
Sparse matrices on the web : Characterizing the
performance and optimal format selection of sparse

matrix-vector multiplication in JavaScript and
WebAssembly

Prabhjot Sandhu, David Herrera, and Laurie Hendren

Sable Research Group
McGill University

September 6, 2018



Outline

1 Introduction

2 Experimental Design

3 Can managed web languages’ performance come closer to native C?

4 RQ2 : Single-precision operations are usually faster than
double-precision for C. Is it the case for web languages as well?

5 RQ3 : If the best storage format for C is known, will it be the best
format for web languages too?

6 Summary and Future Work



Why Sparse Matrices on the Web?

Web-enabled devices everywhere!

Various compute-intensive
applications involving sparse
matrices on the web.

Image editing
Text classification (data mining)
Deep learning

Recent addition of WebAssembly to
the world of JavaScript.

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 1 / 26



Why Sparse Matrices on the Web?

Web-enabled devices everywhere!

Various compute-intensive
applications involving sparse
matrices on the web.

Image editing
Text classification (data mining)
Deep learning

Recent addition of WebAssembly to
the world of JavaScript.

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 1 / 26



Why Sparse Matrices on the Web?

Web-enabled devices everywhere!

Various compute-intensive
applications involving sparse
matrices on the web.

Image editing
Text classification (data mining)
Deep learning

Recent addition of WebAssembly to
the world of JavaScript.

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 1 / 26



Background : Sparse Matrix Formats

A sparse matrix : a
matrix in which most of
the elements are zero.

Basic sparse storage
formats :

Coordinate Format
(COO)
Compressed Sparse
Row Format (CSR)
Diagonal Format
(DIA)
ELLPACK Format
(ELL)

1 6 3 5 42 7

0 0 2 3 31 1

0 2 2 0 31 3

row

col

val

COO Format :

1 6 3 5 42 7

0 4 5 72

0 2 2 0 31 3

row_ptr

col

val

CSR Format :

val

1 6X
X
X

2 7
3 X

5 4 X

offset

0 2-3

val

1 6
2 7
3 X
5 4

indices
DIA Format : ELL Format :

0 2
1 3
2 X
0 3

1 60 0
0 02 7

30 0 0
5 40 0

A 

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 2 / 26



Background : WebAssembly

WebAssembly

A typed low-level bytecode representation.

Introduced to enable better performance.

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 3 / 26



Background : SpMV

Sparse Matrix Vector Multiplication (SpMV)

Computes y = Ax , where matrix A is sparse and vector x is dense.

A performance-critical operation.

Choice of storage format (data structure) matters.

Depends on the structure of the matrix, machine architecture and
language of implementation.

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 4 / 26



This Paper

We explored the performance and choice of optimal sparse matrix storage
format for sequential SpMV for both JavaScript and WebAssembly, as
compared to C through the following three research questions :

RQ1

Can managed web languages’ performance come closer to native C?

RQ2

Single-precision operations are usually faster than double-precision for C. Is
it the case for web languages as well?

RQ3

If the best storage format for C is known, will it be the best format for
web languages too?

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 5 / 26



Outline

1 Introduction

2 Experimental Design

3 Can managed web languages’ performance come closer to native C?

4 RQ2 : Single-precision operations are usually faster than
double-precision for C. Is it the case for web languages as well?

5 RQ3 : If the best storage format for C is known, will it be the best
format for web languages too?

6 Summary and Future Work



Reference Implementations

Developed a reference set of sequential C and JavaSript implementations
of SpMV for different formats on same algorithmic lines.

void spmv_coo(int *coo_row , int *coo_col , MYTYPE *coo_val , int nz, int N, MYTYPE *x,

MYTYPE *y)

{ int i;

for(i = 0; i < nz ; i++)

y[coo_row[i]] += coo_val[i] * x[coo_col[i]];

}

Listing 1: SpMV COO reference C implementation

\\ efficient representation , using typed arrays

var coo_row = new Int32Array(nz)

var coo_col = new Int32Array(nz)

var coo_val = new Float32Array(nz)

var x = new Float32Array(cols)

var y = new Float32Array(rows);

\\ note the use of Math.fround in the loop body

function spmv_coo(coo_row , coo_col , coo_val , N, nz , x, y)

{

for(var i = 0; i < nz; i++)

y[coo_row[i]] += Math.fround(coo_val[i] * x[coo_col[i]]);

}

Listing 2: SpMV COO reference JavaScript implementation
Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 6 / 26



Reference C versus Intel MKL and Python Sparse.Scipy

COO CSR DIA
n Speedup n Speedup n Speedup

MKL
single 97 1.04 221 0.76 103 0.97
double 49 1.09 174 1.078 22 0.92

Scipy
single 122 0.95 399 1.03 32 2.28
double 53 0.96 790 1.09 23 1.90

Table: Speedup of the reference C implementation versus Intel MKL and Python
SciPy (greater than 1 means our implementation performs better than the
corresponding library implementation)

The performance of our implementation is close to both Intel MKL and
Python SciPy, in most cases.

