
Adding Open Modules
to AspectJ

Neil Ongkingco, Pavel Avgustinov, Julian Tibble,
Oege de Moor, Ganesh Sittampalam

Programming Tools Group, University of Oxford, UK

Laurie Hendren
Sable Research Group, McGill University, Canada

The Trouble with Aspects
A simple aspect...

aspect ReplayAspect {
 pointcut translate(int dx, int dy): call(* Figure.translate(int, int)) && args(dx,dy);
 LinkedList moves = new LinkedList();

 before(int x, int y, Figure fig) : translate(x,y) && target(fig) {
 //Store fig, x and y in the moves list
 }
}

Applied to a simple class...
public class Figure {
 List /*<Point>*/ elements;
 public Figure translate(int dx, int dy) {
 for (Iterator iter = elements.iterator(); iter.hasNext();) {
 Point elem = (Point) iter.next();
 elem.translate(dx,dy);
 }
 return this;
 }
}

The Trouble with Aspects

public class Figure {
 List /*<Figure>*/ elements;
 public Figure translate(int x, int y) {
 for (Iterator i = elements.iterator();
 iter.hasNext();) {
 Figure elem = (Figure) i.next();
 elem.translate(x,y);
 }
 return this;
 }
}

But things rarely stay simple...

aspect ReplayAspect {
 pointcut translate(int dx, int dy):
 call(* Figure.translate(int, int)) && args(dx,dy);
 LinkedList moves = new LinkedList();

 before(int x, int y, Figure fig) : translate(x,y) && target(fig) {
 //Store fig, x and y in the moves list
 }
}

● The class Figure now
contains other Figures

● ReplayAspect now
behaves incorrectly

● The translate pointcut
also matches the
internal calls to
translate(), causing
double entries

The Trouble with Aspects

The problem:
● Changing the base code can break the aspects

– subtle, undetectable at compile-time
– check all aspects on every change (impossible)

● Aspects have unrestricted access to base code
– Need to look at aspects to determine behavior
– Makes it hard to enforce invariants on base code

A Solution
Open Modules (Aldrich)

– Interface (signature) between aspects and base
code

– Specifies which events can be advised
– Internal advice has full access
– Module inclusion
– Defined for a small functional aspect language

● call() only primitive
● Module inclusion restricts exposed events

A Solution
Open Modules in Java terms:

This visibility
signature
exposes only
external calls
to translate()

This is an
internal call
which
aspects can
not advise

public class Figure : expose (* call Figure.translate(..) &&
 !within(Figure))
 friend DebugAspect {
 List /*<Figure>*/ elements;
 public Figure translate(int x, int y) {
 for (Iterator i = elements.iterator();
 iter.hasNext();) {
 Figure elem = (Figure) i.next();
 elem.translate(x,y);
 }
 return this;
 }
}

Friend
aspects have
full access to
Figure's
joinpoints

Our Goal
● Adapt open modules to aspectJ
● Have the effect of visibility signatures
● Prevent scattering of signatures (not class

annotations)
● Consistency with AspectJ

Open Modules in AspectJ
module FigureModule {
 class Figure;
 friend DebugAspect;
 advertise : call(Figure Figure.translate(int, int));
 expose to tracingaspects.* : call(* *(..));
 constrain FigureUtils;
}

● A module construct that contains classes and
their visiblity/friend aspects

● Three main components:
– Member classes and friend aspects
– Visibility specification
– Included modules

Open Modules in AspectJ

● class members define the set of classes
affected by visibility, friends

● Is an aspectJ class pattern (may contain
wildcards, ..)

module FigureModule {
 class Figure;
 friend DebugAspect;
 advertise : call(Figure Figure.translate(int, int));
 expose to tracingaspects.* : call(* *(..));
 constrain FigureUtils;
}

Open Modules in AspectJ
module FigureModule {
 class Figure;
 friend DebugAspect;
 advertise : call(Figure Figure.translate(int, int));
 expose to tracingaspects.* : call(* *(..));
 constrain FigureUtils;
}

● friend aspects have full access
● Order of the friends list also define precedence
● The list may not contain wildcards

Open Modules in AspectJ
module FigureModule {
 class Figure;
 friend DebugAspect;
 advertise : call(Figure Figure.translate(int, int));
 expose to tracingaspects.* : call(* *(..));
 constrain FigureUtils;
}

