
An Implementation of Open Modules
in AspectJ

Oxford University
Computing Laboratory

Neil Ongkingco
Keble College

Submitted in partial fulfillment of the requirements for the degree of
MSc in Computer Science

September 2, 2005

Abstract

Aspect-oriented programming languages provide advice to modify the be-
havior of programs. Some current languages, notably AspectJ, provide few
limitations on advice, so new advice can change the behavior of existing pro-
grams without any restrictions. Changes to the base code can also affect the
behavior of existing advice in an unexpected manner. Open modules is one
proposal to solve the problems above. It is defined for a small functional
aspect-oriented language, and has the benefit of a formal definition of its
behavior. There is, however, no implementation for Open Modules in an
existing aspect-oriented programming language.

AspectJ is an aspect-oriented programming language based on java. This
dissertation presents an implementation of Open Modules in AspectJ, using
the AspectBench compiler. The implementation also allows a module to be
included in another module, and defines the effect of the inclusion on the
properties of the modules.

Acknowledgements

I would like to express my gratitude to Professor Oege De Moor, who in-
troduced me to AspectJ and Open Modules, as well as consistently provid-
ing guidance and insight during the whole of the project. I also thank Dr.
Jonathan Aldrich for providing useful feedback on the proposed design for
Open Modules in AspectJ, and the AspectBench team for their assistance
during the implementation of Open Modules in the AspectBench compiler.

Contents

1 Introduction 7
1.1 Contributions . 8
1.2 Thesis Organization . 8

2 Background 9
2.1 Aspect-Oriented Programming 9
2.2 AspectJ . 9

2.2.1 Basic Pointcuts and Advice 10
2.2.2 Around Advice and Formals 11
2.2.3 Cflow pointcuts . 12
2.2.4 Precedence . 13

2.3 AOP and Modularity . 13
2.4 Open Modules . 16

2.4.1 Example . 17
2.4.2 Formal Semantics . 19

2.5 The AspectBench compiler . 25

3 Open Modules in AspectJ 28
3.1 Syntax . 28
3.2 Modules . 30

3.2.1 Members . 31
3.2.2 Signatures . 32
3.2.3 Precedence . 35

3.3 Module inclusion . 35
3.3.1 Module members . 36
3.3.2 Signature Inheritance 37
3.3.3 Precedence . 40

2

CONTENTS 3

4 Implementation 41
4.1 Syntax Extensions . 41
4.2 Module Representation . 46

4.2.1 Data Structures . 47
4.3 Compiler Passes . 48

4.3.1 Internal Representation Generation 50
4.3.2 Precedence . 51
4.3.3 Non-Syntax Error checking 51

4.4 Matching . 52
4.4.1 Basic Matching . 52
4.4.2 Matching and Signatures 52
4.4.3 abc Implementation Issues 53

5 Formal Definitions and Proofs 54
5.1 Basic Definitions . 54
5.2 Modules . 55

5.2.1 Module Abstractions 55
5.2.2 Notation Conventions 56
5.2.3 Valid Open Module Sets 56

5.3 Basic Module Conversion . 57
5.4 Module Inclusion . 58
5.5 Aspect Order Consistency . 61

6 Conclusion 68
6.1 Summary . 68
6.2 Future work . 69

List of Tables

2.1 AspectBench compiler passes 26

4.1 openmod AST node data structures 43
4.2 Open module compiler passes 50

4

List of Figures

2.1 Cached Fibonacci in TinyAspect 19
2.2 TinyAspect values and contexts 20
2.3 TinyAspect semantics . 21
2.4 Fibonacci example with Open Modules 22
2.5 Open Module semantics . 23

3.1 Open Module AspectJ Syntax in BNF 29

4.1 Grammar extensions to compilation-unit 42
4.2 Internal Module Representation Data Structures 47

5.1 Definitions for code, aspects and signatures 54
5.2 Definition of modules and basic modules 55
5.3 Definition of valid Open Module sets SM 57
5.4 Definition of compile . 58
5.5 Definition of convert . 59

5

Listings

2.1 Basic pointcuts and advice . 10
2.2 Around advice . 11
2.3 Cflow Pointcuts . 12
2.4 declare precedence . 13
2.5 Simple Figure Class . 14
2.6 Replay Aspect . 14
2.7 Modified Figure class . 14
2.8 Figure Module . 17
3.1 Fibonacci Module Example 30
3.2 Shadow Ownership . 34
3.3 Module Inclusion . 36
3.4 Exposing a debug pointcut for multiple modules 38
3.5 Run-time toggling of aspects across multiple modules 39
3.6 Private signatures . 39
4.1 An AspectJ program that uses a cflow pointcut 44
4.2 The equivalent java program that is produced after weaving . 44
4.3 CFlow module and associated dummy aspect 46

6

Chapter 1

Introduction

Aspect-oriented programming (AOP) is a relatively new programming method-
ology that was designed to enable the modularization of features that cross-
cut boundaries of conventional abstraction models [4]. AOP allows the im-
plementation of the feature to be written separately from the existing (base)
code, and is then “woven” into the base code to produce the fully functional
system. When applied to object-oriented programming, AOP addresses the
issue of features that cross-cut the class hierarchy, such as invariant checking
or logging. Implementations of such features using traditional methods are
usually scattered across classes that are unrelated in the hierarchy.

