
Efficient Implementation of Around-Advice for the

AspectBench Compiler

Oxford University

Computing Laboratory

Sascha Kuzins
Lady Margaret Hall

September 2, 2004

Abstract

In Aspect Oriented Programming, aspects observe a base program and exe-
cute extra code – the advice – when certain patterns of events occur. Advice
can be executed before, after of instead of the original event. Around-advice
executes instead of the original code of the base program, but is allowed to
explicitly invoke the original code.

The most popular implementation language for aspects is AspectJ, an
extension of Java.

This dissertation presents an efficient and complete code generation
strategy for around advice as part of the AspectBench Compiler abc. Mea-
surements are presented which show that the strategy can yield perfomance
gains of 200% or more when compared to the official AspectJ compiler ajc.

Acknowledgements

I would like to thank Professor Oege de Moor for letting me work on this
project and for providing support and guidance throughout. Many thanks
to Professor Laurie Hendren, who was of great help during the initial phase
of the project.

It has been a great experience to work on the AspectBench Compiler
team, and I would like to thank everyone for providing such an interesting
and fun environment.

Contents

1 Introduction 7

1.1 Contribution of Thesis . 7
1.2 Thesis Organization . 8

2 Background 9

2.1 Aspect Oriented Programming 9
2.1.1 Logging . 9
2.1.2 Enforcing Coding Standards 10
2.1.3 Caching . 12

2.2 The AspectJ Language . 14
2.2.1 Joinpoints . 14
2.2.2 Pointcuts . 15
2.2.3 Advice . 15
2.2.4 Intertype declarations 16
2.2.5 Aspects . 17

2.3 Around-Advice . 17
2.3.1 Proceed . 17
2.3.2 Advice Formals . 18
2.3.3 Return type and value 19
2.3.4 Advanced Around-Advice Examples 19

2.4 The AspectBench Compiler 24
2.4.1 Aims . 24
2.4.2 Architecture . 25

3 Weaving Around-Advice 28

3.1 Aims . 28
3.2 Concepts . 29

3.2.1 The Joinpoint Shadow 29
3.2.2 Advice Methods . 31
3.2.3 Advice Applications 31
3.2.4 Dynamic residue . 31

3.3 Weaving . 31
3.3.1 Basic weaving strategy 31

1

CONTENTS

3.3.2 Joinpoint Context . 32
3.3.3 The Closure Approach 34
3.3.4 Avoiding the Closure 35
3.3.5 Passing Context . 39
3.3.6 Binding of Exposed Context Values 41
3.3.7 Local and anonymous classes 49
3.3.8 Circular advice applications 52
3.3.9 Closures . 54

4 Implementation 58

4.1 Structure . 58
4.1.1 Advice lists . 58
4.1.2 Ordering of advice applications 58
4.1.3 Data structures . 59
4.1.4 Incremental weaving 60

4.2 Changes to the residue classes 61
4.2.1 Bindings . 61
4.2.2 Type check optimization 61

5 Benchmarks 62

5.1 Methodology . 62
5.2 Measurements . 62

5.2.1 Coding Standards . 62
5.2.2 Local classes . 65

6 Conclusion 67

6.1 Summary . 67
6.2 Future work . 67

A Comprehensive Example 71

2

List of Figures

2.1 Logger output . 10
2.2 Architecture of abc . 25

4.1 Object hierarchy . 60

5.1 abc and ajc, normal operation 64
5.2 ajc and abc forced to use closures 64
5.3 DelayOutput results, performance ratios 66

3

List of Tables

2.1 Joinpoints in AspectJ . 15
2.2 Pointcut primitives . 16
2.3 Soot intermediate representations 26
2.4 Jimple Statements . 26

3.1 Context parameters, mapping of types 39

4.1 Classes within the weaver . 59

5.1 Nullcheck execution times (in seconds) 63
5.2 DelayOutput results (in seconds) 65

4

Listings

2.1 Logging aspect . 10
2.2 Simple base program . 10
2.3 Nullcheck aspect . 11
2.4 Nullcheck example base program 12
2.5 Factorial example . 12
2.6 Caching aspect . 13
2.7 Binding advice formals . 18
2.8 Jimple example . 27
3.1 Joinpoint shadow at the Jimple level 29
3.2 Example: Method with multiple returns 30
3.3 Structure of the shadow replacement 32
3.4 Joinpoint shadow with literals 33
3.5 Joinpoint shadow with unique locals 33
3.6 Closure interface . 34
3.7 Advice method, closure approach 34
3.8 Implementation of closure interface 34
3.9 Closure creation at the shadow site 35
3.10 Reusing the shadow’s instance 35
3.11 The Shadow-ID mechanism 36
3.12 Shadow-ID and inheritance 37
3.13 Context parameters, example program 39
3.14 Context parameters in the shadow class 40
3.15 Context parameters in the advice method 41
3.16 Skip flag: proceed method . 43
3.17 Skip flag: shadow site . 43
3.18 Skip flag: advice method . 44
3.19 Multiple bindings, proceed . 46
3.20 Base program triggers different bindings 46
3.21 Creation of the bind mask . 47
3.22 Evaluation of the bind mask 48
3.23 Alternative evaluation strategy 49
3.24 Local class in around advice 50
3.25 Modified local class . 50
3.26 Initialization of local class . 51

5

LISTINGS

3.27 Program with circular around advice application 53
3.28 Aspect with circular advice, extended output 53
3.29 Closure class . 55
3.30 Closure static proceed method 56
3.31 Helper function for if residue 56
3.32 Closure object creation . 57
5.1 Nullcheck: Pointcut A . 63
5.2 Nullcheck: Pointcut B . 63
5.3 Nullcheck: Pointcut C . 63
5.4 Benchmark for anonymous classes 65
A.1 Server . 71
A.2 RequestHandler . 73
A.3 ThreadPooling aspect . 74
A.4 Closure interfaces . 77

6

Chapter 1

Introduction

Aspect Oriented Programming (AOP) is a new programming paradigm that
addresses cross-cutting concerns. Cross-cutting concerns are concerns that
cross-cut traditional boundaries of abstraction. The aim of AOP is to allow
the programmer to cleanly express cross-cutting concerns in a modular way.

The most commonly cited example for the use of AOP is logging of
events. AOP allows the programmer to add such logging functionality to a
program without modifying the original program code. To achieve this, the
programmer writes an aspect that is applied to the base program to add the
logging functionality.

The design of language features for catching deviant behaviour at run-
time is highly worthwhile: for example, the current codebase for Microsoft
Word contains over 3000 macros for logging purposes.

1.1 Contribution of Thesis

The aim of this work is to provide an efficient implementation of the most
versatile kind of advice of the language, namely around advice.

The contributions of this work are

• to provide a novel weaving strategy that generally neither relies on
inlining nor closures

• to show an implementation strategy for multiple variable bindings in
conjunction with around advice

As we shall demonstrate, our implementation strategy results in massive
speedups over the state-of-the-art.

7

1. INTRODUCTION 1.2. Thesis Organization

1.2 Thesis Organization

Chapter 2 starts out with an overview of Aspect Oriented Programming and
some simple examples. The chapter gives a brief introduction to the AspectJ
language with a focus on around advice. The chapter concludes with a
section on the AspectBench Compiler abc, its architecture and components.

Chapter 3 describes the actual code generation strategy of the around
weaver presented in this thesis. The strategy is illustrated using example
AspectJ programs together with the code that is generated by the weaver.
Each feature is described separately, and the aim was to reduce the example
programs as far as possible to clearly demonstrate the essentials of each
feature. The appendix of this thesis contains the decompilation of a more
complex example.

Chapter 4 focuses on the implementation of the weaver, including its
structure and class and object hierarchies.

Chapter 5 shows benchmarks of programs generated by abc and com-
pares the results with programs generated by the official AspectJ compiler
ajc.

Chapter 6 summarizes the results of this work and shows potential future
additions and optimizations.

8

Chapter 2

Background

2.1 Aspect Oriented Programming

Aspect Oriented Programming allows the programmer to write aspects that
monitor and modify the behaviour of a base program without modifying the
source code of the base program itself.

Conceptually, aspects observe the base program at run-time. This is in
contrast to meta-programming techniques, which perform transformations
at compile time. An efficient implementation will try to do static analyses
at compile time to minimize the overhead at run-time.

A dynamic joinpoint is an event in the program. The joinpoint shadow
is the program point that corresponds to the joinpoint. A pointcut defines
a pattern of events or joinpoints. Advice is extra code that is executed.

Intertype Declarations are part of the static part of the language and
allow the introduction of new members into existing classes at compile time.

We shall now illustrate these definitions with a number of example pro-
grams before proceeding to a more detailed description.

2.1.1 Logging

Logging is a common debugging technique. Traditionally, the programmer
would have to insert calls to the logging facility at every point of interest
in the program. This is undesirable because this one concern is spread
throughout the whole program.

In AspectJ, the concern of logging can be implemented in a single aspect,
thus preserving modularity. The following aspect implements a very simple
logger that logs all dynamic joinpoints of the base program.

9

2. BACKGROUND 2.1. Aspect Oriented Programming

Listing 2.1: Logging aspect

1 aspect Logger
2 {
3 before () : ! within (Logger) {
4 System . out . p r i n t l n (thisJoinPoint) ;
5 }
6 }

The aspect contains one piece of before advice. This advice is executed
before the execution of the joinpoint. The poincut expression !within(Logger)

picks out all joinpoints that are not within the aspect itself. The advice body
simply prints out information about the current joinpoint. It uses the special
keyword thisJoinPoint. This keyword returns an interface through which
information about the joinpoint can be queried.

When the aspect is applied to the following base program, the output in
Figure 2.1 is produced.

Listing 2.2: Simple base program

1 public class Foo
2 {
3 public static void main (St r ing args [])
4 {
5 bar () ;
6 }
7 public static void bar () {}
8 }

staticinitialization(Foo.<clinit>)

execution(void Foo.main(String[]))

call(void Foo.bar())

execution(void Foo.bar())

Figure 2.1: Logger output

This illustrates some of the joinpoints that are supported by AspectJ:
one can intercept the static initialisation of a class (here Foo), the execution
of a method (here main), and the call of a method (here Foo.bar()). The
distinction between call and execution is that between the call site and the
method body. This example only shows three of the joinpoint types that
AspectJ supports; there are 11 in all, and we shall present a full list in
Section 2.2.1.

2.1.2 Enforcing Coding Standards

As described in [3], programmers sometimes signal error conditions by re-
turning null from methods. This can be regarded as a poor programming

10

2. BACKGROUND 2.1. Aspect Oriented Programming

style since the exception mechanism provides a more structured way of sig-
nalling errors.

The nullcheck example shows how aspects can be used to enforce such
coding standards at runtime.

The aspect below monitors the base program and logs violations of the
coding convention. The originator of this example chose to implement it
using around advice.

The pointcut expression methodsThatReturnObjects matches all calls to
methods that return objects. To wit, the pointcut (call(Object+ ∗.∗(..)))
describes calls to methods in any class (the first star) with any name (the
second star) and any number of parameters (the (..)), whose return type
is a subtype of Object (the subtype matching is indicated by the +). The
around advice is executed for all these calls. The advice uses the special
proceed statement to proceed with the original method call. It then checks
the returned value and signals the error condition if appropriate.

Interestingly, the pointcut in this aspect matches two joinpoints within
the advice itself, namely the call to thisJoinPoint.getSignature() and the
implicit StringBuffer .append() that the compiler generates for the + operator.
As observed in [3], this form of self referencing advice causes the official
AspectJ compiler ajc to use its closure strategy, which results in a slow
execution of the resulting program.

Listing 2.3: Nullcheck aspect

1 aspect Aspect
2 {
3 pointcut methodsThatReturnObjects () :
4 cal l (Object+ ∗ . ∗ (. .)) ;
5

6 Object around () : methodsThatReturnObjects ()
7 {
8 Object lRetVal = proceed () ;
9 i f (lRetVal == null)

10 {
11 System . e r r . p r i n t l n (
12 ”Nul l r e turn va lue : ” +
13 thisJoinPoint . g e tS igna tur e ()) ;
14 }
15 return lRetVal ;
16 }
17 }

The following simple base program intentionally violates the coding con-
vention.

11

2. BACKGROUND 2.1. Aspect Oriented Programming

Listing 2.4: Nullcheck example base program

1 public class Foo
2 {
3 public static void main (St r ing args [])
4 {
5 bar () ;
6 }
7 public static Object bar () {
8 r e turn nu l l ; // v i o l a t e s coding s tandard
9 }

10 }

The aspect produces the following output:

Null return value: Object Foo.bar()

Seasoned AspectJ programmers may object that the above example
could have been more efficiently expressed using the after returning con-
struct. Our reply is that the stark efficiency tradeoff between around and
after returning is merely an artifact of the implementation strategy chosen
by ajc, and indeed we intend to eliminate that peculiarity. Furthermore, the
code shown here was directly taken from an on-line article by Dale Asberry
(see [3]).

2.1.3 Caching

Caching is a well known method to speed up programs. This can be regarded
as a cross-cutting concern.

• The concern of the base program is to produce the correct output.

• The concern of the caching is to speed up the program at the cost of
runtime memory usage without modifying its external behaviour as a
function.

Both concerns are independent of each other.
Using AOP, the caching functionality can be expressed in an aspect as

a separate module.
As an example, let us consider the factorial function.

Listing 2.5: Factorial example

1 class Fac to r i a l {
2 public static long f a c t o r i a l (int n) {
3 return n==0 ? 1 : f a c t o r i a l (n−1) ∗ n ;
4 }
5 }

12

2. BACKGROUND 2.1. Aspect Oriented Programming

This function has linear complexity. Caching cannot speed up the initial
invocation of the function. However, this function can especially benefit
from caching if it is invoked multiple times.

The following aspect implements the caching concern. It contains two
pieces of advice. The around advice intercepts every invocation of the func-
tion, checks the cache and on success returns the cached value. The after
returning advice only intercepts the non-recursive factorial invocations using
the cflowbelow statement and stores the results in the cache. This strategy
prevents caching of all steps of the recursive calculation and thus reduces
memory consumption.