● Visibility specification limits the set of joinpoints
accessible by external aspects

● Applies to joinpoints owned by class members
● Two forms:

– advertise: only the external matches of the pointcut
– expose: all matches

Open Modules in AspectJ
module FigureModule {
 class Figure;
 friend DebugAspect;
 advertise : call(Figure Figure.translate(int, int));
 expose to tracingaspects.* : call(* *(..));
 constrain FigureUtils;
}

● Included modules are affected by the module's
friend aspects and signature

● Two forms
– constrain: restricts the included module's signature
– open: expands signature, propagates friends

● Order also defines precedence

Open Modules in AspectJ
● Joinpoint ownership

– The visibility specification of a class only affects the
joinpoints “owned” by that class

Joinpoint Owner
call and set/get Class where the

method/field was
declared

All else Where the joinpoint
(shadow) occurs

Open Modules in AspectJ
module FigureModule {
 class Figure;
 friend DebugAspect;
 advertise : call(Figure Figure.translate(int, int));
 expose to tracingaspects.* : call(* *(..));
 constrain FigureUtils;
}

Compiling produces this warning:
Figure.java:7: Warning -- An advice in aspect ReplayAspect
would normally apply here, but does not match any of the
signatures of module FigureModule
 elem.translate(x,y);
 ^------------^

Normal Form
● Normal form fully defines module's effect
● To get a normal form:

– Disjoin class members, collect friend aspects into a single list
– Convert advertise():<pc> signatures to expose(): <pc> && !

within(<classes>)
– Convert to clauses to thisAspect(<aspectpattern>)

● thisAspect(A) is true if the aspect being woven matches A
– Collect all signatures into a single disjunction (||)

● Module
Normal Form

module FigureModule {
 class Figure;
 class Point;
 advertise : call(* translate(int, int));
 expose to tracingaspects.* : call(* *(..));
 friend DebugAspect;
 friend Logger;
}

module FigureModule {
 class Figure || Point;
 expose : (call(* translate(int, int)) && !within(Figure || Point))

|| (call(* *(..)) && thisAspect(tracingaspects.*));
 friend DebugAspect, Logger;
}

● Normal Form

Precedence
● Order of friend aspects determine precedence

module M1 {
 class C1;
 friend A1, A2;
}

class C1 {
 //contents
}
declare precedence : A1, A2;

● Coexists with declare precedence statements
– Adds equivalent declare precedence statements

● The syntax now is more consistent with the
declare precedence syntax
– The order in the friend list is now the same in

declare precedence (not so in the paper)

Module Inclusion
● A module can include other modules

– Affects included module
– Hierarchical structure for class visibility
– Also defines precedence

● Two forms of inclusion
– Constrained

● Restricts signature of included module
● Does not propagate friend status to included module

– Open
● Expands the signature of the included module
● Propagates friend status to included module

Constrained Module Inclusion
Module Normal Form

module M1 {
 class C1;
 friend A1, A2;
 expose: A1.pointcut1();
}

module M2 {
 class C2;
 friend A3;
 constrain M1;
 friend A4;
 expose A4.pointcut2();
}

module M1 {
 class C1;
 friend A1, A2;
 expose:
 (A1.pointcut1() && A4.pointcut2())
 ||
 (A1.pointcut1() && thisAspect(A3 || A4)
}

module M2 {
 class C2;
 friend A3, A4;
 expose A4.pointcut2();
}

Open Module Composition
Module Normal Form

module M1 {
 class C1;
 friend A1, A2;
 expose: A1.pointcut1();
}

module M2 {
 class C2;
 friend A3;
 open M1;
 friend A4;
 expose A4.pointcut2();
}

module M1 {
 class C1;
 friend A3, A1, A2, A4;
 expose:
 (A1.pointcut1() || A4.pointcut2())
}

module M2 {
 class C2;
 friend A3, A4;
 expose A4.pointcut2();
}

Inclusion and Precedence
● In general inclusion forms a tree:

● Is equivalent to a single declare precedence

● Produces a total order on aspects

M1

A1 M2 A4 M3 A7

A2 A3 A5 A6

declare precedence: A1, A2, A3, A4, A5, A6, A7;