Existing aspect-oriented programming languages, notably AspectJ, allow
the modification of the base code in an unrestricted manner. This implies
that the behavior of any existing code can be modified arbitrarily. Further-
more, as advice is woven at specific points in the base code, a change in the
base code can lead to a change in the behavior of existing aspects that ad-
vise that code. This makes it difficult to alter the behavior of the program as
potentially all advice affecting it must be examined before any modifications.

Open modules [2] is a proposal to restrict the ability of aspects to modify
base code by specifying an interface containing the set of points in the code
that can be modified by aspects. The interface enforces a contract between
the code and its client aspects: that aspects will modify only the points
specified in the interface, while the semantics of the points exposed in the
interface will be maintained even after modifications to the base code.

7

CHAPTER 1. INTRODUCTION 8

1.1 Contributions

The dissertation made the following contributions:

• Extended the design of Open Modules to AspectJ.

• Introduced a novel notion of module inclusion.

• A proof that the design is consistent with AspectJ’s rules of aspect
precedence.

• Provided a full implementation of Open Modules in the AspectBench
compiler.

• Identified scope for further improvements of the extensibility of the
AspectBench compiler.

1.2 Thesis Organization

Chapter 2 contains a review of aspect-oriented programming, the modularity
issues introduced by advice and a description of Open Modules and its seman-
tics. Also contained is a short description of AspectJ and the AspectBench
compiler.

Chapter 3 presents the design of Open Modules in AspectJ. The mod-
ule construct and its effect on pointcut matching and aspect precedence is
described.

Chapter 4 details the implementation in the AspectBench compiler and
the issues involved in the integration of Open Modules in the said compiler.

Chapter 5 contains proofs that the implementation behaves similarly to
Open Modules, and is consistent with the aspect precedence rules of AspectJ.

Finally, chapter 6 concludes with a summary and suggestion for future
work.

Chapter 2

Background

2.1 Aspect-Oriented Programming

Aspect-oriented programming (AOP) was designed to encapsulate cross-cutting
features that would normally be spread across a program [4]. One feature
found in AOP languages is advice, which is woven at specific points of the
base program to alter its behavior. This allows the implementation of a
cross-cutting feature to be encapsulated by a single abstraction instead of
being spread across the object hierarchy.

2.2 AspectJ

AspectJ [6, 10] is an aspect-oriented programming language based on Java.
Some of the basic constructs used by AspectJ to provide aspect-oriented
functionality are joinpoints, pointcuts and advice. Joinpoints are a represen-
tation of events in base code to which modifications can be applied. The set
of locations in the code where a joinpoint may match is known as the join-
point’s shadow. Pointcuts specify a set of joinpoints. Pointcuts can specify
any set of joinpoints in the entire program. Advice are code blocks that are
applied to joinpoints specified by its associated pointcut. There are three
basic forms of advice: before, after and around. Before advice is applied
before the joinpoint, after advice after the joinpoint, and around advice is
executed instead of the joinpoint. Pointcuts and advice are declared in an
aspect, which serves as the modularization construct of the language. As-
pectJ also provides aspect inheritance, which behaves like class inheritance.

9

CHAPTER 2. BACKGROUND 10

What follows is a short review of the features of AspectJ that are relevant
to this thesis.

2.2.1 Basic Pointcuts and Advice

Listing 2.1 shows a simple aspect and the base code that it modifies. It
contains an aspect named BasicAspect, which contains a piece of before advice
(line 4) and an after advice (line 7). Both are applied to the pointcut pc foo,
which refers to calls to a method named foo without any parameters and
with a void return value (line 2). The pointcut matches on the call to foo in
line 18.

Listing 2.1: Basic pointcuts and advice

1 aspect BasicAspect {
2 pointcut pc foo(): call(void foo()); //pointcut declaration
3

4 before(): pc foo() { //Before advice
5 System.out.println(”Before foo”);
6 }
7 after(): pc foo() { //After advice
8 System.out.println(”After foo”);
9 }

10 }
11

12 class Base {
13 public void foo() {
14 System.out.println(”In foo”);
15 }
16 public static void main(String args[]) {
17 Base b = new Base();
18 b.foo ();
19 }
20 }

The program, predictably, produces the following output:

Before foo

In foo

After foo

CHAPTER 2. BACKGROUND 11

2.2.2 Around Advice and Formals

Around advice is executed instead of the matching joinpoint. The advice can
then optionally invoke the joinpoint by using the proceed keyword. Listing
2.2 demonstrates the behavior of around advice.