Listing 2.6: Caching aspect

1 aspect Factor ia lCache {
2 private java . u t i l .Map cache=new java . u t i l . HashMap () ;
3

4 // named po in t cu t matching the ex ecu t ion
5 // o f the f a c t o r i a l method
6 pointcut f a c to r i a lMethod (int n) :
7 execution (long Fac to r i a l . f a c t o r i a l (int)) &&
8 args (n) ;
9

10 after (int n) returning (long l) :
11 f a c to r i a lMethod (n) &&
12 ! cflowbelow (f a c to r i a lMethod (int)) // exc lude
13 // r e cu r s i v e
14 // c a l l s
15 {
16 // add the re turned va lu e to the cache
17 cache . put (new I n t e g e r (n) , new Long (l)) ;
18 }
19

20 long around (int n) : f a c to r i a lMethod (n)
21 {
22 I n t e g e r lookupValue=new I n t e g e r (n) ;
23 Object cachedValue=cache . get (lookupValue) ;
24 i f (cachedValue !=null)
25 // return cached va lu e
26 return ((Long) cachedValue) . longValue () ;
27 else

28 // cache miss : proceed with c a l c u l a t i o n .
29 return proceed (n) ;
30 }
31 }

13

2. BACKGROUND 2.2. The AspectJ Language

2.2 The AspectJ Language

AspectJ[2] was originally developed at Xerox Palo Alto Research Center
(PARC). It has now become part of the Eclipse project.

AspectJ is implemented as an extension to the Java programming lan-
guage. AspectJ is intended to be a superset of Java, and the AspectJ com-
piler ajc should compile all valid Java programs. To achieve this, most As-
pectJ keywords are only recognized inside of aspects. Furthermore, the pro-
duced programs should run on the standard Java Virtual Machine (JVM).

The AspectJ compiler itself is released as open source under the Common
Public License (CPL); is is maintained by a team of professional program-
mers at IBM.

ajc is a stand-alone compiler and is built on top of the Eclipse Java
compiler.

Recall that an aspect observes the execution of the base program, ex-
ecuting advice when it finds joinpoints that match a given pointcut. To
implement this in Java bytecode, ajc attempts to do the pointcut matching
at compile time. Each shadow point is matched against the pointcut. If
execution of the shadow might give rise to a matching joinpoint at runtime,
the compiler inserts a dynamic test (the dynamic residue), and a call to the
relevant advice. This process is called weaving.

ajc allows weaving into Java sources as well as Java class files. The
output always consists of class files.

AspectJ comes with a runtime library that must be present when exe-
cuting compiled programs. The runtime library contains interfaces that can
be used in AspectJ programs. These are in the package org.aspectj.lang.

It follows a discussion of the concepts of AspectJ that are relevant for
this thesis.

2.2.1 Joinpoints

Joinpoints are well defined events in the execution of a program. These
events can trigger the execution of additional code.

Joinpoints are largely dynamic in nature: They can depend on the cur-
rent call stack, or can be picked out using arbitrarily complex Java expres-
sions.

Table 2.1 lists the joinpoints that are available in the AspectJ language
[6] and describes the context values which they expose.

A joinpoint shadow is the static region of code that corresponds to a
joinpoint. For example, the shadow corresponding to the execution of a
method is the body of that method.

14

2. BACKGROUND 2.2. The AspectJ Language

Joinpoint Exposed context

Method call Caller, target object, method arguments, re-
turned value

Method execution Instance, method arguments, returned value

Constructor call Caller, constructor arguments

Constructor execution Constructed object, constructor arguments

Static initializer execution none

Field get Referencing instance, target object, field
value

Field set Setting instance, target object, set value

Advice execution Aspect, advice arguments, advice return
value

Object pre-initialization Constructor arguments

Object initialization Instance, constructor arguments

Handler execution Instance, exception

Table 2.1: Joinpoints in AspectJ

2.2.2 Pointcuts

A pointcut is a set of joinpoints. The AspectJ language contains a poincut
language which is used to define pointcuts.

Pointcut expressions are built from pointcut primitives which can be
combined using pointcut operators. Table 2.2 lists the available primitives.
The operators are logical and (&&), logical or (||) and logical not (!).

A pointcut expression (or pointcut designator, PCD) picks out dynamic
joinpoints. For each joinpoint, a PCD returns a set of bindings between
advice formals and context values of the joinpoint[11].

2.2.3 Advice

Advice is extra code defined by the programmer. There are three different
kinds of advice.

• before advice is executed before the execution of the joinpoint

• after advice is executed after the execution of the joinpoint. There are
two specializations of after advice:

– after returning advice is triggered if the joinpoint returns without
throwing an exception. after returning advice can capture the
return value of the joinpoint.

– after throwing advice is triggered if the joinpoint throws an ex-
ception and can capture the thrown exception.

15

2. BACKGROUND 2.2. The AspectJ Language

Pointcut primitive Matched joinpoints

execution Method and constructor execution

call Method and constructor calls

staticinitialization Static initializer execution

get Field gets

set Field sets

handler Exception handlers

initialization Object initialization, part after super call

preinitialization Object initialization, part before super call

adviceexecution execution of advice methods

cflow joinpoints in the control flow of the joinpoints
of a specified pointcut

cflowbelow Equivalent to cflow, excluding the joinpoints of
the specified pointcut

within Joinpoints within specified classes

withincode Joinpoints within specified methods

this Joinpoints with a this context value of a speci-
fied type. Can bind the context value.

target Joinpoints with a target context value of a spec-
ified type. Can bind the context value.

args Joinpoints with arguments of specified types.
Can bind the context values.

if Joinpoints for which a boolean AspectJ expres-
sion evaluates to true

Table 2.2: Pointcut primitives

• around advice is executed instead of the joinpoint. around advice can
then optionally invoke the original joinpoint. This thesis focuses on
this type of advice, and the semantics of around advice are explained
in greater detail in the next section.

2.2.4 Intertype declarations

This feature of AspectJ allows modifications of classes at compile time. In-
tertype declarations are purely static. In particular, intertype declarations
support

• the addition of methods and member variables to other classes.

• modifications of the class hierarchy

• the declaration of compile time warnings and errors.

16

2. BACKGROUND 2.3. Around-Advice

Intertype declarations are relatively independent of the dynamic part of
the language and are not the focus of this thesis.

2.2.5 Aspects

Pointcuts, advice and intertype declarations are defined inside of aspects.
Aspects are similar to classes, and additional methods, fields, initializers
and classes can be defined within aspects.

Aspects are never directly instantiated by the programmer. Instead,
aspects are created automatically, usually as a singleton instance or, as an
advanced feature, on a per object basis.

2.3 Around-Advice

This section focuses on the syntax and semantics of around advice in As-
pectJ.

Around-advice surrounds the joinpoint’s execution. Around-advice can
bypass the execution, invoke the original execution and alter the context of
the execution. [6]

Around-advice is the most general form of advice. All other kinds of ad-
vice, namely before, after, after returning and after throwing, can be trans-
formed into around-advice (modulo some subtle issues in the type-checking
rules, which are beyond the scope of this thesis).

Advanced examples of around advice usage are presented towards the
end of this section.

2.3.1 Proceed

Within the advice body, the statement proceed invokes the original join-
point.

proceed must be called like a method with the same signature as the
around advice. The meaning of the arguments is discussed below in con-
junction with advice formals.

The use of proceed is optional. proceed statements can occur in the
body an arbitrary number of times, and each call can be invoked an arbitrary
number of times.

The return type of the proceed call is the same as the return type of the
around advice.

Local and anonymous classes

proceed can be called from within local or anonymous classes inside the
around body.

17

2. BACKGROUND 2.3. Around-Advice

One implication is that such proceed invocations can occur at an arbi-
trary time after the control flow of the program has left the advice body.
Readers who are familiar with compiler construction will recognize that this
points to closures as the obvious implementation strategy for proceed.

2.3.2 Advice Formals

Around advice can have arguments. Arguments are used to access the ex-
posed context values of the joinpoint. The mapping of the arguments to
context values is called binding. All of the advice formals must be bound
to values of the current context. Binding is done in the pointcut using the
pointcut primitives args, this and target.

The number and type of arguments that are passed to proceed must
match the declaration of the around advice. The programmer can modify
the context values of the joinpoint by passing different values to proceed.

The following simple example illustates this mechanism. The advice
captures calls to all void methods that have one argument of type Integer.
The advice formal n is bound to the argument of the call using args(n).
This value is replaced by the value passed to proceed. In this example, null

values are replaced by an Integer instance with the value 0, and all other
values are passed on without modification.

Listing 2.7: Binding advice formals

1 void around (I n t e g e r n) : cal l (void ∗ .∗ (I n t e g e r)) && args (n)
2 {
3 proceed (n==null ? new I n t e g e r (0) : n) ;
4 }

One context value can be bound to multiple advice arguments. In the
advice declaration below, both x and y are bound to the this context value
of the joinpoint.

If one context value is bound to multiple arguments and proceed is
passed a different value for each argument, it is not obvious which value
should eventually be assigned to the context value.

1 void around (Object x , Object y) : this (x) && this (y)
2 {
3 proceed (foo , bar) ; // foo and bar de f ined e l s ewhere
4 }

In this example, when executing the joinpoint, the question is whether the
this value is assigned foo or bar.

The AspectJ programming guide does not specify this. Experiments
with ajc show that in case of a conflict, the last parameter that is bound
to the context value is chosen. The weaver presented in this thesis follows
that convention.

18

2. BACKGROUND 2.3. Around-Advice

Another special case arises if a pointcut expression contains multiple
binding sub-expressions that bind different context values to the same advice
argument. The effective binding may depend on dynamic checks and thus
may only be known at runtime.

1 void around (Foo x) : args (x , . . .) | | args (. . , x)
2 . . .

This pointcut matches a joinpoint if the first argument is of type Foo and
binds x to this argument. The pointcut also matches if the first argument
is not of type Foo, but the last argument is. In this case, x is bound to the
last argument.

When passing a value to proceed, the question is whether to assign this
value to the first argument or to the last argument. The only reasonable
behaviour is to consider the effective binding at runtime and, in the case
of passing changed values to proceed, modify the effectively bound context
value.

This case of multiple bindings causes certain implementation difficulties.
The ajc compiler (version 1.2) is limited in that it does not allow such
bindings and aborts with a compiler limitation error. The around weaver
presented in this thesis is able to correctly deal with this situation.

2.3.3 Return type and value

Around advice must have a return type (which can be void). The value
returned by the advice replaces the original value of the joinpoint.

Object return type This type is treated differently from other types. 1

Advice with Object return type can apply to any joinpoint, regardless of its
type.

• All reference types are of type Object and require no special treatment

• Simple types are automatically boxed and unboxed

• If the advised joinpoint has void type, the returned value is ignored.
proceed returns null in this case.

2.3.4 Advanced Around-Advice Examples

We now present two more advanced examples for around advice. Each of
these examples has a special way of using around. The examples are loosely
based on ideas from [6].

1The abc team largely considers this special treatment an unfortunate design choice
for the AspectJ language. The proposed alternative would be a syntax that explicitly
indicates the special behaviour.

19

2. BACKGROUND 2.3. Around-Advice

Thread Safety

This example shows how to use AspectJ to transparently enforce thread
safety. The example uses the Swing Java GUI library. Since the library
is not thread safe, the safety rule for this library is that only the event-
dispatching thread should directly access Swing components. Other threads
can access Swing components indirectly by calling EventQueue.invokeLater()

or EventQueue.invokeAndWait() and passing these methods an object of type
Runnable. The event-dispatching thread then executes the run() method of
the object.

This approach has some disadvantages.

• It is error-prone since the programmer has to remember to use this
indirect access method. The compiler will not issue any warnings if
the safety rule is violated.

• Wrapping all the modifying code in Runnable classes clutters the source
code and makes it less comprehensible.

Using AspectJ, the thread safety rule can be implemented transparently.
The following aspect shows the implementation. 2

1 aspect SwingThreadSafety {
2 pointcut uiMethodCal ls () :
3 cal l (void javax . . JComponent + . ∗ (. .)) | |
4 . . . // more r e l e v an t packages
5

6 void around () : uiMethodCal ls ()
7 {
8 Runnable worker = new Runnable () {
9 public void run () {

10 proceed () ;
11 }
12 } ;
13 EventQueue . invokeLater (worker) ;
14 }
15 }

The pointcut uiMethodCalls captures all calls to void Swing methods that
have to obey the thread rule. The around advice is invoked for all of these
calls. It creates the required Runnable object and adds it to the event queue.

In this example, proceed is used inside an anonymous class within the
around advice body. It is noteworthy that the proceed call is invoked

• by a different thread

2To allow the reader to focus on the essential parts, the aspect has been simplified as
far as possible and in this form only supports calls to void methods. A more detailed
implementation can be found in [6].

20

2. BACKGROUND 2.3. Around-Advice

• at a later point of time in the program’s execution.

From an implementation point of view, in particular this means that the
context of the joinpoint has to be kept until that invocation occurs.

Thread Pooling

In this example, the base program is a simple multi-threaded TCP server ap-
plication. The server listens for incoming connections and for each incoming
request creates a new handler thread that executes the request.

1 import java . u t i l . ∗ ;
2 import java . i o . ∗ ;
3 import java . net . ∗ ;
4

5 public class Server
6 {
7 public static f ina l int PORTNUM=0xABC;
8 public static void main (St r ing [] args) throws Exception
9 {

10 ServerSocket s e rve rSocke t=
11 new ServerSocket (PORTNUM) ;
12 while (true)
13 {
14 Socket r eque s tSocke t=se rve rSocke t . accept () ;
15 Thread requestThread=
16 new RequestHandler (r eque s tSocke t) ;
17 requestThread . s t a r t () ;
18 }
19 }
20 }

The handler thread has a method run() that performs the service to the
client. The example handler simply sends a string to the client:

1 class RequestHandler extends Thread
2 {
3 private Socket r eque s tSocke t ;
4 public RequestHandler (Socket r eque s tSocke t)
5 {
6 this . r eque s tSocke t=reque s tSocke t ;
7 }
8 public void run ()
9 {

10 // proces s r e qu e s t . . .
11 Pr intWr iter w r i t e r=null ;
12 try {
13 wr i t e r=new Pr intWr iter (
14 r eque s tSocke t . getOutputStream ()) ;
15 // s imu la t e l en g t hy opera t ion

21

2. BACKGROUND 2.3. Around-Advice

16 try { Thread . s l e ep (1 0 0 0) ; }
17 catch (Inter ruptedExcept ion e){}
18 wr i t e r . wr i t e (” He l lo !\n”) ;
19 wr i t e r . f l u s h () ;
20 } catch (IOException ex) {
21 } f ina l ly { // f r e e re sources
22 try {
23 i f (w r i t e r !=null)
24 wr i t e r . c l o s e () ;
25 r eque s tSocke t . c l o s e () ;
26 } catch (IOException ex) { }
27 }
28 }
29 }

In real world applications where performance is important, thread pool-
ing is often used to lower the performance impact of thread creation and
destruction.

