications involving sparse
matrices on the web.

Image editing

Computer-aided design

Text classification (data mining)
Deep learning

Machine Learning

n JavaScript
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Why Sparse Matrices on the Web?

@ Web-enabled devices everywhere!

@ Various compute-intensive
applications involving sparse
matrices on the web.

Image editing

Computer-aided design

Text classification (data mining)

Deep learning

@ Recent addition of WebAssembly to
the world of JavaScript.
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@ A computational kernel used in many scientific and machine learning
applications.

@ occurs frequently in these applications.

@ Hence, a good candidate for their performance optimization.
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Why SpMV is so Important?

@ A computational kernel used in many scientific and machine learning
applications.

@ occurs frequently in these applications.

@ Hence, a good candidate for their performance optimization.
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© Select an optimal format to store the input sparse matrix.



© Select an optimal format to store the input sparse matrix.

@ Apply data and low-level code optimizations to a single format.



How to Optimize SpMV Performance

@ Select an optimal format to store the input sparse matrix.

@ Apply data and low-level code optimizations to a single format.

Depends on the structure of the matrix and the machine characteristics. )
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@ matrix structure on the choice
of storage format.

@ matrix structure on the SpMV matrix
performance within a storage structure
format features

© interaction between matrix
structure and hardware
characteristics on the SpMV
performance.

EEEE
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@ matrix structure on the choice
of storage format.

@ matrix structure on the SpMV
performance within a storage
format.

© interaction between matrix
structure and hardware
characteristics on the SpMV
performance.

Optimal Format

o
L
matrix \_/ E
structure
ORMANCE

features
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Our Goal

@ matrix structure on the choice
of storage format.

Optimal Format

matrix

@ matrix structure on the SpMV structure
performance within a storage features
format.

© interaction between matrix machine MLFORMANCE
structure and hardware features
characteristics on the SpMV
performance.
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Reference Implementations and Measurement Setup

Developed a reference set of sequential C and hand-tuned WebAssembly
implementations of SpMV for different formats on same algorithmic lines.

void spmv_coo(int *row, int *col, float *val, int nnz, int N, float *x, float *y)
{ int i;
for(i = 0; i < nnz ; i++)
ylrow[il]l += vall[il * x[coll[ill;
}

Listing 1: Single-precision SpMV COO implementation in C

@ Benchmarks : Around 2000 real-life sparse matrices from The
SuiteSparse Matrix Collection.

@ Sparse Storage Formats : COO, CSR, DIA, ELL

@ Measured SpMV Performance for C and WebAssembly in FLOPS
(Floating point operations per second).
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Target Languages and Runtime

@ Machine Architecture

Intel Core i7-3930K with 6 3.20GHz cores, 12MB last-level cache and
16GB memory,running Ubuntu Linux 16.04.2

o C

Compiled with gcc version 7.2.0 at optimization level -O3 )

o WebAssembly

Used Chrome 74 browser (Official build 74.0.3729.108 with V8 JavaScript
engine 7.4.288.25) as the execution environment with
—experimental-wasm-simd flag to enable the use of SIMD instructions.
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How we chose the optimal format?

x%-affinity

We say that an input matrix A has an x%-affinity for storage format F, if
the performance for F is at least x% better than all other formats and the
performance difference is greater than the measurement error.

v

For example, if input array A in format CSR, is more than 10% faster than
input A in all other formats, and 10% is more than the measurement error,
then we say that A has a 10%-affinity for CSR.
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) . ndiag _elems
dia_ratio = ———
nnz
where, nnz : number of

non-zeros, ndiag_elems :
number of elements in the
diagonals

Indicates if the given matrix is
a good fit for DIA format or
not.

dia_ratio(A) =7/7 =1
dia_ratio(B) = 7/3 = 2.33

Matrix Structure Feature : dia_ratio
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for a few matrices.