Restrictions on Modules
● A class can only occur in one module

– Prevents overriding a class' visibility specification
● Inclusion should not form a cycle

– Checked at compile time, throws an error
● A module can only be included at most once

– As with classes, prevents visibility overriding
– Contributes to a total precedence order on aspects

Restrictions on Modules
● An aspect can only be declared a friend in one

module
– Is propagated only in the normal form
– Need to find the “right place” to put the aspect
– Produces a total order on the precedence of

aspects
● Module precedence consistent with declare

precedence
– Causes a compile time precedence error otherwise

Design Issues and Decisions
● Level of abstraction (module)

– Above classes and packages
– A class only appears in one module

● Support for AspectJ pointcuts
– Static primitives (execution, within)
– Dynamic primitives (cflow, args, if)
– Named pointcuts (promotes modularity)

● Visibility signatures
– advertise/expose : external/all joinpoints
– friend aspects: full access (debugging aspects)

Design Issues and Decisions
● Inclusion

– Loosely modeled after class inheritance
– Two different types:

● constrained: restricts exposed joinpoints
● open: extend exposed joinpoints

– A module can only be included once
● Similar to single inheritance

● Precedence
– Order in friend list defines aspect precedence

Design Issues and Decisions
● Namespace

– Separate from Java and AspectJ
– Modules must be on a different file (not in

Java/AspectJ code)
– Allows introduction/removal of modules without

forcing invasive changes to existing code

Implementation
● Open modules for AspectJ was implemented in

version 1.1.0 aspectbench compiler (abc)
 www.aspectbench.org

● abc has proved to be a flexible enough
framework for open modules

● Implementation did highlight some extensibility
issues
– Matcher extension

http://www.aspectbench.org/

Related Work
● Open Modules (Aldrich)
● Pointcut interfaces (Gudmundson, Kiczales)
● Aspect-aware interfaces (Mezini, Kiczales)
● Spectators and Assistants (Clifton, Leavens)
● Pure Aspects (Dantas, Walker)

Future Work
● Formal model
● Restricted expose to specific aspect types

– expose to pure <aspects> : <pointcut>
– expose to @logger <aspects> : <pointcut>

● Restricting inter-type declarations
● Possible new features at the module level

– Aspect composition (beyond precedence)
– Aspect instantiation/overriding

Thank You

Any questions?

Appendix

Open Modules in AspectJ
[root] module <module_name> {

class <classname_pattern>;
friend <aspect_name>;
[private] advertise [to <aspect_pattern>] : <pointcut>;
[private] expose: [to <aspect_pattern>] : <pointcut>;
open <module_name>;
constrain <module_name>;

}

Three main components:
– class members and friend aspects
– visibility signature: advertise and expose
– Included modules: open and constrain modules

Open Modules in AspectJ
● Class members

– The set of classes to which the visibility signature
applies

● Friend aspects

– A list of aspects that are allowed full access to the
class members

– The order of the list also defines the precedence of
the aspects

class <classname_pattern>;

friend <aspect_list>;

Open Modules in AspectJ

[private] <expose|advertise> [to aspect_pattern]: <pointcut>

● Visibility signature

– Specifies the visible joinpoints of the class members
– expose: exposes all joinpoints matched by the pointcut
– advertise: exposes only external joinpoints matched by

the pointcut (has an implicit !within(<class members>))
– to clause: exposes the pointcut to a specific set of

aspects
– private modifier: signature only applies to immediate

class members (not included modules)

Open Modules in AspectJ

open <module_name_list>;
constrain <module_name_list>;

● Included Modules

– Specifies the set of included modules
– Module inclusion modifies the signature of the classes

in the included module
– open: disjoins (||) the visibility of the including module

with the included module
– constrain: conjoins (&&) the visibility of the including

module with the included module
– Inclusion also affects precedence and the effect of

friend aspects (more later...)

