
Extending abc



Aspect Bench Compiler

● abc...
– ...is designed to provide a workbed for research 

and investigation

– ...therefore must be flexible and extensible

● We ensured that it is by extending it



Layout of an extension

● 3 small extensions
● 2 ½ weeks coding 

(no prior experience 
with the codebase)

● ~1000 lines of code
● In self-contained 

directory structure

 eaj – (Extended AspectJ)

 ast – new polyglot
          ast nodes

 visit – new polyglot 
          passes

 parse – new 
          scanner,
          parser extensions

 weaver – backend
          extensions



Layout of an extension

● ExtensionInfo is sub-classed for each 
extension.
– Calls a new scanner and an extended parser

– Creates factories for creating Polyglot AST 
nodes and type objects

– (Re)Orders the passes of the compiler



The Cast Pointcut

● Defines a new shadow join point 
encompassing each explicit or implicit cast, 
and a pointcut to match it

● Syntax:

        cast ( TypePattern )

matches all casts to a type matching the
TypePattern



The Cast Pointcut

● For example

pointcut int_to_short(int x) :
    cast(short) && args(x);

● matches a cast from an int to a short and 
binds x to the original int



Check bounds with Cast Pointcut
 import uk.ac.ox.comlab.abc.eaj.lang.reflect.CastSignature;

 aspect BoundsCheck
 {

 before(int x) :
 cast(short) && args(x)

 {
       CastSignature s = (CastSignature)
           thisJoinPointStaticPart.getSignature();

 if (x > Short.MAX_VALUE || x < Short.MIN_VALUE) {
 System.out.println(

 “Warning: information lost casting “ +
 x + “ to a “ + s.getCastType().getName());

 }
 }

 }



Check bounds with Cast Pointcut
 class LoseInformation
 {
     public static void main(String[] args)
     {
         int x = 50000;
         short y;

         y = (short) x;
     }
 }

 $ java LoseInformation
 
 Warning: information lost casting 50000 to a short
 



Implementing the Cast Pointcut

● Frontend
– New polyglot AST node: 

PCCast
 

● Backend
– Cast pointcut class

– Cast shadow join point class
 

● Runtime
– Cast signature
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● Create a polyglot AST node 
which stores the 
TypePattern
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 Class PCCast_c extends Pointcut_c
                implements PCCast
 {
   protected TypePatternExpr type_pattern;
     .
     .
     .
   public abc.weaving.aspectinfo.Pointcut makeAIPointcut()
   {
     return new
       abc.eaj.weaving.aspectinfo.Cast
          (type_pattern.makeAITypePattern(), position());
   }   
 }

Implementing the Cast Pointcut



● The cast pointcut matches 
cast join points if they cast a 
type matching a TypePattern
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 class Cast extends ShadowPointcut
 {
   private TypePattern type_pattern;
     .
     .
     .
   protected Residue matchesAt(ShadowMatch sm)
   {
     if (! (sm instanceof CastShadowMatch)) return null;
     Type cast_to = ((CastShadowMatch) sm).getCastType();

     if (!getPattern().matchesType(cast_to)) return null;
     return AlwaysMatch.v;
   }   
 }

Implementing the Cast Pointcut



● Casts only occur on the right-
hand-side of assignments in 
Jimple
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 class CastShadowMatch extends StmtShadowMatch
 {
   private Type cast_to;
     .
     .
   public static CastShadowMatch(MethodPosition pos)
   {
     if (!(pos instanceof StmtMethodPosition)) return null;
     .
     .
     if (!(rhs instanceof CastExpr)) return null;
     Type cast_to = ((CastExpr) rhs).getCastType();

     return new CastShadowMatch(pos.getContainer(),
                                stmt, cast_to);
   }   
 }

Implementing the Cast Pointcut



● CastSignature, in the runtime 
library, allows the retrieval of 
the type of a cast at runtime

● The information needed by the 
runtime is encoded by the 
compiler in the same way that
ajc does
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Implementing the Cast Pointcut



Future extensibility

● AspectJ
– When making compiler extensions you often 

want to change a class in the compiler source.

– If you do, this leads to maintenance problems.

– If you don't, you may have to subclass whole 
class hierarchies.

– A possible solution is to use Intertype 
declarations.