Thread pooling can be regarded as a concern independent of the server
functionality itself. Using AspectJ, thread pooling can be implemented in a
separate module.

The following aspect shows such an implementation for the above base
program. 3

The aspect has three pieces of around advice. Their function is to

• modify the execution of the request handler to be able to run multiple
times

• intercept the creation of new request handlers and to return an existing
handler from the pool if possible

• intercept calls to the thread-start function and modify them to wake
up the pooled thread if necessary.

The first piece of around advice is shown below. After every execution
of the handler (which is invoked by proceed), the thread adds itself to the
pool and waits.

1 privileged aspect ThreadPooling {
2 Set pool=new HashSet () ;
3

4 // Capture ex ecu t ion o f r e qu e s t handler
5 void around (RequestHandler requestHandler) :
6 execution (void RequestHandler . run ()) &&
7 this (r equestHandler){
8 while (true) {

3The example has been simplified as far as possible for added clarity. For a more
heavy-weight implementation, see [6].

22

2. BACKGROUND 2.3. Around-Advice

9 // execu t e handler
10 proceed (r equestHandler) ;
11 r equestHandler . r eque s tSocke t=null ;
12 // add handler to poo l
13 synchronized (pool) {
14 pool . add (requestHandler) ;
15 }
16 // wai t
17 synchronized (r equestHandler) {
18 while (r equestHandler . r eque s tSocke t==null) {
19 try{ r equestHandler . wait () ; }
20 catch (Inter ruptedExcept ion e) {}
21 }
22 }
23 }
24 }
25 . . .
26 }

For every creation of a new request handler, the second piece of advice
checks the pool for available threads. If such a thread exists, it is removed
from the pool and returned. Otherwise, the original joinpoint is invoked
which creates a new thread.

1 privileged aspect ThreadPooling {
2 . . .
3 // i n t e r c e p t new handler c rea t ion
4 RequestHandler around (Socket so cke t) :
5 cal l (RequestHandler .new(Socket)) &&
6 args (s o cke t) {
7 synchronized (pool) {
8 i f (pool . isEmpty ()) {
9 // proceed with crea t ion

10 RequestHandler r e s u l t=proceed (s o cke t) ;
11 return r e s u l t ;
12 } else {
13 // r e c y c l e handler from pool
14 RequestHandler r e s u l t=
15 (RequestHandler) pool . i t e r a t o r () . next () ;
16 pool . remove (r e s u l t) ;
17 r e s u l t . r eque s tSocke t=socke t ;
18 return r e s u l t ;
19 }
20 }
21 }
22 . . .
23 }

Finally, the Thread.start() method has to be intercepted. Threads from
the pool have already been started, so the advice notifies these threads to

23

2. BACKGROUND 2.4. The AspectBench Compiler

resume execution instead.

1 privileged aspect ThreadPooling {
2 . . .
3 // In t e r c ep t thread s t a r t
4 void around (RequestHandler requestHandler) :
5 cal l (void Thread . s t a r t ()) &&
6 target (r equestHandler) {
7 i f (r equestHandler . i sA l i v e ())
8 // i f the thread i s a reused thread ,
9 // wake i t up

10 synchronized (r equestHandler) {
11 r equestHandler . n o t i f y () ;
12 }
13 else

14 // f o r new threads ,
15 // proceed with Thread . s t a r t ()
16 proceed (r equestHandler) ;
17 }
18 }

This example is special in that the around advice contains a proceed

statement inside a loop. The proceed statement executes the body of the
advised method repeatedly.

2.4 The AspectBench Compiler

2.4.1 Aims

The AspectBench Compiler (abc) [1] is an alternative compiler for the As-
pectJ language. abc is developed at the Oxford University Computer Lab-
oratory by the Programming Tools Group in cooperation with the Sable
Research Group at McGill University, Canada.

The need for a second AspectJ compiler arises out of some deficiencies
of the original compiler ajc. These deficiencies led to the design goals of
abc. The main design goals of abc are efficiency of the produced code,
extensibility of the compiler and a clean design and language specification.

As of writing, the first version of abc is almost completed and these goals
have largely been achieved.

The success of the abc project is in part due to its foundation. abc is
based on a powerful optimization framework with an elegant intermediate
representation of Java bytecode. The front-end of the compiler is based on
an extensible Java front-end framework.

Incremental compilation, that is the support for separate compilation
of the units of a program, is not supported by abc. Incremental compila-
tion contradicts the design goals of producing efficient code and of a clean
architectural design of the compiler.

24

2. BACKGROUND 2.4. The AspectBench Compiler

2.4.2 Architecture

Polyglot Java Compiler

AspectJ extension

AspectJ source,
and jars Java extracts of source

JimpleAspectInfo

intertype adjuster

advice weaver

Soot analysis and
transformation framework

class files

Figure 2.2: Architecture of abc

abc utilizes the Soot Optimization Framework [10], which in turn uses
the Polyglot extensible Java compiler.

Polyglot

Polyglot [9] is an extensible compiler framework for Java. It was designed
to create compilers for languages similar to Java and aims to avoid the need
for code duplication.

Polyglot is written in Java and is open source.

The Soot Optimization Framework

Soot [10] is a framework for analyzing and transforming Java bytecode. It
was developed at McGill University, Montreal. Soot itself is written in Java
and is based on the GNU LGPL.

Soot offers multiple intermediate representations of Java bytecode (see
Table 2.3).

Only Jimple is needed for our purposes.
Soot can read and write Java class files and transform between bytecode

and the intermediate representations.
In addition, Soot uses Polyglot to read Java source files directly. Soot can

also output Java source code and hence can be used as a Java decompiler.

Jimple

Jimple is a typed, stackless 3-address representation of the Java bytecode[10].
It is the principal representation in the soot framework.

25

2. BACKGROUND 2.4. The AspectBench Compiler

Representation Description

Baf Compact, stack based representation of bytecode

Jimple Simple, typed, 3-address stackless representation

Shimple Static Single Assignment (SSA) version of Jimple

Grimp Jimple with aggregated expressions

Dava representation used for decompiling dava

Table 2.3: Soot intermediate representations

Statement Description

NopStmt The no operation statement.

IdentityStmt Used to bind locals to method parameters and
the this pointer

AssignStmt Assignment

IfStmt Conditional jump

GotoStmt Unconditional jump

TableSwitchStmt Table based jump

LookupSwitchStmt List based jump

InvokeStmt Method invocation

ReturnStmt Return statement for non-void methods

ReturnVoidStmt Return statement for void methods

ThrowStmt Throws an exception

EnterMonitorStmt,
ExitMonitorStmt

Mutual exclusion

Table 2.4: Jimple Statements

Jimple has only 15 kinds of statements, as compared to the over 200
kinds of instructions of the Java bytecode. The main reason is that Java
provides specialized versions of its statements for different types, and Jimple
avoids this duplication.

The whole weaving process in abc is done on the Jimple level, and the
stackless representation greatly simplifies the programmatic manipulation
of Java bytecode. The use of a higher level representation sets abc apart
from ajc, which directly manipulates stack based code[4].

Table 2.4 lists the available Jimple statements.

Locals Jimple locals are always typed. Locals do not directly correspond
to Java slots. When converting Jimple to bytecode, the same slot can be
used for multiple locals if the live ranges of these locals do not overlap.

26

2. BACKGROUND 2.4. The AspectBench Compiler

Jimple methods The first statements in the statement chain are gener-
ally the identity statements. The first identity statement assigns the this

parameter to a local. The following identity statements assign the method
parameters to designated locals. A method must end with a return state-
ment.

Listing 2.8 shows a simple example of Jimple source code based on the
Java class in listing 2.2. The example shows that despite its low level nature,
Jimple’s syntax resembles that of Java.

Listing 2.8: Jimple example

1 public class Foo extends java . lang . Object
2 {
3 public static void main (java . lang . S t r ing [])
4 {
5 java . lang . S t r ing [] a rgs ;
6 java . lang . Object r e t v a l ;
7

8 // bind parameter 0 to the args l o c a l
9 args := @parameter0 : java . lang . S t r ing [] ;

10 // invoke the s t a t i c method bar and
11 // as s i gn the r e s u l t to a l o c a l
12 r e t v a l =
13 s t a t i c i n v o k e <Foo : java . lang . Object bar () > () ;
14 return ;
15 }
16 // . . .
17 }

27

Chapter 3

Weaving Around-Advice

This chapter describes the code generation strategy of the around weaver.
The description focuses on the principles of the code generation and the
generated output. The following chapter discusses the implementation in
more detail.

3.1 Aims

The aim for abc is to implement a generic weaving method that works well
for all cases. This is in contrast to ajc, which uses one optimized method
for certain cases and a generic but inefficient method for other cases.

The rationale behind the chosen approach for abc matches the overall
project philosophy: the emphasis is on a clean structure and correct but
not necessarily most efficient code generation in the first stage. Using the
powerful Soot framework, the generated code is optimized further at a later
stage. Thus, the emphasis is on generating code that can be optimized later
by soot, instead of generating optimized code in the first place.

As [3] shows, certain uses of AspectJ can result in closure object creation.
Further experimentation with ajc’s generated code made it apparent that
object creation imposes a major performance penalty and is to be avoided
wherever possible.

The presented solution achieves this goal in all but one special case: Cir-
cular advice applications, that is pieces of advice applying to each other’s
execution or advice applying to its own execution, may require closure cre-
ation.

However, these cases of circular advice are usually a program error that
results in a non-terminating program. Where this is not the case, the pre-
sented method still avoids closure creation in many cases as is described
below in detail.

28

3. WEAVING AROUND-ADVICE 3.2. Concepts

3.2 Concepts

3.2.1 The Joinpoint Shadow

As mentioned, the joinpoint shadow is the range of statements in a program
that corresponds to a joinpoint. In abc, weaving is done at the Jimple level,
and the joinpoint shadow is represented as a continuous sequence of Jimple
statements.

Before the weaving stage, all shadows are processed to fulfil certain con-
straints. Particularly, the control flow always enters the shadow at the top
and leaves the shadow at the bottom. This means there are no jumps from
outside the shadow into the shadow and no jumps from inside the shadow
outside the shadow. The shadow does not contain any return statements.
This invariant is true for all initial shadows, and it must also be maintained
throughout the weaving process. The reason is that multiple pieces of advice
can apply to the same shadow, which means that the weaver may encounter
shadows which have already been woven into.

Every shadow follows the same format. The beginning and end are
marked with a nop statement. These nop statements are useful for marking
positions within a sequence of statements and do not have any side effects.
The later optimization steps remove all nops.

Figure 3.1 shows a joinpoint shadow at the Jimple level. This particular
shadow belongs to the call of the method Foo.bar(). The call has simply
been surrounded by two nop statements.

Listing 3.1: Joinpoint shadow at the Jimple level

1 public class Foo extends java . lang . Object
2 {
3 public static void main (java . lang . S t r ing [])
4 {
5 java . lang . S t r ing [] a rgs ;
6 java . lang . Object r e t v a l ;
7

8 args := @parameter0 : java . lang . S t r ing [] ;
9 nop ; // beg inn ing o f shadow

10 r e t v a l =
11 s t a t i c i n v o k e <Foo : java . lang . Object bar () > () ;
12 nop ; // end o f shadow
13 return ;
14 }
15 // . . .
16 }

29

3. WEAVING AROUND-ADVICE 3.2. Concepts

Listing 3.2: Example: Method with multiple returns

1 public int f a c t (int n) {
2 i f (n==0)
3 return 1 ;
4 else

5 return n∗ f a c t (n−1);
6 }

The listing below shows the execution shadow of the factorial method
above.

This shadow requires pre-processing since there are multiple exit points
within the shadow.

The listing on the left is the original statement sequence of the shadow.
The listing on the right shows the shadow after the pre-processing step.
The two return statements have been replaced by a single return statement.
Note that this return statement is positioned right after the shadow and not
within the shadow itself.

Original shadow statements Processed shadow statements

public int f a c t (int)
{

Foo this ;
int n , $i0 , $i1 , $ i2 ;

this := @this : Foo ;
n := @parameter0 : int ;

i f n != 0 goto l ab e l 0 ;

return 1 ;

l ab e l 0 :
$ i0 = n − 1 ;
$ i1 = v i r t u a l i n v ok e this .

<Foo : int f a c t (int)>($ i0) ;
$ i2 = n ∗ $ i1 ;

return $ i2 ;
}

public int f a c t (int)
{

Foo this ;
int n , $i0 , $i1 , $ i2 ;

this := @this : Foo ;
n := @parameter0 : int ;
nop ; // beg inn ing o f shadow
i f n != 0 goto l ab e l 0 ;

$ i2 = 1 ;
goto l ab e l 1 ;

l ab e l 0 :
$ i0 = n − 1 ;
$ i1 = v i r t u a l i n v ok e this .

<Foo : int f a c t (int)>($ i0) ;
$ i2 = n ∗ $ i1 ;
l ab e l 1 :
nop ; // goto t a r g e t
nop ; // end o f shadow
return $ i2 ;

}

30

3. WEAVING AROUND-ADVICE 3.3. Weaving

3.2.2 Advice Methods

The front-end of the compiler creates a Java method for each piece of advice.
In the case of around advice, the method has the return type of the advice
itself. The body of the Java method consists of the advice body with some
modifications.

• proceed statements are converted to calls to a placeholder Java method.
The first parameters of the method correspond to the parameters of
the advice declaration.