Private Signature Modifier
● Allows a signature to be added without affecting

included modules
Normal FormModule

module M1 {
 class C1;
 friend A1;
 open M2;
 expose: A1.pointcut1();
 private expose: A1.pointcut2();
}

module M2 {
 class C2;
 friend A2;
 expose A2.pointcut3();
}

module M1 {
 class C1;
 friend A1;
 expose:
 (A1.pointcut1() || A1.pointcut2());
}

module M2 {
 class C2;
 friend A1, A2;
 expose A1.pointcut1() || A2.pointcut3();
}

Root Module Modifier
● Some modules should not be included in others

– Master module enforcing global constraints
– Prevents new modules from overriding the

constraints
● A root module can not be included in other

modules
● An example:

root module MasterModule {
 constrain M1, M2, M3;
 expose: !call(* new(..));
}

Inclusion and Precedence
● The order of inclusion specifies the order of

aspects in the included modules
Module Normal Form

module M1 {
 class C1;
 friend A1; open M2;
 friend A4; open M3;
 friend A7;
}
module M2 {
 class C2;
 friend A2, A3;
}
module M3{
 class C3;
 friend A5,A6;
}

module M1 {
 class C1;
 friend A1, A4, A7;
}

module M2 {
 class C2;
 friend A1,A2, A3,A4,A7;
}

module M3 {
 class C3;
 friend A1,A4,A5,A6,A7;
}

Inclusion and Precedence
● The precedence order defined in module

inclusion is consistent with a total order of the
aspects

module M1 {
 class C1;
 friend A1, A4, A7;
}

module M2 {
 class C2;
 friend A1,A2, A3,A4,A7;
}

module M3 {
 class C3;
 class A1,A4,A5,A6,A7;
}

class C1 {/*contents*/}
class C2 {/*contents*/}
class C3 {/*contents*/}
declare precedence :
 A1, A2, A3, A4, A5, A6, A7;

An Example: Ants

An Example: Ants
Ants

– Ant simulator and visualizer
– 27 classes, 10 aspects in 7 packages
– Core simulator

● Loads ant spec and runs the simulation
● Packages: automaton, command, model, parser

– GUI
● Visualizer

– Debugging aspects
– Profiling aspects

An Example: Ants

An Example: Ants
Aspects:

– Package automaton
● aspect Comment

– Package model
● aspects Combat, Resting

– Package debug
● aspects CheckScore, CommandTracer, WorldDumper,

LiveAnts
– Package profile

● aspects NoNewInRound, NoNewInCmd

Ants Module Specification
● Open modules can be used to make the class-

aspect interfaces explicit
● Expose only the joinpoints that are to be

advised by aspects
● advertise preferred, followed by expose to and

finally expose
● Debugging and profiling aspects are invasive

– Explicit advertise/expose too tedious
– Access given by friend status and open inclusion

Ants Module Specification
module Model {
 class model.*;
 class automaton.*;
 friend model.Combat, model.Resting;
 advertise : call(* model.World.round());
 expose : call(* model.Ant.kill());
}
module Command {
 class command.*;
 class parser.*;
 friend command.Comment;
 advertise : call(* command.Command.step(..));
}

Ant.kill exposed
as most calls are
internal to Model

A module can
contain classes
across multiple
packages

Ants Module Specification
module DebugAndProfile {
 class profile.*;
 class debug.*;
 friend profile.NoNewInCmd, profile.NoNewInRound;
 friend debug.WorldDumper, debug.LiveAnts,
 debug.CommandTracer, debug.CheckScores;
 open Model, Command;
}
module AntSystem {
 class viewer.*;
 friend viewer.Update;
 constrain DebugAndProfile;
 private expose to profile.*: call(*.new(..));
}
module JavaLang {
 class java.lang.*;
 advertise : !call(java.lang.StringBuffer.new(..));
}

Debugging and
profiling aspects
given access to
Model and
Command by
open inclusion

Profiling aspects
are given access
to constructor
calls in viewer
classes

Hides calls to
StringBuffer
constructors,
prevents matching
String literals

Open Modules and Tool Support
● Just tool support is not enough to modularize

aspects
– Can only show you when advice applies at a

specific point
– Cannot prevent aspects from matching into your

code
● This unbounded quantification becomes a

problem when using 3rd party aspects and
aspect libraries

Open Inclusion and Modularity
● Open inclusion expands the set of joinpoints of

a module
– This possibly overrides the assumptions of the

modules creator
● Once a module has been opened up, the

creator of the including module takes
responsibility for the modularity of all modules
included using open
– Would have to adapt if any change in the included

modules causes the system to break