Listing 2.2: Around advice

1 aspect AroundAspect {
2 pointcut pc foo(int x) : call(double foo(int)) && args(x);
3

4 double around(int x): pc foo(x) {
5 double ret = 0.0;
6 if (x != 0) {
7 ret = proceed(x);
8 } else {
9 ret = 0.0;

10 }
11 return ret;
12 }
13 }
14

15 class AroundBase {
16 public double foo(int x) {
17 return 1.0/x;
18 }
19

20 public static void main(String args[]) {
21 AroundBase x = new AroundBase();
22 x.foo (2); //returns .5
23 x.foo (0); //returns 0
24 }
25 }

The aspect AroundAspect contains one piece of around advice, which
intercepts calls to foo. The pointcut pc foo contains a formal parameter
x, which is bound to the parameter of the function foo using the keyword
args. This pointcut formal is then bound to the formal parameter x of the
around advice in line 4. The result is that the advice checks the value of
the parameter passed to foo and only invokes proceed if the parameter is

CHAPTER 2. BACKGROUND 12

non-zero. Otherwise, it returns 0.

2.2.3 Cflow pointcuts

Cflow pointcuts match a joinpoint when it is in the control flow of a pointcut.
The control flow of a joinpoint is the set of instructions that are executed
while the activation record of the joinpoint still resides in the program stack.
As an example, the control flow of a function call consists of all the instruc-
tions that are executed while the activation record of the function call is still
in the stack. The following listing shows the behavior of cflow pointcuts.

Listing 2.3: Cflow Pointcuts

1 aspect CFlowAspect {
2 pointcut pc flow(): cflow(call(∗ foo(..))) && call(∗ bar (..));
3

4 before() : pc flow() {
5 System.out.println(”bar while in foo”);
6 }
7 }
8

9 class BaseCflow {
10 public void foo() {
11 bar(); //the before advice matches on this call to bar
12 }
13 public void bar() {}
14

15 public static void main(String args[]) {
16 BaseCflow b = new BaseCflow();
17 b.foo ();
18 b.bar(); //this does not match pointcut pc flow
19 }
20 }

The pointcut pc flow matches on calls to methods named bar with any
return type and any set of parameters, as long as it is in the control flow of
a call to a method foo. The call to bar in line 11 matches the pointcut since
it occurs within the control flow of foo, but the call in line 18 does not.

CHAPTER 2. BACKGROUND 13

2.2.4 Precedence

When multiple pieces of advice apply to a single joinpoint shadow, the order
in which they are applied may result in different program behavior. By
default, the order in which advice is applied is non-deterministic, i.e. it is
up to the compiler. However, it is sometimes necessary to specify this order
to ensure that the program runs properly. AspectJ provides the declare
precedence declaration to specify the precedence order of aspects. This order
is then used to determine the order of advice application

Listing 2.4: declare precedence

1 aspect PrecedenceAspect {
2 declare precedence: AspectA, AspectB, AspectC;
3 }

The declare precedence statement above sets the precedence order for
AspectA, AspectB and AspectC. AspectA has the highest precedence, while
AspectC has the lowest precedence.

AspectJ allows multiple declare precedence statements, as long as they
do not cause a precedence conflict. Aspect precedence is also global, in
that if AspectA has a higher precedence than AspectB, then the advice of
AspectA is always applied before advice of AspectB on all shadows in the
program. This is true even if the order was chosen by the compiler, i.e. if
the compiler non-deterministically chose to apply advice from AspectA before
that from AspectB at a particular shadow, it should always apply AspectA
before AspectB at all other joinpoint shadows.

2.3 AOP and Modularity

While aspect-oriented programming provides modularity to cross-cutting fea-
tures, another property of program modularity is adversely affected by ad-
vice. As advice is executed at specific points in the base program, a change
in the implementation of the base program can cause advice to behave in an
unexpected manner.

The following example, based on an example by Aldrich [2], illustrates the
problem. Listing 2.5 shows a simple Figure class, which is just a collection
of points. It also has a translate method that moves the points by a specified
displacement.

CHAPTER 2. BACKGROUND 14

Listing 2.5: Simple Figure Class

1 public class Figure {
2 List elements;
3

4 public Figure translate(int dx, int dy) {
5 for (Iterator iter = elements.iterator (); iter .hasNext();) {
6 Point elem = (Point)(iter .next());
7 elem.translate (dx,dy);
8 }
9 return this;

10 }
11 }

Suppose a replay feature is implemented using an aspect. The aspect
would intercept all calls to Figure.translate and store the translations in a
list for replaying. Note that the advice is very tightly coupled to the call to
translate, and any change to the implementation of Figure that changes the
pattern of calls to translate will break the aspect.