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 7 / 26



Target Languages and Runtime

Machine Architecture

Intel Core i7-3930K with 12 3.20GHz cores, 12MB last-level cache and
16GB memory,running Ubuntu Linux 16.04.2

C

Compiled with gcc version 7.2.0 at optimization level -O3

JavaScript

Used the latest browsers Chrome 66 (Official build 66.0.3359.139 with V8
JavaScript engine 6.6.346.26) and Firefox Quantum (version 59.0.2)

WebAssembly

Automatically generated from C using Emscripten version 1.37.36, with
optimization flag -O3.

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 8 / 26



Measurement Setup

Benchmarks : Around
2000 real-life sparse
matrices from The
SuiteSparse Matrix
Collection.

Sparse Storage
Formats : COO, CSR,
DIA, ELL

Measured SpMV
execution time for C,
JavaScript and
WebAssembly in
GFLOPS.

1 6 3 5 42 7

0 0 2 3 31 1

0 2 2 0 31 3

row

col

val

COO Format :

1 6 3 5 42 7

0 4 5 72

0 2 2 0 31 3

row_ptr

col

val

CSR Format :

val

1 6X
X
X

2 7
3 X

5 4 X

offset

0 2-3

val

1 6
2 7
3 X
5 4

indices
DIA Format : ELL Format :

0 2
1 3
2 X
0 3

1 60 0
0 02 7

30 0 0
5 40 0

A 

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 9 / 26



How to choose the best format?

Input matrix Graph COO CSR DIA ELL

CurlCurl 0 1.268
±0.027

1.216
±0.029

0.026
±0.0079

1.161
±0.032

Table: SpMV performance in GFLOPS for a matrix CurlCurl 0.

Will you choose COO or CSR or ELL as the best format? What is your
criteria? Did you consider the measurement error?

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 10 / 26



x%-affinity

Definition

We say that an input matrix A has an x%-affinity for storage format F, if
the performance for F is at least x% better than all other formats and the
performance difference is greater than the measurement error.

Example

For example, if input array A in format CSR, is more than 10% faster than
input A in all other formats, and 10% is more than the measurement error,
then we say that A has a 10%-affinity for CSR.

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 11 / 26



How to choose the best format?

Input matrix Graph COO CSR DIA ELL

CurlCurl 0 1.268
±0.027

1.216
±0.029

0.026
±0.0079

1.161
±0.032

Table: SpMV performance in GFLOPS for a matrix CurlCurl 0.

For 10%-affinity criteria, we will choose a combination-format category,
COO-CSR-ELL for this matrix. In this case, the matrix can be stored in
any one of these formats for optimal performance.

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 12 / 26



Outline

1 Introduction

2 Experimental Design

3 Can managed web languages’ performance come closer to native C?

4 RQ2 : Single-precision operations are usually faster than
double-precision for C. Is it the case for web languages as well?

5 RQ3 : If the best storage format for C is known, will it be the best
format for web languages too?

6 Summary and Future Work



RQ1 : JavaScript versus C

best-vs-best : performance
comparison of the best
performing format in C and
the best performing format
in JavaScript.

best-vs-same : performance
comparison of the best
performing format in C and
the same format in
JavaScript. Figure: Slowdown of JavaScript relative to

C for double-precision SpMV using the
10%-affinity criteria

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 13 / 26



RQ1 : JavaScript versus C

Observations

Overall slowdown factor for
JavaScript compared to C is
less than 5.

Firefox performs better
than Chrome.

Figure: Slowdown of JavaScript relative to
C for double-precision SpMV using the
10%-affinity criteria

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 14 / 26



RQ1 : WebAssembly versus C

Observations

WebAssembly performs
similar or better than C for
Firefox.

Overall slowdown factor for
Chrome is around 2.

Figure: Slowdown of WebAssembly relative
to C for double-precision SpMV using the
10%-affinity criteria

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 15 / 26



RQ1 : JavaScript versus WebAssembly

Observations

WebAssembly performs
significantly better than
JavaScript.

More performance
improvement for Firefox
from JavaScript to
WebAssembly.

Figure: Slowdown of JavaScript relative to
WebAssembly for double-precision SpMV
using the 10%-affinity criteria

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 16 / 26



Outline

1 Introduction

2 Experimental Design

3 Can managed web languages’ performance come closer to native C?

4 RQ2 : Single-precision operations are usually faster than
double-precision for C. Is it the case for web languages as well?