• For keywords that retrieve context, such as thisJoinPoint, extra pa-
rameters are added to the advice method. Occurences of the keywords
are then replaced by the corresponding locals.

• Further parameters are added to pass context information. This is
described in more detail in a later section.

3.2.3 Advice Applications

The matcher stage of the compiler computes a list of advice applications.
An advice application is essentially a pair of advice method and joinpoint
shadow with some additional information.

3.2.4 Dynamic residue

Pointcut expressions pick out joinpoints in the program. Conceptually, at
compile time, for each poincut all joinpoint shadows in the program are
considered. A static analysis is performed with three possible outcomes:
The pointcut could either match always, never or sometimes.

The sometimes match case means it cannot be statically determined if
the pointcut matches and dynamic tests at runtime are required. These
dynamic tests are the dynamic residue of the advice application[7].

In the case of multiple variable bindings, the dynamic residue may also
contain tests that determine at runtime which context variable to bind to
the advice formals.

The dynamic residue is determined at earlier stages before the weaving
process. The weaver sees the residue as part of the advice applications.
The residue is represented as an abstract syntax tree and can generate the
corresponding Jimple statements.

3.3 Weaving

3.3.1 Basic weaving strategy

One advice method can apply to many shadows throughout the program.
In order to avoid code duplication, the aim is to use this one method for

31

3. WEAVING AROUND-ADVICE 3.3. Weaving

all advice applications. Furthermore, the method should reside in the class
corresponding to its original aspect. This avoids visibility problems that
could arise when moving the method into a different class.

When applying around advice to a shadow, the first step is to move the
shadow out of the original method. Effectively, the shadow is replaced by
the following code, shown as simplified pseudo code:

Listing 3.3: Structure of the shadow replacement

dynamic r e s i du e code
. . .
i f (dynamic r e s i du e passed)

cal l adv ice method
else

ca l l o r i g i n a l shadow

If the residue check passes, the advice is invoked. If the check fails, the
original shadow has to be executed directly.

The main challenge arises out the fact that within the advice method,
each proceed statement has to invoke the original shadow. Since one advice
method can apply to many shadows, the proceed statements must have
polymorphic behaviour.

Each advice application modifies the joinpoint shadow. It has to be
ensured that the shadow fulfils the invariants regarding entry and exit points
because later advice applications may apply to the same shadow.

3.3.2 Joinpoint Context

Joinpoints have context. Some of this context is exposed to the programmer.
The language defines for each kind of joinpoint what context is exposed
to the programmer and how the programmer can access it. Examples of
exposed context are the actual arguments of a function execution, or the
target object of a method call.

The dynamic residue is responsible for binding exposed context to advice
formals.

However, the weaver has to deal with context on a lower level. As men-
tioned, the strategy is to move the shadow out of its original method. The
context the weaver has to deal with can be defined in terms of the shadow
and its locals.

By definition, each shadow has a return value (which can be of type
void). This is part of the invariant shadows have to obey. Apart from this
return value, any number of context values can flow into the shadow. In
terms of Jimple, these context values are locals which are written to outside
of the shadow and read from inside the shadow.

The around weaver retrieves the returned value from the advice appli-
cation. The other context values are calculated dynamically using the algo-

32

3. WEAVING AROUND-ADVICE 3.3. Weaving

rithm outlined above: The set of all locals that are written to outside of the
shadow is intersected with the set of all locals read from inside the shadow.

For later stages of the weaver, it is desirable for the calculated context
to include all exposed context values. A problem arises if literals are used
in method invocations or field sets. In this case, there is no local that can
be discovered by the described dynamic context algorithm. To solve this
problem, the matching stage of the compiler was modified to introduce locals
for these literals. The following example illustrates the transformation. The
shadow is a simple method call with two arguments passed as literals.

Listing 3.4: Joinpoint shadow with literals

1 . . .
2 nop ; // beg inn ing o f shadow
3 s t a t i c i n v o k e <Foo : void foo (Str ing , int)>(” t e s t ” , 4 2) ;
4 nop ; // end o f shadow
5 . . .

The transformation creates two new locals that are assigned the literals.
These assignments are inserted before the shadow. This way, the context
discovery algorithm will identify these locals as context.

Listing 3.5: Joinpoint shadow with unique locals

1 Str ing uniqueLocal1 ;
2 int uniqueLocal2 ;
3 . . .
4 uniqueLocal1=” t e s t ” ;
5 uniqueLocal2 =42;
6 nop ; // beg inn ing o f shadow
7 s t a t i c i n v o k e
8 <Foo : void foo (Str ing , int)>(uniqueLocal1 , uniqueLocal2) ;
9 nop ; // end o f shadow

10 . . .

The Soot framework automatically removes unnecessary locals at a later
optimization stage.

The necessity of calculating the context values dynamically arises out of
the fact that multiple advice applications can apply to one shadow. Each
application is free to modify the shadow in any way as long as the shadow
invariants are obeyed. This means additional context values could have been
introduced by an earlier advice application, and the dynamic calculation
finds these context values.

In the case of around advice, the context values generally have to some-
how be passed through the advice method to the original shadow. The
mechanism of binding advice arguments to context values can be regarded
as an interception of this context information that complicates matters fur-
ther.

33

3. WEAVING AROUND-ADVICE 3.3. Weaving

3.3.3 The Closure Approach

The obvious solution to achieve the described behaviour of proceed is poly-
morphism using closure objects. We briefly review the details of such an
implementation based on closures, as well as the problems it introduces.
We then proceed (no pun intended) to solving those problems through an
alternative implementation strategy.

For each advice method, an interface type has to be defined. This inter-
face has a proceed method signature matching the advice method.

Listing 3.6: Closure interface

1 public interface AroundClosure$1
2 {
3 public [r e t−type] proceed$1 ([arg−type] arg1 , . . .) ;
4 }

A new parameter for the closure has to be added to the advice method.
Every proceed call within the advice method is replaced by a call to the
proceed method of the closure.

Listing 3.7: Advice method, closure approach

1 [r e t−type] adviceMethod$1 (AroundClosure$1 c l o sur e ,
2 [arg−type] arg1 , . . .)
3 {
4 . . .
5 [r e t−type] r e s u l t=c l o s u r e . proceed$1 (arg1 ’ ’ , . . .) ;
6 . . .
7 return r e s u l t ;
8 }

For each shadow, a new closure type is created that implements the
interface. The proceed method then has to execute the original shadow.

Listing 3.8: Implementation of closure interface

1 public class AroundClosure1Implementation$1
2 implements AroundClosure$1
3 {
4 public [r e t−type] proceed$1 ([arg−type] arg1 , . . .) {
5 . . . do what the shadow did . . .
6 }
7 }

The original shadow is replaced by code that creates an instance of a
closure object and passes it to the advice method (assuming no dynamic
residue).

34

3. WEAVING AROUND-ADVICE 3.3. Weaving

Listing 3.9: Closure creation at the shadow site

1 public class ShadowClass
2 {
3 public void shadowMethod ()
4 {
5 nop ; // beg inn ing o f shadow
6 AroundClosure$1 c l o s u r e=new

7 AroundClosure1Implementation$1 () ;
8 . . . // s t o r e a d d i t i o n a l con t ex t in format ion
9 Aspect . aspectOf () . adviceMethod$1 (c l o sur e , arg1 , . . .) ;

10 nop ; // end o f shadow
11 }
12 . . .
13 }

As mentioned, this approach is rather expensive at runtime due to the
object creation.

3.3.4 Avoiding the Closure

This thesis presents two different solutions to avoid this closure creation.

Object Reuse and the Shadow-ID

The first solution is based on the following idea: Instead of creating a
new closure object, the existing object associated with the shadow could
be reused.

To achieve this, the class in which the shadow resides can implement
the closure interface. When calling the advice method, this can simply be
passed instead of passing a new closure object:

Listing 3.10: Reusing the shadow’s instance

1 public class ShadowClass implements AroundClosure$1
2 {
3 public [r e t−type] proceed$1 ([arg−type] arg1 , . . .) {
4 . . . // do what the shadow did
5 }
6 public void shadowMethod () {
7 Aspect . aspectOf () . adviceMethod$1 (th i s ,
8 arg1 , . . .) ;
9 }

10 }

A problem has to be addressed: The same advice can apply to multiple
shadows in the same class, but the class can only implement the proceed
method of the interface once.

35

3. WEAVING AROUND-ADVICE 3.3. Weaving

The solution is to this problem is the Shadow-ID. The Shadow-ID is an
integer constant that uniquely identifies each shadow application applying
the same advice method to the same class.

The closure interface has to be modified to expect the Shadow-ID as one
of the parameters of the proceed method.

Also, the advice method has to have a Shadow-ID parameter. The advice
method must pass this Shadow-ID to all proceed invocations in its body.

At the site of the original shadow, a unique integer constant is passed to
the advice method as shown below:

Listing 3.11: The Shadow-ID mechanism

1 public class ShadowClass implements AroundClosure$1
2 {
3 public [r e t−type] proceed$1 (int shadowID ,
4 [arg−type] arg1 , . . .) {
5 switch (shadowID) {
6 case 0 :
7 . . . // do what the f i r s t shadow did . . .
8 case 1 :
9 . . . // do what the second shadow did . . .

10 }
11 }
12 public void shadowMethod ()
13 {
14 // Unique Shadow−ID o f t h i s shadow : 0
15 Aspect . aspectOf () .
16 adviceMethod$1 (this , 0 , arg1 , . . .) ;
17 }
18 public void anotherShadowMethod ()
19 {
20 // Unique Shadow−ID o f t h i s shadow : 1
21 Aspect . aspectOf () .
22 adviceMethod$1 (this , 1 , arg1 , . . .) ;
23 }
24 }

Another problem that has to be addressed is inheritance: The same
advice can apply to two classes where one class directly or indirectly inherits
from the other. In this case, the access method of the sub-class overrides
the proceed method of the super-class.

To deal with this, all shadows within these classes must have unique
Shadow-IDs. The solution then is to modify the proceed methods to call
the overridden method in case of an unknown Shadow-ID. This guarantees
that eventually the correct proceed method is called.

36

3. WEAVING AROUND-ADVICE 3.3. Weaving

Listing 3.12: Shadow-ID and inheritance

1 public class ShadowClassExt extends ShadowClass
2 implements AroundClosure$1
3 {
4 public [r e t−type] proceed$1 (int shadowID ,
5 [arg−type] arg1 , . . .) {
6 switch (shadowID) {
7 case 2 :
8 . . . // do what the shadow did . . .
9 break ;

10 de f au l t : // d e f a u l t to super c l a s s
11 super (shadowID , arg1 , . . .) ;
12 }
13 }
14 public void anotherShadowMethod ()
15 {
16 Aspect . aspectOf () .
17 adviceMethod$1 (this , 2 , arg1 , . . .) ;
18 }
19 }

The super call is a non-virtual staticinvoke statement at the bytecode
level and thus relatively cheap.

Another problem arises when the joinpoint shadow is in a static method:
This proposed solution of object reuse can only be used if there is such an
object. This is only the case for shadows residing in a non-static method.

One possible but unsatisfactory solution would be to resort to closure
object creation for this case. A possibly better compromise would be to
create a singleton closure instance that can be reused.

However, both of these solutions are far from optimal. This led to the
creation of another strategy which turns out to be general enough to cover
the non-static cases as well.

The Static Class ID

The second strategy does not need any closure interface. Instead, the
proceed method to which the shadow is moved is static.

A unique integer constant is generated for each class to which a certain
piece of advice applies. This is called the Static Class ID.

The reader may recall that for the previous method, each occurrence of
proceed within the advice method was replaced by a call to proceed on the
closure object:

1 [r e t−type] adviceMethod$1 (AroundClosure$1 c l o sur e ,
2 int shadowID , [arg−type] arg1 , . . .)
3 {
4 . . .

37

3. WEAVING AROUND-ADVICE 3.3. Weaving

5 c l o s u r e . proceed$1 (shadowID , arg1 , . . .) ;
6 . . .
7 }

For the Static Class ID method, a new parameter is added to the advice
method, namely the Static Class ID. Each proceed invocation is replaced by
a switch statement that dispatches to the correct proceed method based on
the Static Class ID.

1 [r e t−type] adviceMethod$1 (AroundClosure$1 c l o sur e ,
2 int shadowID , int s ta t i cC la s s ID ,
3 [arg−type] arg1 , . . .)
4 {
5 . . .
6 switch (s t a t i cC l a s s ID) {
7 case 0 : c l o s u r e . proceed$1 (shadowID , arg1 , . . .) ;
8 break ;
9 case 1 : ShadowClass . proceed s$1 (shadowID , arg1 , . . .) ;

10 break ;
11 case 2 : ShadowClass2 . proceed s$1 (shadowID , arg1 , . . .) ;
12 break ;
13 . . .
14 }
15 . . .
16 }

Note that the Static Class ID zero is a special case: To support both de-
scribed weaving methods simultaneously, an ID of zero dispatches to the
closure proceed. For non-zero Static Class IDs, the closure is simply null.
All other IDs dispatch to the corresponding static proceed method.

At the shadow location, the Static Class ID is passed to the advice
method:

1 public class ShadowClass2
2 {
3 public s t a t i c [r e t−type] proceed s$1 (int shadowID ,
4 [arg−type] arg1 , . . .) {
5 switch (shadowID) . . . // as b e f o r e . . .
6 }
7 public s t a t i c shadowMethod ()
8 {
9 Aspect . aspectOf () . adviceMethod$1 (

10 null , // c l o s u r e i s n u l l
11 0 , // shadow ID
12 2 , // S t a t i c Class ID as s i gned to t h i s c l a s s
13 arg1 , . . .) ;
14 }
15 // . . .
16 }

38

3. WEAVING AROUND-ADVICE 3.3. Weaving

Source type Target type

all reference types java .lang.Object

double double

float float

long long

int int

short int

boolean int

char int

Table 3.1: Context parameters, mapping of types

3.3.5 Passing Context

The previous discussion of avoiding closures has largely ignored passing of
context. As described earlier, joinpoints have context that consists of a
return value and the locals the shadow depends on. Since the shadow is
moved from its original location to the proceed method, the context has
somehow be passed from the original site to that method.