Listing 2.6: Replay Aspect

1 aspect ReplayAspect {
2 pointcut translate(int dx, int dy):
3 call(∗ Figure. translate (int, int)) && args(dx,dy);
4

5 LinkedList moves = new LinkedList();
6

7 before(int x, int y, Figure fig) : translate (x,y) && target(fig){
8 //Store fig , x and y in the moves list
9 }

10 }
If the implementation of Figure was changed such that the list can contain

other figures as well as points, the behavior of the replay aspect would change
drastically. The advice in ReplayAspect would match both the external call to
translate as well as the call to translate inside Figure. This leads to duplicate
entries in the replay list.

Listing 2.7: Modified Figure class

1 public class Figure {

CHAPTER 2. BACKGROUND 15

2 public Figure translate(int x, int y) {
3 for (Iterator iter = elements.iterator (); iter .hasNext();) {
4 Object elem = iter.next();
5 if (elem instanceof Point) {
6 ((Point)elem).translate (x,y);
7 }
8 else if (elem instanceof Figure) {
9 ((Figure)elem).translate (x,y);

10 }
11 }
12 return this;
13 }
14 }

That such a seemingly innocuous change to Figure could change the be-
havior of the program in an unexpected manner seems to violate the encap-
sulation that the class is expected to provide. As there is no well-defined
interface between Figure and its client aspects, all aspects that apply to it
would need to be checked before any modifications are made. This makes
the evolution of base code difficult. The problem is made worse if Figure was
part of a third-party library where the source code is unavailable. In such a
case, it would be very difficult to diagnose the problem as the implementation
details of Figure would be hidden.

One solution to the problem is to define an interface between base code
and its client aspects. The interface should provide a mechanism to the
developer of the base code for limiting the extent of code to which aspects
can be applied. The interface allows a contract to be established between the
base code and the aspects: aspects will only apply to the exposed portions
of the base code, while any changes to the base code must not break the
aspects that advise the base code exposed by the interface.

This approach which has been taken by several previous authors [3,5,7].
Clifton and Leavens [3] use aspect maps to define the aspects that can be
applied to specified classes or packages. Spectator aspects, which can be ap-
plied everywhere but are expected to merely ”observe” the base code without
modifying its behavior, are provided for features such as logging and debug-
ging. Lieberherr et. al. [7] defines aspectual collaborations. A system is
organized into collaborations and participants, which roughly correspond to
packages and classes in Java. Points in the participants that can be modified

CHAPTER 2. BACKGROUND 16

are marked as expected, acting like abstract declarations but do not prevent
instantiation of the participant. These points can be modified by providing
a concrete implementation from another participant in a collaboration. Col-
laborations also support aspectual methods, which act in a manner similar
to around advice in AspectJ. Kiczales and Mezini define aspect-aware inter-
faces [5] where the aspects and type of advice that can apply to a method
can be specified.

These proposals all require that the aspect that will apply to a portion of
code be specified in the interface. An addition of an aspect would require the
modification of the existing interfaces to allow for its use. This is undesirable
as it would make it difficult to integrate new aspects, especially aspects such
as debugging or logging aspects that modify a large extent of code.

2.4 Open Modules

Open modules [2] is a proposal that defines an interface between the members
of the module and advice that apply to them. Open modules is defined to
be

...any module system that:

• allows external advice to interactions between a module and
the outside world (including external calls to functions in
the interface of a module)

• allows external advice to exposed pointcuts

• does not allow external modules to directly advise internal
events within a module, such as calls from within a mod-
ule to other functions within the module (including calls to
exported functions)

A module is a collection of code and signatures, which are exposed meth-
ods and pointcuts. Code can either be ordinary base code, or advice. Advice
which are not part the module apply only to external calls to the exposed
methods. This effectively allows the implementation of an exposed method to
be changed without affecting the behavior of external aspects, as the changes
are inside the module. A module can also expose a pointcut to capture in-
ternal events that cannot be expressed as a single method call. Exposing a

CHAPTER 2. BACKGROUND 17

pointcut comes with an implicit guarantee from the developer of the base code
that the semantics of the pointcut will remain the same after any changes to
the base code. Thus the behavior of client aspects are protected from modi-
fications of the base code, while changes to the base code need only comply
with the guarantee that the semantics of the exposed pointcuts remain the
same.

Open modules also define a precedence order for the advice declared in
the module. The advice that is declared last is applied first, followed by
the second to the last, and so forth. In AspectJ this is equivalent to a
declare precedence declaration with the aspects in the reverse order of their
declaration in the module.