5 RQ3 : If the best storage format for C is known, will it be the best
format for web languages too?

6 Summary and Future Work



RQ2 : Performance Comparison between Single- and
Double-precision for C

In single-precision, a 32-bit
number takes half the space
compared to a 64-bit
number in double-precision.

Doubling the memory
requirement for each
floating-point number
increases the load on cache
and memory bandwidth.

Effectiveness of SIMD
(Single Instruction, Multiple
Data) optimizations.

Format n GFLOPS
Single

Double

Speedup

COO 212
1.03

1.08
0.95

CSR 366
1.88

1.08
1.74

DIA 90
3.59

1.96
1.83

ELL 18
1.44

1.21
1.19

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 17 / 26



RQ2 : Performance Comparison between Single- and
Double-precision for Chrome JavaScript

Double-precision
performs better than
single-precision.

JavaScript natively only
supports
double-precision.

Format n GFLOPS
Single

Double

Speedup

COO 48
0.23

0.82
0.28

CSR 960
0.35

0.79
0.44

DIA 20
0.34

0.77
0.44

ELL 2
0.18

1.0
0.18

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 18 / 26



RQ2 : Performance Comparison between Single- and
Double-precision for Firefox WebAssembly

Double-precision
performs better than
single-precision.

WebAssembly natively
supports both single-
and double-precision.

Format n GFLOPS
Single

Double

Speedup

COO 16
1.0

1.04
0.96

CSR 1002
1.41

0.82
1.70

DIA 0
-

-
-

ELL 8
1.17

0.86
1.36

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 19 / 26



RQ2 : Format Difference between Single- and
Double-precision for Firefox WebAssembly

Figure: Single-precison for
10%-affinity

Figure: Double-precison for
10%-affinity

Observations

CSR format is prevalent for WebAssembly.

None of the matrices have affinity for DIA format.

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 20 / 26



RQ2 : Format Difference between Single- and
Double-precision for C

Figure: Single-precison for
10%-affinity

Figure: Double-precison for
10%-affinity

Observations

DIA format appears more important for single-precision as compared
to double-precision.

COO is more prevalent in single-precision (66.6%), while CSR is more
prevalent in double-precision(80.8%).

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 21 / 26



Outline

1 Introduction

2 Experimental Design

3 Can managed web languages’ performance come closer to native C?

4 RQ2 : Single-precision operations are usually faster than
double-precision for C. Is it the case for web languages as well?

5 RQ3 : If the best storage format for C is known, will it be the best
format for web languages too?

6 Summary and Future Work



RQ3 : JavaScript versus C

Affinity greatly differs
between C and JavaScript.

SIMD optimizations in C
make DIA to become the
optimal format for some of
the matrices.

JavaScript lacks SIMD
capabilities.

Figure: Affinity of matrices towards different
format(s) for JavaScript relative to C using
the 10%-affinity criteria for double-precision
Firefox

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 22 / 26



RQ3 : WebAssembly versus C

CSR format takes
precedence for
WebAssembly.

SIMD instruction set is
in the future plans for
WebAssembly.

Figure: Affinity of matrices towards different
format(s) for WebAssembly relative to C using
the 10%-affinity criteria for double-precision
Firefox

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 23 / 26



Outline

1 Introduction

2 Experimental Design

3 Can managed web languages’ performance come closer to native C?

4 RQ2 : Single-precision operations are usually faster than
double-precision for C. Is it the case for web languages as well?

5 RQ3 : If the best storage format for C is known, will it be the best
format for web languages too?

6 Summary and Future Work



Summary

WebAssembly performs similar or better than C for Firefox, and
overall slowdown factor for Chrome is around 2.

WebAssembly performs at least 2x faster than JavaScript.

Unlike C, double-precision SpMV is faster than single-precision in
most cases for the web.

The best format choices are different between C, JavaScript and
WebAssembly, and also between the browsers.

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 24 / 26



Takeaways

Sequential SpMV on the web is reasonably performant.

Realistic to utilize web-connected devices for compute-intensive
applications using SpMV.

Use WebAssembly for efficient kernel implementations.

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 25 / 26



Future Work

Explore the new optimization opportunities through hand-tuned
WebAssembly implementations.

Develop parallel versions of SpMV based on upcoming multithreading
and SIMD features.

Examine the impact of other factors like nnz, N, cache size etc. on
SpMV performance.

Develop automatic techniques to choose the best format for
web-based SpMV.

Sandhu, Herrera, and Hendren (McGill) Sparse matrices on the web September 6, 2018 26 / 26


	Introduction
	Experimental Design
	Can managed web languages' performance come closer to native C?
	RQ2 : Single-precision operations are usually faster than double-precision for C. Is it the case for web languages as well?
	RQ3 : If the best storage format for C is known, will it be the best format for web languages too?
	Summary and Future Work