To avoid expensive object creations, the aim is to transfer context on
the stack. Since Java only allows references to heap locations and not to the
stack, the context has to be passed explicitly using method arguments.

Generally, every joinpoint shadow has different context in terms of the
number and types of context values. The solution is to create a minimal
set of parameters that covers all the shadows to which the advice method
applies. In order to reduce the number of necessary parameters, the set of
all types is mapped to a small, constant set (see Table 3.1). Particularly,
all reference types are mapped to Object and the types short, boolean and
char are all mapped to int since they are largely treated like int types by
the JVM[8].

The following example illustrates the technique. The around advice ap-
plies to two different method calls. Each of these calls has a different sig-
nature, and consequently different context values have to be transferred to
the shadow.

Listing 3.13: Context parameters, example program

1 public class Foo
2 {
3 public static void main (St r ing args [])
4 {
5 new Foo () . bar1 (” t e s t ”) ;
6 new Foo () . bar2 (1 . 0 d) ;
7 }
8 public void bar1 (St r ing s) {}

39

3. WEAVING AROUND-ADVICE 3.3. Weaving

9 public void bar2 (double d) {}
10 }
11 aspect Aspect
12 {
13 void around () : cal l (void ∗ . bar ∗ (. .))
14 {
15 proceed () ;
16 }
17 }

Both shadows have a context value of type Foo that is the target of the
method call. This value is mapped to the Object type. In addition, the first
method call has a context value of type String. This value is also mapped to
the Object type. The second method call has a context value of type double,
which is mapped to itself.

This means that two parameters of type Object and one of type double

are needed to accommodate both shadows.
The listing below shows the proceed method with the added context

arguments. The calls to the advice method have been modified to pass
the context values. Note that for both cases, there is one unused context
parameter. For these unused parameters, the default value of the respective
type is passed.

Listing 3.14: Context parameters in the shadow class

1 public class Foo
2 {
3 public static void proceed$1 (int shadowID ,
4 java . lang . Object contextArg1 ,
5 double contextArg2 ,
6 java . lang . Object contextArg3)
7 {
8 switch (shadowID)
9 {

10 case 0 : ((Foo) contextArg1) . t e s t 2 (contextArg2) ;
11 return ;
12 case 1 : ((Foo) contextArg1) . t e s t 1 (contextArg3) ;
13 return ;
14 default : throw new RuntimeException () ;
15 }
16 }
17 public static void main (java . lang . S t r ing [] r0)
18 {
19 Foo ta rg e t1 = new Foo () ;
20 Aspect . aspectOf ()
21 . adviceMethod$1 (1 , 1 , ta rget1 , 0 . 0 , ” t e s t ”) ;
22 Foo ta rg e t2 = new Foo () ;
23 Aspect . aspectOf ()
24 . adviceMethod$1 (0 , 1 , ta rget2 , 1 . 0 , null) ;

40

3. WEAVING AROUND-ADVICE 3.3. Weaving

25 return ;
26 }
27 . . .
28 }

In the advice method, the context parameters are passed to all the pro-
ceed calls:

Listing 3.15: Context parameters in the advice method

1 class Aspect
2 {
3 f ina l void adviceMethod$1 (int shadowID ,
4 java . lang . Object contextArg1 ,
5 double contextArg2 ,
6 java . lang . Object contextArg3)
7 {
8 . . .
9 Foo . proceed$1 (shadowID

10 contextArg1 ,
11 contextArg2 ,
12 contextArg3
13) ;
14 . . .
15 return ;
16 }
17 . . .
18 }

3.3.6 Binding of Exposed Context Values

As described earlier, the programmer can access exposed values of the join-
point context. This is done by declaring advice formals and binding the
context values to the advice formals. The bindings are defined in the point-
cut expression using this, target and args.

The dynamic residue that is passed to the weaver generates the binding
code that assigns the correct context values to the advice formals.

The proceed method has formal parameters corresponding to the advice
formals. Depending on the binding, these formals must be assigned to the
correct context values of the shadow.

The weaver analyzes the dynamic residue to determine the possible vari-
able bindings. For most cases, these bindings can be determined statically.
This means that if the residue succeeds, there is a fixed mapping between
advice formals and context values. For these cases, the proceed method
simply contains the necessary assignments to assign the advice formals to
the context values.

A problem arises if the residue fails. In this case, there are no bindings
and the expected behaviour is that the shadow is executed with its original

41

3. WEAVING AROUND-ADVICE 3.3. Weaving

context. One way to achieve this would be to duplicate the shadow and
simply execute the original shadow in the failed case. However, one of the
design goals of the weaver is to avoid code duplication. This lead to the
introduction of the skip flag.

The Skip Flag

As explained, the joinpoint shadow is moved into the proceed method. If
the dynamic residue of the joinpoint succeeds, the advice method is invoked
which in turn calls the proceed method. If the residue fails, the shadow has
to be executed directly without invoking the advice method.

The skip flag enables the proceed method to handle both the pass and
fail cases of the dynamic residue. The flag indicates to the method whether
it was invoked by the advice method, in which case the advice formals are
bound to context values, or if it was invoked directly, in which case the
advice formals are not bound and the standard context parameters should
be used.

The following example is intended to illustrate this mechanism. Consider
the following simple base program and aspect.

1 public class Foo
2 {
3 public static void main (St r ing args [])
4 {
5 new Foo () . bar (0) ;
6 }
7 public void bar (int i) {}
8 }

1 aspect Aspect
2 {
3 void around (int intArg) :
4 cal l (void ∗ . bar ∗ (. .)) &&
5 args (intArg) &&
6 target (Foo)
7 {
8 proceed (intArg) ;
9 }

10 }

For the around advice, the argument of the call is bound to the advice
formal intArg. In the example, the target primitive is not used to bind an
advice formal: When given a type, target matches dynamic joinpoints with
a target object of the given type.

The code below shows the implementation of the skip flag. Based on the
flag, the proceed method either assigns the context parameter or the advice

42

3. WEAVING AROUND-ADVICE 3.3. Weaving

formal. The context value representing the target object is never bound to
any advice formal and so is always assigned the context parameter.

Listing 3.16: Skip flag: proceed method

1 public class Foo
2 {
3 public static void proceed$0 (
4 int intArg , // adv ice formal
5 int shadowID ,
6 boolean skipFlag ,
7 java . lang . Object contextArg1 ,
8 int contextArg2){
9

10 switch (shadowID) {
11 case 0 :
12 int arg ;
13 i f (sk ipFlag)
14 arg=contextArg2 ; // unbound case
15 else

16 arg=intArg ; // bound case
17

18 Foo ca l lTa r g e t=(Foo) contextArg1 ; // never bound
19 c a l lTa r g e t . bar (arg) ;
20 break ;
21 default :
22 throw new RuntimeException () ;
23 }
24 }
25 . . .
26 }

At the shadow site, the dynamic residue performs a type check and, based
on the result, either invokes the proceed method directly with the skip flag
set to true or invokes the advice method. 1

Listing 3.17: Skip flag: shadow site

1 public class Foo {
2 . . .
3

4 public static void main (St r ing args [])
5 {
6 Foo foo=new Foo () ;
7 int i =0;
8 i f (foo instanceof Foo) {
9 // res idue passed

10 Aspect . aspectOf () . adviceMethod$0 (

1For this simple case, the optimizer of abc would actually be able to determine the
outcome of the type check at compile time.

43

3. WEAVING AROUND-ADVICE 3.3. Weaving

11 i , // adv ice formal
12 null , // c l o s u r e
13 0 , // shadow ID
14 1 , // s t a t i c c l a s s ID
15 foo , // con t ex t argumenttrue
16 0 // con t ex t argument (d e f a u l t)
17 } else {
18 // res idue f a i l e d
19 proceed$0 (
20 0 , // adv ice formal (d e f a u l t)
21 0 , // shadow ID ,
22 true , // s k i p f l a g
23 foo , // con t ex t argument
24 i // con t ex t argument
25)
26 }
27 }
28 public void bar (int i) {}
29 }

The advice method in turn calls the proceed method with the skip flag
set to false.

Listing 3.18: Skip flag: advice method

1 aspect Aspect
2 {
3 void adviceMethod$0 (
4 int intArg ,
5 Around$closure$0 c l o sur e ,
6 int shadowID ,
7 int s ta t i cC la s s ID ,
8 Object contextArg1 ,
9 int contextArg2) {

10 Foo . proceed$0 (
11 intArg ,
12 shadowID ,
13 f a l s e , // sk ipF lag
14 contextArg1 ,
15 contextArg2) ;
16 }
17 }

The bind mask

The described method of binding advice formals assumed that the mapping
between advice formals and context values can be determined at compile
time. This is generally the case if for each advice formal there is exactly one
binding primitive in the pointcut. However, the pointcut language does not

44

3. WEAVING AROUND-ADVICE 3.3. Weaving

make this restriction and it is easy to create expressions that do not fit this
pattern.

The following are simple examples.

1 void around (Foo x) : this (x) | | target (x)
2 void around (Foo x) : args (x , . .) | | args (. . , x)

In many of these cases, the actual binding is only known at runtime. The
dynamic residue takes care of assigning the correct context values to the
advice formals.

However, as mentioned, in the case of around advice there is a compli-
cation. In the proceed method, the advice formals have to be assigned back
to the right context values. If the bindings are only known at runtime, these
assignments also have to be determined at runtime.

The proposed solution to this problem is the bind mask. 2 The aim
was to find an efficient method to transfer the actual binding information at
runtime from the shadow site to the proceed method. The bind mask is a
bitmask that has this information encoded. This bitmap is passed from the
shadow to the advice method, which passes it on to the proceed method.

The bind mask only contains information for parameters for which the
binding cannot be determined statically at compile time. To reduce the
overall number of parameters, the skip flag described in the last section is
encoded in the bind mask.

In order to create the bind mask, a transformation of the residue AST
is performed. For each ambiguous Bind node, a BindMaskResidue node is
inserted. The BindMaskResidue sets the appropriate bits in the bind mask
and then generates the original Bind residue.

The implementation ignores structural information of the pointcut ex-
pressions. A deeper analysis of the expression combined with a different
bind mask representation would in some cases result in a more efficient use
of the bind mask. As an example, consider the following pointcut:

1 pointcut (Foo x , Object y) :
2 (args (x , . .) && this (y)) | | (args (. . , x) && target (y))

The outcome of the bindings depends on which operand of the || opera-
tor succeeds. This information can be encoded in one bit. However, this
implementation chooses not to use such structural knowledge and instead
encodes the binding information for each advice formal separately, resulting
in the use of two mask bits. This was a design choice: Extensibility is a
key feature of abc. Using structural information for the bind mask would
make it more difficult to modify and extend the pointcut language because

2As mentioned, the official AspectJ compiler ajc does not support this behaviour and
aborts with a compiler limitation error if presented with these kinds of pointcut expres-
sions.

45

3. WEAVING AROUND-ADVICE 3.3. Weaving

for every added construct, the validity of the structural analysis would have
to be ensured.

Creation of the bind mask For each advice formal, there are n ≥ 1
different bindings. Information is only encoded for advice formals with n >

1.
For each parameter, a number of dedicated bits is reserved in the bind

mask.
This is done for efficiency reasons. This way, the binding information

for a given parameter can be extracted with simple shift and binary and
operations, and no division is required.

The ambiguity limits of the 31 bits used for encoding can be illustrated
by the following cases:

• One variable could be ambiguously bound to 231 context values.

• 32 variables could each be ambiguously bound to 2 context values.

As an example, consider the following aspect. Depending on the type,
the pointcut binds either the first or the last argument of the method call
to the advice formal s. The advice then passes a changed value to proceed.

Listing 3.19: Multiple bindings, proceed

1 aspect Aspect
2 {
3 void around (S t r ing s) :
4 cal l (void ∗ . foo ∗ (. .)) &&
5 (args (s , . .) | | args (. . , s))
6 {
7 proceed (”new”) ;
8 }
9 }

The following base program contains two method calls that trigger the
advice with a different variable binding.

Listing 3.20: Base program triggers different bindings

1 public class Foo
2 {
3 public static void main (St r ing args [])
4 {
5 new Foo () . foo (” s t r i n g ” , null) ;
6 new Foo () . foo (null , ” s t r i n g ”) ;
7 }
8 public void foo (Object ob1 , Object ob2) {
9 System . out . p r i n t l n (ob1 + ” , ” + ob2) ;

10 }
11 }

46

3. WEAVING AROUND-ADVICE 3.3. Weaving

The output of the compiled program shows that for each call, the correct
context value has been replaced:

new, null

null, new

To achieve this, the bind mask is created at the shadow site. In this
example, bit zero of the bind mask is used as the skip flag and bit one
indicates whether the first or the last argument is bound.

Listing 3.21: Creation of the bind mask

1 public class Foo
2 {
3 public static void main (St r ing args [])
4 {
5 Foo foo=new Foo () ;
6 Object arg1=’ ’ s t r i n g ’ ’ ;
7 Object arg2=null ;
8 nop ; // beg inn ing o f f i r s t shadow
9 Str ing adviceFormal ;

10 int bindMask=0; // i n i t i a l i z a t i o n
11 l a b e l 0 :
12 {
13 i f (arg1 instanceof Str ing) {
14 adviceFormal=arg1 ;
15 bindMask |=0; // removed by op t imize r
16 } else {
17 i f (arg2 instanceof Str ing) {
18 adviceFormal=arg2 ;
19 bindMask |=2; // s e t b i t 1
20 } else { // sk ipped case
21 bindMask=1; // s e t s k i p f l a g
22 adviceFormal=null ;
23 proceed s$0 (adviceFormal ,
24 0 , // shadow ID
25 bindMask ,
26 foo , // contextArg1
27 arg1 , // contextArg2
28 arg2) ; // contextArg3
29 break l a b e l 0 ;
30 }
31 }
32 Aspect . aspectOf () . adviceMethod$0 (
33 adviceFormal ,
34 null , // c l o s u r e
35 0 , // shadow ID
36 1 , // s t a t i c c l a s s ID
37 bindMask ,
38 foo , // contextArg1

47

3. WEAVING AROUND-ADVICE 3.3. Weaving

39 arg1 , // contextArg2
40 arg2) ; // contextArg3
41 }
42 nop ; // end o f f i r s t shadow
43 . . .
44 // second shadow . . .
45 }
46 . . .
47 }

The proceed method performs the assignments based on the bind mask.