2.4.1 Example

Listing 2.8: Figure Module

1 module FigureModule {
2 class Figure;
3 aspect Aspect2;
4 aspect Aspect1;
5 sig {
6 method Figure Figure.translate(int, int);
7 //exposes the individual Point. translate () calls inside Figure
8 pointcut pointTranslations();
9 }

10 }
The example above shows Open Modules using a syntax closer to As-

pectJ than the TinyAspect language used in [2]. The module FigureModule
contains the class Figure of the previous section, two aspects Aspect1 and As-
pect2, and two signatures: the first exposing external calls to Figure.translate,
and the second exposing calls to Point.translate inside Figure. Advice that
belongs to aspects not inside the module must match one of the signatures
for it to apply to a shadow that belongs to the module.

The concept of shadow ownership is fully defined in the next chapter, for
now it is sufficient to state that a call to a method declared in a class belongs
to that class. Hence any calls to Figure.translate belong to the class Figure,
as translate is declared in Figure.

CHAPTER 2. BACKGROUND 18

The first signature exposes external calls to Figure.translate, and has the
effect of conjoining the pointcut

!within(Figure) && !within(Aspect1) && !within(Aspect2)

to the pointcuts of external aspects when matching with joinpoint shadows
that belong to the class Figure, in addition to the constraint that it matches
a call to Figure.translate. Aspect1 and Aspect2 are also included in the ex-
pression as they may contain calls to translate, and Open Modules forbid the
application of external advice to any code inside the module unless explicitly
specified by the signature. When applied to ReplayAspect, the pointcut of
the before() advice effectively becomes

call(* Figure.translate(int, int)) &&

!within(Figure) && !within(Aspect1) && !within(Aspect2)

Thus the advice applies only to external calls to Figure.translate, preserving
the proper behavior of ReplayAspect even after the modifications in Listing
2.7.

The pointcut signature pointTranslate is provided to allow matches with
the individual Point translations that occur inside Figure. This is an example
of an internal event that cannot be expressed as a single call to methods of
Figure. By exposing pointTranslate, the developer of FigureModule makes
the guarantee that pointTranslate will always mean the Point translations
in Figure, regardless of any modifications made to Figure. The most natural
definition of pointTranslate would be

call(* Point.translate(int, int)) && within(Figure)

Note that pointcut signatures do not have the implicit !within checks that
method pointcuts provide, otherwise they would never match any internal
events. Thus by exposing pointTranslate, the developer concedes control of
all calls to Point.translate in Figure, Aspect1 and Aspect2 to external advice,
as any external aspect can then have a piece of around advice which may
completely bypass the call to Point.translate(). As such, great care needs to
be taken when exposing internal events through pointcut signatures.

Since Aspect1 is declared later than Aspect2, it is applied first. In effect,
the module declaration implicitly creates the declaration

declare precedence: Aspect1, Aspect2;

CHAPTER 2. BACKGROUND 19

Since Aspect1 and Aspect2 are in the same module as Figure, they are
not affected by the signatures defined in the module. Any advice in either
aspect will be applied to Figure as normal.

2.4.2 Formal Semantics

More formally, Open Modules was defined for a small functional aspect-
oriented language TinyAspect. Figure 2.1, taken from [2], shows a cached
Fibonacci function in TinyAspect.

val fib = fn x:int => 1

around call(fib) (x:int) =

if (x>2)

then fib(x-1) + fib(x-2)

else proceed x

(*cache functions used in advice*)

val inCache = fn ...

val lookupCache = fn ...

val updateCache = fn ...

(*caching advice*)

pointcut cacheFunction = call(fib)

around cacheFunction(x:int) =

if (inCache x)

then lookupCache x

else let v = proceed x

in updateCache x v; v

Figure 2.1: Cached Fibonacci in TinyAspect

The Fibonacci function is implemented by a piece of around advice that
checks if its parameter is greater than 2, and recursively calls fib if it is.
Caching is provided by a second piece of around advice, which checks if a
particular value has already been computed and exists in the cache. The
semantics for TinyAspect is that the latest advice declared is applied first,

CHAPTER 2. BACKGROUND 20

hence the cache advice is called before the advice that implements recursion,
which leads to the expected savings in execution time.

The semantics of TinyAspect is defined by a set of reduction rules that
translate source code into a set of values, V . There are three types of values:
expression values v, declaration values dv and the call pointcut value call(`).
Declaration values are bound using ≡ instead of =, to distinguish them from
source declarations. Figure 2.2 details the form of each of these value types,
as well as the forms of the possible evaluation contexts C. C shows how an
expression can be reduced, with 2 representing the term for reduction. In
the definition of C, bind can be either val or pointcut. The order in the
rules defining C also define the order of the reduction, i.e. reduction is first
done on the left side of an application, then on the right side, then in the
body of a val declaration, then on to the succeeding declarations.

v ::= () | fn x : τ => e | `
dv ::= • | val x ≡ ` dv | pointcut x ≡ call(`) dv

V ::= v | dv | call(`)
C ::= 2e2 | v12 | val x = 2 d | bind x ≡ V 2 | pointcut x = 2 d

Figure 2.2: TinyAspect values and contexts

Figure 2.3 contains the reduction rules for TinyAspect. Each state in the
reduction is a pair of an expression e and an advice environment η, which
maps labels ` to values. The notation η[`] looks up the value of the label
` in the environment, while η′ = [` 7→ v]η updates the mapping of ` to v ,
producing the new environment η′.