Matrices with dia_ratio <= 3 show affinity towards the DIA format, exceth
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Relationship between Storage Format and Structure
Features

Format | Feature(s) Priority
DIA dia_ratio < 3 and large N 1
ELL ell_ratio ~ 1 and small max_nnz_per_row 2

nnz < N or small avg_nnz_per_row and

3
uneven number of non-zeros per row

COO
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SpMV Performance within CSR Matrices

e CSR Working Set : (N+1) +
2*nnz + 2*N

@ Irregular access for vector x
affects performance.

3000

2500

. 2000
@ Introduced some new matrix

structure features : ELL
Locality Index, CSR Locality
Index

1500

1000

Performance (MFLOPS)

500
@ Based on data locality model

@ Using reuse-distance concept 107 0 10 100 10F 10 100 108
v CSR Working Set (bytes)

CSR Locality Index J

indicator of irregular memory access for vector x for a CSR matrix.
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CSR Locality Index : Step 1

@ Calculate Row Reuse Distance 110 : 0
f h -zero.
or each non-zero o Bl o B
@ Row Reuse Distance (rrd) : A
Distance from the last 0j0j8|0 ‘
non-zero whose column index 5004
corresponds to the same cache
line of the input vector x. CSR:
@ Unit of distance : rows row_ptr E 2 4 5 7
*Assume the cache line size to be 2
and cache size to be fixed for this col 2 13 203
example.
val 6 2 7 3 5 4
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CSR Locality Index : Step 1

@ Calculate Row Reuse Distance
for each non-zero.

@ Row Reuse Distance (rrd) :
Distance from the last
non-zero whose column index
corresponds to the same cache
line of the input vector x.

@ Unit of distance : rows
*Assume the cache line size to be 2

and cache size to be fixed for this
example.
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CSR Locality Index : Step 2

@ Calculate CSR Reuse Distance
using frequency distribution
over Row Reuse Distance
(rrd).

@ CSR Reuse Distance[p] : the
number of non-zeros of sparse
matrix A stored in the CSR
format which access the input
vector x with p Row Reuse
Distance.

Sandhu, Verbrugge, and Hendren (McGill)
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CSR:

col 2 1.3 2 0 3

val \IE 2 7 3. 5 4
x-vector

accoss x[1] X[3] x[2] x[0] x[3]
rrd E[ 111 2 1

Index |0 1|23
Frequency |0 |4 |1 |0
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CSR Locality Index : Step 3

@ Calculate CSR Locality Index
using cumulative percentage
over CSR Reuse Distance.

@ CSR Locality Index =

15
>~ CSR Reuse Distance[p]
= x 100

nnz
@ This feature accounts for :

e spatial locality for the
non-zeros in a row.

e temporal locality for the
non-zeros in the
neighbouring rows.

* We chose the limit to be 15
based on our experiments

Performance (MFLOPS)
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Cache Memory : CSR Performance

@ Features based on data locality model have their roots in the
hardware features like data cache misses.

@ Measured true performance counters using PAPI tool.

PAPI_L1_DCMVPAPI_L2_DCMV PAPI_L3_TCM % 100
nnz

@ Index =

3000
90
2500 x
80 9
@ 70
2 2000 %
9
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@ Index =

PAPI_BR_MSP
PAPI_BR_PRC+PAPI_BR_MSP

x 100

Performance (MFLOPS)
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Summary

@ The optimal choice of storage format is governed both by the
structure of the matrix and the code optimization opportunities
available.

@ Due to different code generation strategy, the SpMV performance
suffers in the case of WebAssembly for Chrome (v8) browser.

@ Our data locality based structure features estimate if the SpMV
performance is affected by the irregular memory accesses for vector x.

@ We validate our evaluations and parameter choices using hardware
performance counters.
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Future Work

@ Further explore to quantify the impact of additional hardware features
on SpMV performance via matrix structure features.

@ Explore new optimization opportunities for hand-tuned WebAssembly
implementations through the upcoming WebAssembly instructions.

@ Develop parallel versions of SpMV based on multithreading features
like web workers.

@ Develop automatic techniques to choose the best format for
web-based SpMV.

name : Prabhjot Sandhu
e-mail : prabhjot.sandhu@mail.mcgill.ca
webpage : https://www.cs.mcgill.ca/~psandh3
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