Listing 3.22: Evaluation of the bind mask

1 public class Foo
2 {
3 . . .
4 public static void proceed s$0 (St r ing s ,
5 int shadowID ,
6 int bindMask ,
7 Object contextArg1 ,
8 Object contextArg2 ,
9 Object contextArg3) {

10 switch (shadowID) {
11 case 0 :
12 Object arg1 ;
13 Object arg2 ;
14 i f (bindMask==1) { // s k i p case
15 arg1=contextArg2 ;
16 arg2=contextArg3 ;
17 } else {
18 // f i r s t a s s i gn the d e f a u l t con t ex t
19 arg1=contextArg2 ;
20 arg2=contextArg3 ;
21 // then overwr i t e the bound va lu e
22 // with the adv ice formal .
23 switch ((bindMask & 2) >> 1)
24 {
25 case 0 :
26 arg1 = s ;
27 break ;
28 case 1 :
29 arg2 = s ;
30 break ;
31 default :
32 throw new RuntimeException () ;
33 }
34 }
35 Foo foo (Foo) contextArg1 ; // never bound
36 foo . foo (arg1 , arg2) ;
37 case 1 :

48

3. WEAVING AROUND-ADVICE 3.3. Weaving

38 . . .
39 }
40

41 }
42 }

One noteworthy detail is that when evaluating the bind mask, the weaver
first assigns all the default context values and then overwrites the bound
value based on the bind mask.

An alternative strategy would be to assign all values within the switch
statement:

Listing 3.23: Alternative evaluation strategy

1 switch ((bindMask & 2) >> 1)
2 {
3 case 0 :
4 arg1 = s ;
5 arg2 = contextArg3 ;
6 break ;
7 case 1 :
8 arg2 = s ;
9 arg1 = contextArg2 ;

10 break ;
11 . . .
12 }

However, this leads to a quadratic number of assignment statements in terms
of the number of context values involved. If n context values are bound to
one advice formal, the above switch statement would contain n cases with
n assignments each, resulting in n

2 overall assignment statements. With
the strategy used by the weaver, there would be n default assignments plus
n cases with one assignment each, resulting in 2n overall assignment state-
ments. At runtime, the presented strategy results in the execution of one ad-
ditional assignment which is negligible and clearly preferable over quadratic
code size.

3.3.7 Local and anonymous classes

Local and anonymous classes can be declared within the advice method.
Since these classes are in the scope of the advice method, they can contain
proceed statements. This offers a way to delay the execution of the proceed
statement to a point after the advice method has returned: An instance
of the local or anonymous class can be stored elsewhere and the method
containing the proceed statement can be invoked later (see the earlier thread
safety example).

This means that the joinpoint context has to be kept. Experiments show
that the official AspectJ compiler ajc resorts to closure creation in this case.

49

3. WEAVING AROUND-ADVICE 3.3. Weaving

However, with the weaving method described so far, it is possible to use the
instance of the local or anonymous class itself as the closure object and thus
avoid closure object creation. To accomplish this, the weaver adds data
members to every local or anonymous class. These contain the joinpoint
context, the bind mask, the shadow id, the closure reference and the static
class ID.

The following is a simple example of a local class within around advice.

Listing 3.24: Local class in around advice

1 aspect Aspect {
2 void around (f ina l Object ob) :
3 cal l (void ∗ . ∗ (. .)) &&
4 this (ob)
5 {
6 class Fir s tDegree implements Runnable {
7 void run () { proceed (ob) ; }
8 }
9 Runnable r=new Fir s tDegree () ;

10 r . run () ;
11 }
12 }

Since the Java Virtual Machine (JVM) does not natively support any
type of nested classes, the compiler translates the local class into a normal
Java class. The weaver adds members for all the required values to the class
and, using these values, replaces each proceed statement with the usual
construct as presented earlier.

Listing 3.25: Modified local class

1 class Aspect$Fir s tDegree implements java . lang . Runnable {
2 private f inal Object val$ob ;
3 private f inal Aspect th i s $ 0 ; // r e f e r en c e to
4 // con ta in ing aspec t
5 public int shadowID ;
6 public int s t a t i cC l a s s ID ;
7 public Around$Closure$0 c l o s u r e ;
8 public int bindMask ;
9 public Object contextArg1 ;

10

11 public Aspect$Fir s tDegree (Aspect aspect , Object ob) {
12 this . t h i s $ 0=aspect ;
13 this . va l$ob=ob ;
14 }
15 public void run () {
16 // proceed rep laced by sw i t ch s tatement as b e f o r e
17 switch (s t a t i cC l a s s ID) {
18 case 0 :
19 c l o s u r e . proceed$0 (shadowID , bindMask , contextArg1) ;

50

3. WEAVING AROUND-ADVICE 3.3. Weaving

20 case 1 :
21 Foo . proceed s$0 (shadowID , bindMask , contextArg1) ;
22 default :
23 throw new RuntimeException () ;
24 }
25 }
26 }

In the advice method, code is inserted after the creation of the local class
to initialize the added members.

Listing 3.26: Initialization of local class

1 class Aspect {
2 void around (Object ob ,
3 Around$Closure$0 c l o sur e ,
4 int shadowID ,
5 int bindMask ,
6 Object contextArg1)
7 {
8 Aspect$Fir s tDegree r2=new Aspect$Fir s tDegree (this , ob) ;
9 r2 . bindMask=bindMask ;

10 r2 . shadowID=shadowID ;
11 r2 . c l o s u r e=c l o s u r e ;
12 r2 . contextArg1=contextArg1 ;
13 Runnable r=r2 ;
14 r . run () ;
15 }
16 }

Nesting A further complication which the example above did not illus-
trate is that local and anonymous classes can be nested. This means a local
or anonymous class can contain further local or anonymous classes and so
on, and all of these classes can contain proceed statements.

For all classes containing proceed statements, the context has to be kept.
As was illustrated above, this can be done using additional member variables
to store the context.

However, it is useful to make a distinction between the outermost classes
and the nested classes. In the following discussion, the outermost classes
inside the around advice body shall be referred to as first degree classes.

A non-static nested class in Java has access to the instance of the enclos-
ing class in which it was instantiated. The implementation achieves this by
adding an implicit member variable this$0 to the nested class that points
to an instance of the containing class. This reference guarantees that the
instance of the outer class exists for the lifetime of the contained object.

In the context of around advice, this means that the instances of first
degree classes exist for the lifetimes of all instances of nested classes. As a

51

3. WEAVING AROUND-ADVICE 3.3. Weaving

consequence, only the first degree classes need to have extra data members
to store the context and all nested classes can simply refer to the first degree
classes.

Since nesting can occur with an arbitrary depth, a chain of references
may have to be followed to reach the first degree object. However, this is
only done once within any method, even if multiple members of the first
degree object are accessed.

The implementation aims to treat the advice method and all methods
contained in local and anonymous classes within that method in a similar
manner. Particularly, every method contains locals that correspond to the
context values. Depending on the type of method, these locals are assigned
different values.

• For the advice method itself, the locals are assigned the corresponding
context parameters.

• For first degree methods, the locals are assigned the values of the
context member fields of that class.

• For methods in nested classes, the locals are assigned the values of the
fields of the enclosing first degree class.

This invariant of having locals corresponding to the context values in
every method helps with the issue of initializing the context member fields
of the first degree classes.

The instantiation of local and anonymous classes does not necessarily
follow the nesting hierarchy. For example, one first degree class could in-
stantiate another first degree class. With the context locals in place in every
method, the initialization is a simple matter of searching all methods for in-
stantiation statements. If the instantiation is a first degree class, statements
are added directly after the instantiation to assign the context locals of the
method to the fields of the newly instantiated object.

3.3.8 Circular advice applications

In the AspectJ language, the execution of advice itself is a joinpoint. This
means that advice can apply to the execution of other advice or even to
its own execution. In pointcuts, these joinpoints are captured with the
adviceexecution primitive.

Advice applying to advice can be expressed as a directed graph struc-
ture. If this graph is acyclic, the described methods of weaving are sound.
However, under certain circumstances, cycles occur in the graph. Advice
applying to itself is such a case.

Usually, this is the result of a program error and in that case it usually
results in a non-terminating program. However, there are cases where side

52

3. WEAVING AROUND-ADVICE 3.3. Weaving

effects in the pointcut result in a terminating program despite the cycles in
the application graph.

Consider the following example of around advice weaving into itself. This
program terminates because the expression inside the if pointcut primitive
has the side effect of decrementing the field n.

Listing 3.27: Program with circular around advice application

1 public class Foo
2 {
3 public static void main (St r ing args [])
4 {
5 }
6 }
7 aspect Aspect
8 {
9 public static int n=3;

10 void around () : execution (∗ Foo .∗ (. .)) | |
11 (adviceexecution () && i f (−−n>0))
12 {
13 System . out . p r i n t l n (”n=” + n) ;
14 proceed () ;
15 }
16 }

The output of the program is

n=0

n=0

n=0

The output shows that all the residue checks are performed before any
advice is executed. The advice is invoked around itself until the residue
fails, at which point the advice bodies are executed in a nested fashion.

To further illustrate this behaviour, the output of the aspect was ex-
tended.

Listing 3.28: Aspect with circular advice, extended output

1 aspect Aspect
2 {
3 public static int n=3;
4 void around () : . . . // as b e f o r e
5 {
6 nes t ing++;
7 System . out . p r i n t l n (ne s t ing + ” =>: n=” + n) ;
8 proceed () ;
9 System . out . p r i n t l n (ne s t ing + ” <=: n=” + n) ;

10 nest ing −−;
11 }

53

3. WEAVING AROUND-ADVICE 3.3. Weaving

12 public static int nes t ing =0;
13 }

This aspect produces a more elaborate output (indented for clarity).

1 =>: n=0

2 =>: n=0

3 =>: n=0

3 <=: n=0

2 <=: n=0

1 <=: n=0

Such cycles prevent the use of the described weaving method using con-
text parameters. In this case, closure objects are used to close the cycle.

Necessity of closure objects in the presence of cycles Cycles require
the creation of closures or a closure like construct. It is impossible to achieve
the desired functionality using counters or further context parameters.

One can reason that advice applications of around-advice applying to
around advice can form arbitrarily complex directed graphs. The dynamic
residue that determines the actual execution of around-advice surrounding
around-advice can also be arbitrarily complex, which means no static analy-
sis can generally determine the order of around-advice executions. In a chain
of around-advice intercepting around-advice, the semantics of the language
dictates that all the dynamic residue is executed before any around advice:
The call chain is determined by the dynamic residue, and this chain is then
executed after all the dynamic residue checks finish. This means that the
chain of advice invocations has to be built up and stored until the residue
is finished, and such a chain of arbitrary length has to be represented by a
stack like structure. Closures offer a clean solution.

3.3.9 Closures

The past sections showed how closure object creation can be avoided in
many cases. The first method described showed how the shadow object
can be reused as a closure object. For this method, the weaver generates
a closure interface and adds a closure parameter to the advice method.
This infrastructure can be conveniently used for actual closure objects. The
closure class simply implements the closure interface of the advice method,
and the closure instance is passed to the advice method using the existing
parameter.

The original shadow is moved to a static method within the joinpoint
class. This is done for two reasons. First, the strategy is to always keep code
in its original class to avoid visibility problems. Second, this is necessary to
efficiently deal with the skipped case: If the residue check fails, the original

54

3. WEAVING AROUND-ADVICE 3.3. Weaving

shadow has to be invoked directly. In this case, the closure creation should
be avoided. The static method achieves this and allows the invocation of
the original shadow directly without the closure.

The closure’s run method simply calls the static method in the joinpoint
class, passing all the context values as parameters.

For each context value, a dedicated member field of that type is generated
in the closure class. This is a major optimization when compared to ajc’s
implementation. ajc creates an array of type Object to store all the context
values. This is inefficient for multiple reasons. The array is another object
that needs to be created apart from the closure itself. Simple types need to
be boxed and unboxed to be stored in the object array. This means another
object creation for each value with a simple type. A possibly minor point
is that in ajc’s case, reference types need to be cast back to their original
types using a checked cast.

The closure’s fields are public and non-final. Initialization is not done in
the constructor to avoid another unnecessary method call. This violation of
encapsulation is justified because the closures are completely transparent to
the user, thus making efficiency the main concern.

In the example from listing 3.27, the weaver first weaves into the execu-
tion of Foo.main() using the normal strategy. For the advice execution part,
the weaver uses the closure approach.

The following listing shows the closure class. The proceed method simply
calls the static proceed method within the shadow class.

Listing 3.29: Closure class

1 public class AroundClosureImpl$0 implements AroundClosure$0
2 {
3 public AroundClosure$0 context0 ;
4 public int context1 ;
5 public int context2 ;
6 public int context3 ;
7

8 public void proceed$0 (int arg1 , int arg2)
9 {

10 Aspect . proceed c$0 (
11 arg1 ,
12 arg2 ,
13 context0 ,
14 context1 ,
15 context2 ,
16 context3) ;
17 return ;
18 }
19 }

Since the shadow of the advice execution joinpoint is in the aspect, the

55

3. WEAVING AROUND-ADVICE 3.3. Weaving

proceed method is created in the class corresponding to the aspect. The
proceed method contains the former body of the advice method.

Listing 3.30: Closure static proceed method

1 public class Aspect
2 {
3 public static int n ;
4

5 public static void proceed c$0 (
6 int shadowID ,
7 boolean bindMask ,
8 AroundClosure$0 contextArg1 ,
9 int contextArg2 ,

10 int contextArg3 ,
11 int contextArg4)
12 {
13 System . out . p r i n t l n (n) ;
14

15 switch (contextArg2)
16 {
17 case 0 :
18 r0 . proceed$0 (contextArg4 , contextArg3) ;
19 break ;
20 case 1 :
21 Foo . proceed s$0 (contextArg4 , contextArg3) ;
22 break ;
23 default :
24 throw new RuntimeException () ;
25 }
26 }
27 . . .
28 }

The if pointcut primitive is converted to a method inside the aspect.