The application rule r-app is standard function application, where the
actual parameter v is substituted into the formal parameter x in the expres-
sion e using the substitution notation {v/x}e. The r-lookup rule fetches the
value associated with a label ` from η.

The r-val rule converts the body of a val declaration into a new label `,
updating the advice environment to map ` to the body of the val declaration
and replacing all occurrences of the value name x with the label ` in the
subsequent declarations d . These labels are used by pointcuts and advice to
modify the values of the expression represented by the label, as the succeeding
rules will show.

The rule r-pointcut merely converts the pointcut declaration into a point-
cut value, and substitutes the pointcut value call(`) to all occurrences of
the pointcut name x in the succeeding declarations d .

CHAPTER 2. BACKGROUND 21

r-app
(η, fn x : τ => e v) 7→ (η, {v/x}e)

η[`] = v1
r-lookup

(η, `v2) 7→ (η, v1v2)

` 6∈ domain(η) η′ = [` 7→ v]η
r-val

(η, val x = v d) 7→ (η′, val x ≡ `{`/x}d)

r-pointcut
(η, pointcut x = call(`) d) 7→

(η, pointcut x ≡ call(`) {call(`) /x}d)

v ′ = (fn x : τ => {`′/proceed}e)
`′ 6∈ domain(η) η′ = [` 7→ v ′, `′ 7→ η[`]]η

r-around
(η, around call(`) (x : τ) = e d) 7→ (η′, d)

(η, e) 7→ (η′, e ′)
r-context

(η,C [e]) 7→ (η′,C [e ′])

Figure 2.3: TinyAspect semantics

The rule r-around shows the changes to the advice environment and the
value of a label caused by an around advice that attaches to a label `. It
creates a new label `′ mapped to the original value of the label that the around
advice modifies (which is η[`]). The new label is used in the new value v ′,
which is the body of the around advice, with the old value `′ substituted
for all references to proceed. The advice environment is then updated to
map the original label ` to the new value v ′, and the new label `′ to the old
value η[`]. Thus an around advice modifies the return value of the function
represented by the label `, while still exposing the label for further use by
other advice. This rule is responsible for advice that is last declared being
applied first, as the last declared advice will be first in the chain of label-value
pairs in η.

A set of type checking rules for TinyAspect is also provided, but for the
purposes of this paper only the rule for the type of pointcuts is given. Given
a label ` of type τ , then the pointcut call(`) has the type pc(τ).

Open modules extends TinyAspect by introducing modules, defined using
the struct and sig constructs. A module contains functions and advice, and

CHAPTER 2. BACKGROUND 22

structure Math = struct

val fib = fn x:int => 1

around call(fib) (x:int) =

if (x > 2)

then fib(x-1) + fib(x-2)

else proceed x

(*caching advice*)

pointcut cacheFunction = call(fib)

around cacheFunction(x:int) =

(*same as previous cache advice*)

end :> sig

fib : int->int

end

Figure 2.4: Fibonacci example with Open Modules

even other modules, and defines a signature that applies to the contents of
the module. Figure 2.4 shows how the Fibonacci example is encapsulated
using Open Modules.

Figure 2.5 shows part of the operational semantics of Open Modules.
These are additions to the rules for TinyAspect to define the semantics of
structs. Structures that are functors are left out, so as to focus on the ef-
fect of signatures. Modules are a sequence of declarations, and the value of
a module mv is the sequence of declarations values dv of the declarations
it contains. The signature β is a sequence of val, pointcut or structs that
are declared in the module. The effect of signatures is implemented by the
judgement seal(η, d , β) = (η′, ds), which maps an advice environment η, dec-
larations d and a signature β into a new advice environment η′ and sealed
declarations ds . Note that in the definition of the semantics, the label ` has
the type τ .

The rule r-seal shows the conversion of a structure with a signature β into
a structure that contains the sealed declarations dseal , using the judgement
seal.

