
Extending abc

Aspect Bench Compiler

● abc...
– ...is designed to provide a workbed for research

and investigation

– ...therefore must be flexible and extensible

● We ensured that it is by extending it

Layout of an extension

● 3 small extensions
● 2 ½ weeks coding

(no prior experience
with the codebase)

● ~1000 lines of code
● In self-contained

directory structure

 eaj – (Extended AspectJ)

 ast – new polyglot
 ast nodes

 visit – new polyglot
 passes

 parse – new
 scanner,
 parser extensions

 weaver – backend
 extensions

Layout of an extension

● ExtensionInfo is sub-classed for each
extension.
– Calls a new scanner and an extended parser

– Creates factories for creating Polyglot AST
nodes and type objects

– (Re)Orders the passes of the compiler

The Cast Pointcut

● Defines a new shadow join point
encompassing each explicit or implicit cast,
and a pointcut to match it

● Syntax:

 cast (TypePattern)

matches all casts to a type matching the
TypePattern

The Cast Pointcut

● For example

pointcut int_to_short(int x) :
 cast(short) && args(x);

● matches a cast from an int to a short and
binds x to the original int

Check bounds with Cast Pointcut
 import uk.ac.ox.comlab.abc.eaj.lang.reflect.CastSignature;

 aspect BoundsCheck
 {

 before(int x) :
 cast(short) && args(x)

 {
 CastSignature s = (CastSignature)
 thisJoinPointStaticPart.getSignature();

 if (x > Short.MAX_VALUE || x < Short.MIN_VALUE) {
 System.out.println(

 “Warning: information lost casting “ +
 x + “ to a “ + s.getCastType().getName());

 }
 }

 }

Check bounds with Cast Pointcut
 class LoseInformation
 {
 public static void main(String[] args)
 {
 int x = 50000;
 short y;

 y = (short) x;
 }
 }

 $ java LoseInformation

 Warning: information lost casting 50000 to a short

Implementing the Cast Pointcut

● Frontend
– New polyglot AST node:

PCCast

● Backend
– Cast pointcut class

– Cast shadow join point class

● Runtime
– Cast signature

Polyglot
frontend

Backend
(pointcut)

Backend
(join point)

Runtime
reflection

● Create a polyglot AST node
which stores the
TypePattern

Polyglot
frontend

Backend
(pointcut)

Backend
(join point)

Runtime
reflection

 Class PCCast_c extends Pointcut_c
 implements PCCast
 {
 protected TypePatternExpr type_pattern;
 .
 .
 .
 public abc.weaving.aspectinfo.Pointcut makeAIPointcut()
 {
 return new
 abc.eaj.weaving.aspectinfo.Cast
 (type_pattern.makeAITypePattern(), position());
 }
 }

Implementing the Cast Pointcut

● The cast pointcut matches
cast join points if they cast a
type matching a TypePattern

Polyglot
frontend

Backend
(pointcut)

Backend
(join point)

Runtime
reflection

 class Cast extends ShadowPointcut
 {
 private TypePattern type_pattern;
 .
 .
 .
 protected Residue matchesAt(ShadowMatch sm)
 {
 if (! (sm instanceof CastShadowMatch)) return null;
 Type cast_to = ((CastShadowMatch) sm).getCastType();

 if (!getPattern().matchesType(cast_to)) return null;
 return AlwaysMatch.v;
 }
 }

Implementing the Cast Pointcut

● Casts only occur on the right-
hand-side of assignments in
Jimple

Polyglot
frontend

Backend
(pointcut)

Backend
(join point)

Runtime
reflection

 class CastShadowMatch extends StmtShadowMatch
 {
 private Type cast_to;
 .
 .
 public static CastShadowMatch(MethodPosition pos)
 {
 if (!(pos instanceof StmtMethodPosition)) return null;
 .
 .
 if (!(rhs instanceof CastExpr)) return null;
 Type cast_to = ((CastExpr) rhs).getCastType();

 return new CastShadowMatch(pos.getContainer(),
 stmt, cast_to);
 }
 }

Implementing the Cast Pointcut

● CastSignature, in the runtime
library, allows the retrieval of
the type of a cast at runtime

● The information needed by the
runtime is encoded by the
compiler in the same way that
ajc does

Polyglot
frontend

Backend
(pointcut)

Backend
(join point)

Runtime
reflection

Implementing the Cast Pointcut

Future extensibility

● AspectJ
– When making compiler extensions you often

want to change a class in the compiler source.

– If you do, this leads to maintenance problems.

– If you don't, you may have to subclass whole
class hierarchies.

– A possible solution is to use Intertype
declarations.