Listing 3.31: Helper function for if residue

1 public class Aspect
2 {
3 . . .
4 public static boolean i f $ 2 ()
5 {
6 return −−n>0;
7 }
8 . . .
9 }

As shown, the body of the advice method is moved into the proceed
method. It is replaced by the code below. If the dynamic residue succeeds,
a new closure object is created and initialized. Since in this example the

56

3. WEAVING AROUND-ADVICE 3.3. Weaving

advice applies to itself, the closure object is passed to a recursive call of
the advice method itself. If the residue fails, the proceed method is invoked
directly, thus executing the original body of the advice method.

Listing 3.32: Closure object creation

1 public class Aspect
2 {
3 . . .
4 public f ina l void adviceMethod$0 (
5 AroundClosure$0 c l o sur e ,
6 int shadowID ,
7 int s ta t i cC la s s ID ,
8 int bindMask)
9 {

10 i f (Aspect . i f $ 2 ()) {
11 Aspect a = Aspect . aspectOf () ;
12 AroundClosureImpl$0 c l o sur eObje c t =
13 new AroundClosureImpl$0 () ;
14 c l o sur eObje c t . context3 = shadowID ;
15 c l o sur eObje c t . context2 = bindMask ;
16 c l o sur eObje c t . context1 = s ta t i cC l a s s ID ;
17 c l o sur eObje c t . context0 = c l o s u r e ;
18 a . adviceMethod$0 (// r e cu r s i v e c a l l ,
19 c lo sureObject , // pas s ing the c l o s u r e o b j e c t
20 −1,
21 0 ,
22 0) ;
23

24 } else { // res idue f a i l e d : invoke shadow d i r e c t l y
25 Aspect . proceed c$0 (
26 −1, // shadow ID , ignored
27 1 , // s t a t i c c l a s s ID
28 c l o sur e ,
29 s ta t i cC la s s ID ,
30 bindMask ,
31 shadowID) ;
32 }
33 }
34 }

57

Chapter 4

Implementation

This chapter gives an overview of the implementation of the weaver at the
source code level. The abc project and all of its components, namely the
Soot framework, Polyglot, JFlex and the CUP parser are written in Java.
At the time of writing, abc itself consists of about 40.000 lines of code, and
the around-weaver code consists of more than 3000 lines of Java. The full
source code can be found at the abc website[1].

The development of the weaver was carried out in parallel with the other
parts of the abc project. The overall development of the compiler took about
nine months with a team of 13 programmers.

4.1 Structure

Weaving is implemented in an incremental fashion, which means the weavers
are invoked separately for each advice application. The around weaver keeps
internal data structures to carry over state from one application to the next.

4.1.1 Advice lists

Earlier stages of the compiler compute the advice lists. These are lists of
advice applications, which represent the application of a piece of advice to
a certain joinpoint shadow and the dynamic residue for that application.

At the weaving stage, the weavers are called for each application on the
lists.

4.1.2 Ordering of advice applications

For the around-weaver, the advice applications have to be ordered before
they are passed to the weaver. This is necessary to deal with around advice
applying to the execution of around advice. As discussed earlier, these
applications can be regarded as a directed graph which could contain cycles.

58

4. IMPLEMENTATION 4.1. Structure

If such cycles exist, the weaver has to use the closure strategy to close the
cycles.

As the first step, all these applications that are around-advice applying
to around-advice are extracted from the list and their weaving is delayed to
the very end. This allows the construction of the graph structure. Then, a
topological sort is them performed on the graph. If the sort succeeds, the
graph is acyclic and can be woven in the sorted order without resorting to
closure object creation.

If the sort fails, the graph contains cycles and a compiler warning is
issued. Weaving then continues using the unsorted graph.

Dealing with cycles Whenever the weaver weaves into an around advice
method, it sets a flag for that method. Once an advice method has been
woven into, it can only be woven using the closure strategy.

4.1.3 Data structures

Table 4.1 lists the main classes within the weaver. Most of these classes wrap
Soot entities at the Jimple level such as classes, methods and statements.

Class Description

AroundWeaver Top level class.

State Contains the weaver state.

AdviceMethod Represents an advice method.

AdviceLocalClass Represents classes containing code of the
advice method. These are nested classes
within the advice body and the aspect
class itself.

AdviceLocalMethod A method containing code of the advice
method. These are methods of nested
classes and the advice method ifself.

NestedInitCall An initialization statement within an
AdviceLocalMethod that initializes a nested
class.

ProceedInvocation An invoke statement representing a
proceed statement.

ProceedMethod A proceed method. These methods con-
tain the code of the shadows of advised
joinpoints.

AdviceApplicationInfo Wraps the information associated with an
advice application.

Table 4.1: Classes within the weaver

59

4. IMPLEMENTATION 4.1. Structure

AroundWeaver

State

AdviceMethod

AdviceLocalClass

AdviceLocalMethod

NestedInitCallProceedInvocation

ProceedMethod

AdviceApplicationInfo

*

*

* *

*

*

*

Figure 4.1: Object hierarchy

Figure 4.1 shows the object hierarchy that is formed at runtime.
This hierarchy can be conveniently implemented using Java inner classes.

This way, the dynamic object hierarchy is documented in the source code
and the inner classes can transparently access members of the enclosing class
instance.

The inner class mechanism helped to naturally capture the one-to-many
relationships between the weaver entities. For example, advice method ob-
jects are accessed at many places throughout the weaver. Using inner classes
and having AdviceMethod as the outer-most class, all methods of all inner
classes can access the members of the enclosing AdviceMethod instance im-
plicitly.

4.1.4 Incremental weaving

As described, the weaver is invoked once for each advice application. This
means that the weaver may have to modify code that was generated for a
previous advice application. Particularly, if one advice method is applied
to multiple joinpoint shadows, the closure interface associated with the ad-
vice method can change with each application because additional context
parameters may have to be added. These changes do not only apply to the
closure interface but to a number of entities:

• calls to closure interfaces

60

4. IMPLEMENTATION 4.2. Changes to the residue classes

• proceed methods

• calls to proceed methods

• fields of local and anonymous classes

• initializations of local and anonymous classes.

The weaver has to keep track of these entities between invocations. A
complicating factor is that some of these entities may be moved by the
weaver in the process of moving a joinpoint shadow to the proceed method.
This is done by copying all the statements of the shadow to the proceed
method and then deleting the original statements. When doing so, references
to the entities mentioned above have to be updated to point to the new
instances.

4.2 Changes to the residue classes

4.2.1 Bindings

The residue AST contains Bind nodes that represent a possible binding be-
tween an advice formal and a context value. The AST has to be analysed to
determine the possible bindings. This is done in two passes. The first pass
traverses the residue to determine how many times each advice formal is
bound. If any advice formal is bound more than once, the effective binding
has to be stored in the bind mask.

The layout of the bind mask is calculated after the first pass. The layout
determines the mapping between advice formals and the ranges of bits within
the mask representing the bindings of these formals.

The second pass traverses the residue and uses this layout information to
insert new residue nodes of type BindMaskResidue at the appropriate places.
These nodes generate code that manipulates the bind mask to set the correct
bits.

4.2.2 Type check optimization

An optimization was added to the TypeCheck residue. Based on the Java
specification [5], an analysis is performed to determine whether a type could
possibly be converted to the target type at runtime. If this is not the case,
the residue would never succeed and consequently, the advice application
does not need to be woven. This optimization further reduces dynamic
checks at runtime.

61

Chapter 5

Benchmarks

This chapter presents some benchmarks of programs produced by abc and
provides a comparison with ajc produced programs. abc is now in its final
stage of development, and a pre-release version is about to be published.
The pre-release status means that the results presented in this chapter are
to be treated as somewhat preliminary.

5.1 Methodology

The benchmarks have been carried out on the most recent development
version of abc. Each test program was compiled with both compilers and
then timed. Timing was done with the shell’s built in time command.

In order to produce sound results, each measurement was carried out
ten times. The worst and the best times were ignored in an attempt to
remove distortions from other factors such as caching and system activities.
The reported result is the average of the remaining times. ajc was used in
version 1.2.

5.2 Measurements

5.2.1 Coding Standards

A comprehensive study of the performance of AspectJ can be found in [3].
The paper contains five different benchmarks. One of them is based on the
Nullcheck aspect presented earlier. We use the same benchmark as a basis
for our measurements.

In the benchmark, the aspect is applied to a simulator base program. We
used a number of different versions of the aspect with changed pointcuts,
equivalent to those presented in [3].

62

5. BENCHMARKS 5.2. Measurements

Listing 5.1: Nullcheck: Pointcut A

1 pointcut methodsThatReturnObjects () :
2 cal l (∗ ∗ . ∗ (. .)) &&
3 ! cal l (void ∗ . ∗ (. .)) ;

Pointcut A matches all calls to non-void methods, including methods re-
turning simple types. Method calls within the aspect itself are also matched.
This causes ajc to use closures, and both ajc and abc have to perform box-
ing and unboxing for simple types.

Listing 5.2: Nullcheck: Pointcut B

1 pointcut methodsThatReturnObjects () :
2 cal l (Object+ ∗ . ∗ (. .)) ;

Pointcut B only matches methods that return object types. Again, methods
within the aspect are matched and ajc uses closures, but no boxing and
unboxing is necessary.

Listing 5.3: Nullcheck: Pointcut C

1 pointcut methodsThatReturnObjects () :
2 cal l (Object+ ∗ . ∗ (. .)) &&
3 ! within (l i b . a spec t s . . ∗) ;

Pointcut C excludes joinpoints within the aspect itself. This allows ajc to
use its inlining strategy.

In addition, the benchmark was carried out with a pointcut that does
not match any joinpoints, thus effectively measuring the execution time of
the base program.

ajc abc

default Soot
opt.

forced
closures

static
(default)

non-
static

forced
closures

Pointcut A 17.19 17.11 17.10 5.97 6.20 8.53
Pointcut B 5.55 5.59 5.51 1.80 1.97 3.15
Pointcut C 1.50 1.51 5.59 1.81 1.86 3.12
Base program 1.12 1.10 1.11 1.11 1.14 1.12

Table 5.1: Nullcheck execution times (in seconds)

In order to show that the performance gains are not attributable to
the Soot optimization framework, ajc’s output was run through the Soot
optimizer in a separate measurement. The results (Table 5.1, columns 1 and
2) show that the Soot optimizations do not have a significant impact on the
outcome of the measurements.

When abc and ajc are used with their default settings (see Figure 5.1),
the biggest improvements can be seen for pointcuts A and B. For both of

63

5. BENCHMARKS 5.2. Measurements

these pointcuts, ajc uses its closure based strategy, and abc uses the non-
closure approach. With pointcut C, ajc uses its inlining strategy which is
slightly faster than abc’s generic non-inlining approach.

0

1

2

3

4

A B C

B
as

e

Pointcut

a
jc

/a
b
c

Figure 5.1: abc and ajc, normal operation

To compare the efficiency of the closure implementations, the around
weaver was modified to always use the closure strategy and ajc was invoked
with the -XnoInline parameter to force it to use closures. The results
(Figure 5.2) show that the optimizations of the closure implementation were
worthwhile.

0

1

2

3

A B C

Pointcut

a
jc

/a
b
c

Figure 5.2: ajc and abc forced to use closures

The measurements show that the strategy of always using static proceed
methods results in slightly faster programs (Table 5.1, columns 4 and 5).
Static proceed methods are therefore used as the default strategy (however,
the difference is very small).

64

5. BENCHMARKS 5.2. Measurements

5.2.2 Local classes

To measure the performance of the implementation of proceed statements in
local or anonymous classes, the following simple aspect was created. When
applied to a Java program, the aspect captures the program’s output during
the execution and delays the output till after the program’s execution. 1

Listing 5.4: Benchmark for anonymous classes

1 aspect DelayOutput {
2 pointcut outputMethods () :
3 cal l (∗ java . i o . PrintStream . p r i n t l n (. .)) | |
4 . . . // more r e l e v an t ou tpu t methods . . .
5

6 L i s t outputQueue=new LinkedLis t () ;
7

8 void around () : outputMethods ()
9 {

10 Runnable worker = new Runnable () {
11 public void run () {
12 proceed () ;
13 }
14 } ;
15 outputQueue . add (worker) ;
16 }
17 after () : execution (public static void main (St r ing []))
18 {
19 for (I t e r a t o r i t=outputQueue . i t e r a t o r () ; i t . hasNext () ;) {
20 Runnable worker=(Runnable) i t . next () ;
21 worker . run () ;
22 }
23 }
24 }

The aspect was applied to a simple base program that prints a hundred
thousand integers in a loop. The measurements are shown in Table 5.2.

In order to remove the overhead of the system output routines, a second
measurement was taken that uses an empty placeholder method instead of
the system output routines.

ajc abc

A: System output 1.75 1.50

B: Output stub 0.69 0.40

Table 5.2: DelayOutput results (in seconds)

1The listing shows a simplified version of the aspect. A full implementation needs
to provide a specialized piece of advice for the println(java.lang.Object) overloaded
method that calls the object’s toString() method at invocation time.

65

5. BENCHMARKS 5.2. Measurements

0

1

2

3

A B

Measurement
a
jc

/a
b
c

Figure 5.3: DelayOutput results, performance ratios

The second measurement shows that the output routines largely dom-
inate the execution time of the first measurement. With this distortion
removed, the abc implementation is significantly faster.

66

Chapter 6

Conclusion

6.1 Summary

We presented a compilation strategy for weaving around advice for the As-
pectJ language. As part of this work, we did a complete implementation of
this strategy as part of the AspectBench Compiler abc.

The aim of the abc project is to create a production quality compiler,
and extensive testing is part of the development process. The compiler is
verified using an automated test suite with the over 900 test cases of the
official AspectJ compiler ajc. Many of these cases involve around advice
and all of these cases have passed, increasing confidence in the correctness
of the strategy and implementation.

We showed how to avoid closure object creation in most cases, and we
presented a way to weave around advice in the presence of advice formals
with multiple bindings, a case not supported by ajc.

Furthermore, we provided benchmarks that show that the around weaver
in many cases outperforms ajc by up to 200%.

abc is available for download at [1].