The succeeding rules define seal itself. The rule s-omit shows how a bind,
which can be a val, pointcut or struct, can be omitted from the signature.
Note that x : τ is not part of the signature β, and hence should not be

CHAPTER 2. BACKGROUND 23

seal(η, dv , β) = (η′, dseal)
r-seal

(η, struct dvend :>sig β end) 7→ (η′, struct dsealend)

s-empty
seal(η, •, •) = (η, •)

seal(η, d , β) = (η′, d ′)
s-omit

seal(η, bind x ≡ v d , β) = (η′, d ′)

seal(η, d , β) = (η′, d ′) η′′ = [` 7→ `′]η′ ` 6∈ domain(η′)
s-v

seal(η, val x ≡ `′ d , (x : τ, β)) = (η′′, val x ≡ ` d ′)

seal(η, d , β) = (η′, d ′)
s-p

seal(η, pointcut x ≡ call(`) d , (x : pc(τ), β)) =
(η′, pointcut x ≡ call(`) d ′)

seal(η, ds , βs) = (η′, ds) seal(η′′, d , β) = (η′′, d ′)
s-s

seal(η, structure x ≡ struct dsend d , (x : sig βs end, β)) =
(η′′, structure x ≡ struct d ′send d ′)

Figure 2.5: Open Module semantics

exposed to external advice. This behavior is achieved by not mapping x to a
label in the new advice environment η′, thus making it invisible to external
advice.

The rule s-v shows the effect of a val in the signature. A new label ` is
created and mapped to the old label `′, and the declaration value val x ≡ `′

is converted to val x ≡ `, using the new label. Thus advice outside the
module see x as `, and can only advise external calls, as the old internal label
`′ is not bound to x . Advice inside the module still associate x with the old
label `′, and can advise internal calls.

The rule s-p shows the effect of pointcut declarations in the signature. In
contrast to the previous rule, adding a pointcut to the signature exposes the
pointcut to outside advice, using the same internal label `.

Finally, the s-s rule shows the effect of signatures in nested structures.
The structure x with body ds and signature βs is part of a larger structure
with subsequent declarations d and signature β. The result is as expected:
x is sealed first with the signature βs , and then by β. In AspectJ terms, this

CHAPTER 2. BACKGROUND 24

is similar to conjoining the exposed signatures of the nested and the nesting
module.

The sealing transformation effectively converts the declarations inside a
struct so that only the calls to functions defined in the signature, either by
a method signature or a pointcut, are bound to labels that can be advised
by external advice. In the context of AspectJ, this is akin to converting the
code in a compilation into (code, signature) pairs, where the signature is a
pointcut defining the joinpoints in the code that can be advised by external
advice.

One of the advantages of Open Modules is that it provides a proof that
any changes to the members of the module will not affect client external
aspects, as long as the constraints are enforced. For this, it provides a set
of logical equivalence rules that check if two implementations of a module
are indistinguishable to all clients. The rules check that the functions return
the same value, and for functions that are part of a signature or are exposed
using a pointcut, that both implementations trigger the external labels in the
same manner. This is trivial for val declarations in the signature, as they
are only triggered once at the start of each call, but can be very difficult to
determine for internal labels exposed by pointcuts.

Another advantage is the relative obliviousness of the module to the ex-
ternal aspects that advise it. There is no need to specify the specific aspects
that apply to the classes. Any external aspect may advise module members,
as long as they also match one of the signatures of the module. This allows
new aspects to be added to the compilation without the need to modify the
existing module declarations.

The semantics formally define the behavior of Open Modules in TinyAspect,
which is a language that is much simpler than full-featured aspect-oriented
languages such as AspectJ. As an example, TinyAspect has a single pointcut
primitive call, which matches only one particular function. AspectJ pointcuts
allow for wildcards in a method pattern, and so can match multiple meth-
ods, methods which may not necessarily have the same parameter signature
or return value. AspectJ also has a richer set of pointcut primitives, which
include pointcuts that must be checked at runtime, such as if and cflow, for
which no equivalent was defined in TinyAspect. As such, the implementation
of Open Modules in AspectJ must be designed to integrate these advanced
features while still providing modularity that is similar to that defined for
Open Modules in TinyAspect.

CHAPTER 2. BACKGROUND 25

2.5 The AspectBench compiler

The AspectBench compiler (abc) [1] is an AspectJ compiler developed to be
an alternative to ajc. The compiler was designed for easy extensibility and for
implementing compiler optimizations. The compiler is built on the Polyglot
extensible compiler framework [9] and the Soot optimization framework [11].

Polyglot parses java source code and generates the corresponding abstract
syntax tree (AST). Multiple passes over the AST set up the data structures
that are used for conversion into Jimple, an intermediate representation used
by the Soot framework. Jimple is finally converted to bytecode after analysis
and optimizations.

Polyglot was designed to allow for extensions to the basic Java compiler
and as such, AspectJ is implemented as an extension of the Polyglot java
compiler. The AspectJ grammar is an extension of the Java grammar, and
extensions to abc are also implemented as Polyglot extensions.