6.2 Future work

Simple optimizations Possible future work will be to further optimize
code generation such as the elimination of unused parameters. Such opti-
mizations can be done purely on the Jimple representation without special
knowledge of the weaver. Hence, the preferred approach for this would be
to extend the Soot optimizer to perform the necessary steps.

Adaptive inlining An adaptive inliner that inlines around advice as a
post processing step where appropriate is another possible optimization.

67

6. CONCLUSION 6.2. Future work

This optimization is more complicated and it is unlikely to be successful
without explicit knowledge from the weaver.

The inlining has to be done in multiple steps. First, the advice method
would have to be inlined at the shadow site. After this inlining step, a
different optimizer would have to propagate the constant static class ID, and
any switch statements that use the static class ID as the switch expression
could be eliminated, leaving only the call to the proceed method. Then,
the proceed method could be inlined at the shadow site. Based on the
constant shadow ID, the switch statement from the proceed method could
be eliminated, leaving only the case with the original shadow. Any switch
statements and conditionals depending on the constant bind mask could
then be eliminated.

Soot provides some inlining functionality, which should be extended and
used by the weaver to perform the necessary steps.

Optimization of cycles An interesting point for further investigation
would be the optimal ordering of the advice application graph in the case of
cycles. In the presence of a cycle, the implementation has to use the closure
strategy for one of the advice applications in order to close the cycle. The
current application chooses an arbitrary advice application from the cycle.
An optimization would be to choose the advice application for which the
dynamic residue is least likely to succeed in order to reduce the chance of
actual closure creation at runtime.

At compile time, one can clearly distinguish between residues that never
fail and residues that may fail, and hence the latter should be the preferred
choice for using the closure approach.

A different estimate of the likelihood of success of the residue could be
gained by profiling a version of the compiled program. This information
could then be fed back to the compiler to create an optimized version of the
program.

68

Bibliography

[1] The AspectBench Compiler. http://abc.comlab.ox.ac.uk/.

[2] AspectJ Eclipse Home. The AspectJ home page.
http://eclipse.org/aspectj/, 2003.

[3] B. Dufour, C. Goard, L. Hendren, C. Verbrugge, O. de Moor, and
G. Sittampalam. Measuring the dynamic behaviour of aspectj pro-
grams, 2003.

[4] Erik Hilsdale and Jim Hugunin. Advice weaving in aspectj. In Pro-
ceedings of the 3rd international conference on Aspect-oriented software
development, pages 26–35. ACM Press, 2004.

[5] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The Java
Language Specification. Addison-Wesley, second edition edition, June
2000.

[6] Ramnivas Laddad. AspectJ in Action. Manning, 2003.

[7] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. A compila-
tion and optimization model for aspect-oriented programs. In Compiler
Construction, volume 2622 of Springer Lecture Notes in Computer Sci-
ence, pages 46–60, 2003.

[8] J. Miecnikowski and L. J. Hendren. Decompiling java bytecode: prob-
lems, traps and pitfalls. In R. N. Horspool, editor, Compiler Con-
struction, volume 2304 of Lecture Notes in Computer Science, pages
111–127. Springer Verlag, 2002.

[9] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Poly-
glot: An extensible compiler framework for Java. In 12th International
Conference on Compiler Construction, volume 2622 of Lecture Notes
in Computer Science, pages 138–152, 2003.

[10] Vijay Sundaresan Patrick Lam Etienne Gagnon Raja Vallée-Rai, Lau-
rie Hendren and Phong Co. Soot - a java optimization framework. In
Proceedings of CASCON 1999, pages 125–135, 1999.

69

BIBLIOGRAPHY

[11] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A seman-
tics for advice and dynamic join points in aspect-oriented programming.
In Foundations of Aspect-Oriented Languages (FOAL), Workshop at
AOSD 2002, Technical Report TR #02-06, pages 1–8. Iowa State Uni-
versity, 2002.

70

Appendix A

Comprehensive Example

This appendix shows the decompilation of a complete program. The input
program is the thread pooling example presented in Section 2.3.4.

Listing A.1: Server

1 import java . net . ∗ ;
2 import java . i o . ∗ ;
3

4 public class Server
5 {
6 public static f ina l int PORTNUM=2748;
7

8 public static void proceed$2 (
9 RequestHandler orgAdviceFormal ,

10 int shadowID ,
11 int bindMask ,
12 java . lang . Object contextArgFormal)
13 {
14 java . lang . Thread requestThread ;
15

16 switch (shadowID)
17 {
18 case 0 : // the thread s t a r t i n t e r c e p t i o n
19 i f (bindMask == 1)
20 requestThread = (Thread)
21 contextArgFormal ;
22 else

23 requestThread = orgAdviceFormal ;
24

25 requestThread . s t a r t () ;
26 return ;
27 default :
28 throw new RuntimeException () ;
29 }
30 }

71

A. COMPREHENSIVE EXAMPLE

31

32 public static void main (java . lang . S t r ing [] args)
33 throws java . lang . Exception , java . i o . IOException
34 {
35 java . net . Socket r eque s tSocke t ;
36 RequestHandler $r1 ;
37

38 r eque s tSocke t = (new ServerSocket (2 7 4 8)) . accept () ;
39 // thread crea t ion i n t e r c e p t i o n
40 $r1 = ThreadPooling . aspectOf () . around$1 (
41 r equestSocket , null , 0 , 1 , 0 , r eque s tSocke t) ;
42

43 // dynamic re s idue check ,
44 // thread s t a r t i n t e r c e p t i o n
45 i f ($r1 instanceof RequestHandler)
46 ThreadPooling . aspectOf () .
47 around$2 (
48 (RequestHandler) $r1 ,
49 null , 0 , 1 , 0 , $r1) ;
50 else

51 Server . proceed$2 (null , 0 , 1 , $r1) ;
52 }
53

54 public static RequestHandler proceed$1 (
55 java . net . Socket orgAdviceFormal ,
56 int shadowID ,
57 int bindMask ,
58 java . lang . Object contextArgFormal)
59 {
60 java . net . Socket r eque s tSocke t ;
61

62 switch (shadowID)
63 {
64 case 0 : // r e qu e s t handler c rea t ion shadow
65 i f (bindMask == 1)
66 r eque s tSocke t = (Socket)
67 contextArgFormal ;
68 else

69 r eque s tSocke t = orgAdviceFormal ;
70

71 return new RequestHandler (r eque s tSocke t) ;
72 default :
73 throw new RuntimeException () ;
74 }
75 }
76 }

72

A. COMPREHENSIVE EXAMPLE

Listing A.2: RequestHandler

1 import java . net . ∗ ;
2

3 class RequestHandler extends java . lang . Thread
4 {
5 private java . net . Socket r eque s tSocke t ;
6

7 public RequestHandler (java . net . Socket r eque s tSocke t)
8 {
9 this . r eque s tSocke t = reque s tSocke t ;

10 }
11

12 public void run ()
13 {
14 // run method rep laced by
15 // c a l l t o adv ice method
16 ThreadPooling . aspectOf () .
17 around$0 (this , null , 0 , 1 , 0) ;
18 }
19

20 // acces sor f o r p r i v i l e g e d acces s
21 public java . net . Socket g e t$acce s so r$ r eque s tSocke t$4 ()
22 {
23 return r eque s tSocke t ;
24 }
25 // acces sor f o r p r i v i l e g e d acces s
26 public java . net . Socket s e t $ a c c e s s o r$ r eque s tSocke t$ 5 (
27 java . net . Socket $r1)
28 {
29 r eque s tSocke t = $r1 ;
30 return $r1 ;
31 }
32 public static void proceed$0 (
33 RequestHandler orgAdviceFormal ,
34 int shadowID ,
35 int bindMask)
36 {
37 RequestHandler th i s $;
38 switch (shadowID)
39 {
40 case 0 :
41 // the execu t ion shadow
42 // o f the run () method
43

44 i f (bindMask == 1)
45 th i s $ = (RequestHandler)
46 contextArgFormal ;
47 else

48 th i s $ = orgAdviceFormal ;

73

A. COMPREHENSIVE EXAMPLE

49

50 Pr intWr iter w r i t e r=null ;
51 try

52 {
53 wr i t e r=new Pr intWr iter (
54 th i s $. r eque s tSocke t .
55 getOutputStream ()) ;
56 try {
57 Thread . s l e ep (1 0 0 0) ;
58 } catch (Inter ruptedExcept ion e){}
59 wr i t e r . wr i t e (” He l lo !\n”) ;
60 wr i t e r . f l u s h () ;
61 }
62 catch (IOException ex) {
63 } f ina l ly {
64 try {
65 i f (w r i t e r !=null)
66 wr i t e r . c l o s e () ;
67 th i s $. r eque s tSocke t . c l o s e () ;
68 } catch (IOException ex) { }
69 }
70 return ;
71

72 default :
73 throw new RuntimeException () ;
74 }
75 }
76 }

Listing A.3: ThreadPooling aspect

1 import java . u t i l . ∗ ;
2 import java . net . ∗ ;
3 import org . a s p e c t j . lang . ∗ ;
4 import java . i o . ∗ ;
5

6 public class ThreadPooling
7 {
8 java . u t i l . Set pool= new HashSet () ;
9 // the r e f e r en c e to the s i n g l e t o n aspec t in s t ance

10 public static f ina l

11 ThreadPooling abc$pe rS ing l e ton Ins tance ;
12 private static java . lang . Throwable abc$ in i tFa i lu r eCause ;
13

14 // Thread s t a r t adv ice method
15 public f ina l void around$2 (
16 RequestHandler requestHandler ,
17 Abc$proceed$ThreadPooling$around$2 c l o s u r e I n t e r f a c e 4 ,
18 int shadowID5 ,
19 int s ta t i cC la s s ID6 ,

74

A. COMPREHENSIVE EXAMPLE

20 int bindMask7 ,
21 java . lang . Object contextArgFormal)
22 {
23 i f (r equestHandler . i sA l i v e ())
24 synchronized {
25 r equestHandler . n o t i f y () ;
26 }
27 else

28 // proceed
29 Server . proceed$2 (
30 requestHandler ,
31 shadowID5 ,
32 bindMask7 ,
33 contextArgFormal) ;
34 }
35

36 // Request handler adv ice method
37 public f ina l void around$0 (
38 RequestHandler requestHandler ,
39 Abc$proceed$ThreadPooling$around$0 c l o s u r e I n t e r f a c e 8 ,
40 int shadowID9 ,
41 int s ta t i cC la s s ID10 ,
42 int bindMask11)
43 {
44 while (true)
45 {
46 // proceed
47 RequestHandler . proceed$0 (
48 requestHandler ,
49 shadowID9 ,
50 bindMask11) ;
51

52 r equestHandler . s e t $ a c c e s s o r$ r eque s tSocke t$ 5 (null) ;
53 synchronized {
54 pool . add (requestHandler) ;
55 }
56

57 synchronized {
58 while (r equestHandler .
59 ge t$acce s so r$ r eque s tSocke t$4 () == null)
60 {
61 try {
62 r equestHandler . wait () ;
63 }
64 catch (Inter ruptedExcept ion e){
65 continue ;
66 }
67 }
68 }

75

A. COMPREHENSIVE EXAMPLE

69 }
70 }
71

72 static

73 {
74 try {
75 ThreadPooling . abc$po s tC l in i t () ;
76 }
77 catch (Throwable catchLoca l) {
78 abc$ in i tFa i lu r eCause = catchLoca l ;
79 break ;
80 }
81 }
82

83 // The generated method to
84 // r e t r i e v e the aspec t in s t ance
85 public static ThreadPooling aspectOf ()
86 throws org . a s p e c t j . lang . NoAspectBoundException
87 {
88 ThreadPooling theAspect ;
89

90 theAspect = abc$pe rS ing l e ton Ins tance ;
91

92 i f (theAspect == null)
93 throw new NoAspectBoundException (
94 ”ThreadPooling” ,
95 abc$ in i tFa i lu r eCause) ;
96 else

97 return theAspect ;
98 }
99

100 public static boolean hasAspect ()
101 {
102 return abc$pe rS ing l e ton Ins tance != null ;
103 }
104

105 private static void abc$po s tC l in i t ()
106 {
107 abc$pe rS ing l e ton Ins tance = new ThreadPooling () ;
108 }
109

110 // Request handler c rea t ion adv ice method
111 public f ina l RequestHandler around$1 (
112 java . net . Socket socket ,
113 Abc$proceed$ThreadPooling$around$1 c l o s u r e I n t e r f a c e 0 ,
114 int shadowID1 ,
115 int s ta t i cC la s s ID2 ,
116 int bindMask3 ,
117 java . lang . Object contextArgFormal)

76

A. COMPREHENSIVE EXAMPLE

118 {
119 RequestHandler r e s u l t , r e s u l t ;
120 java . i o . PrintStream $r1 , $r8 ;
121 java . lang . S t r i n gBu f f e r $r2 , $r9 ;
122

123 synchronized {
124 i f (pool . isEmpty ()) {
125 // proceed
126 r e s u l t = Server . proceed$1 (
127 socket , shadowID1 , bindMask3 ,
128 contextArgFormal) ;
129 return r e s u l t ;
130 }
131 else

132 {
133 r e s u l t = (RequestHandler) pool . i t e r a t o r () . next () ;
134 pool . remove (r e s u l t) ;
135 r e s u l t . s e t $ a c c e s s o r$ r e que s tSock e t $5 (so cke t) ;
136 return r e s u l t ;
137 }
138 }
139 }
140 }

Listing A.4: Closure interfaces

1 public interface Abc$proceed$ThreadPooling$around$0
2 {
3 public abstract void proceed$0 (
4 RequestHandler r0 , int i1 , int i 2) ;
5 }
6 public interface Abc$proceed$ThreadPooling$around$1
7 {
8 public abstract proceed$1 (
9 java . net . Socket r0 , int i1 , int i2 ,

10 java . lang . Object r3) ;
11 }
12 public interface Abc$proceed$ThreadPooling$around$2
13 {
14 public abstract void proceed$2 (
15 RequestHandler r0 , int i1 , int i2 ,
16 java . lang . Object r3) ;
17 }

77