Abc adds passes to the Java compiler that extract the aspect-related in-
formation (AspectInfo) from the AST and are used later when inserting inter-
type declarations and weaving advice code. Included in AspectInfo is the set
of all advice declared along with their associated pointcuts. Abc has a total
of 38 passes, which are grouped into 12 sets. Table 2.1 shows these pass sets
in the order in which they are executed, along with a description of their pur-
pose. Only three of these pass sets, namely passes patterns and parents,
passes precedence relation, and passes aspectj transforms are directly rel-
evant to this dissertation.

Pass Set Description
passes parse and clean Generates the AST by pars-

ing the source files, and gen-
erates the type system to be
used with the AST.

passes patterns and parents Collects basic aspect data
such as aspect names and
the aspect inheritance hier-
archy. Also evaluates and
stores the matches of class
name patterns which will
later be used in matching.

CHAPTER 2. BACKGROUND 26

passes precedence relation Generates the aspect prece-
dence relation from declare
precedence statements.

passes disambiguate signatures Disambiguates method sig-
natures.

passes add members Adds members to class and
aspect types.

passes interface ITDs Processes intertype decla-
rations in interfaces intro-
duced by declare parents
declarations.

passes disambiguate all Removes any remaining am-
biguities in the AST.

passes fold and checkcode Checks the code for other
(non-syntax) errors, such as
code unreachability.

passes saveAST Associates the current com-
pilation with the AST to
prevent recompilation.

passes mangle names Mangle the names of mem-
bers of intertype declara-
tions.

passes aspectj transforms Converts advice into meth-
ods, and collects all the
aspect-related information
into the global Aspect-
Info. Also removes AST
nodes such as pointcut
declarations to prepare for
weaving.

passes jimple Converts the AST to the
Jimple intermediate repre-
sentation.

Table 2.1: AspectBench compiler passes

CHAPTER 2. BACKGROUND 27

Matching in the AspectJ compiler is done by iterating through each piece
of advice in the advice list for every weavable class in the compilation. In
each weavable class, the pointcut associated with each advice is matched
against every joinpoint shadow in the class.

Matching produces a residue, which conceptually is the code that checks
whether an advice applies to a particular joinpoint shadow. Static matches
such as a simple call to a method produce residues that represent true or
false values, true indicating that the advice should be woven at the joinpoint
shadow and false otherwise. Dynamic matches, caused by pointcuts such
as cflow, need to be evaluated at run time. These produce residues that
represent the code for checking the conditions at run time, which are then
woven along with the advice that applies to the shadow.

Chapter 3

Open Modules in AspectJ

This chapter describes the design of the open module extension to AspectJ.
Contained is the definition of the syntax for defining modules, a description
of the modules themselves and their effect on internal and external aspects,
and a description of module inclusion.

3.1 Syntax

A module declaration follows this general pattern:

module <module name> {

[<class | aspect | [constrain] module> <member1>;]

[<class | aspect | [constrain] module> <member2>;]

...

sig {

[[private] <pointcut | method> <signature1>;]

[[private] <pointcut | method> <signature2>;]

...

}

}

A module consists of a list of members, which are classes, aspects or other
modules, and a list of signatures, which may either be method signatures or
pointcut signatures. Module members may be constrained, and signature
members may be private. Class member names may contain wildcards, simi-
lar to class name expressions in AspectJ. Aspect and module member names

28

CHAPTER 3. OPEN MODULES IN ASPECTJ 29

〈module-declaraion〉 ::= ’module’ 〈identifier〉 〈module-body〉

〈module-body〉 ::= ’{’ 〈signature〉 ’}’
| ’{’ 〈module-members〉 〈signature〉 ’}’

〈module-members〉 ::= 〈module-member〉
| 〈module-members〉 〈module-member〉

〈module-member〉 ::= ’class’ 〈classname-pattern-expr〉 ’;’
| ’aspect’ 〈identifier〉 ’;’
| ’module’ 〈identifier〉 ’;’
| ’constrain’ ’module’ 〈identifier〉 ’;’

〈signature〉 ::= ’sig’ ’{’ ’}’
| ’sig’ ’{’ 〈signature-members〉 ’}’

〈signature-members〉 ::= 〈signature-member〉
| 〈signature-members〉 〈signature-member〉

〈signature-member〉 ::= ’pointcut’ 〈pointcut-expr〉 ’;’
| ’private’ ’pointcut’ 〈pointcut-expr〉 ’;’
| ’method’ 〈method-constructor-pattern〉 ’;’
| ’private’ ’method’ 〈method-constructor-pattern〉

Figure 3.1: Open Module AspectJ Syntax in BNF

may not contain wildcards, i.e. you have to specify the exact aspect or mod-
ule that is included in the module. This design decision is based on the
assumption that classes will greatly outnumber aspects or modules in any
given system, and the view that the decision to place a module or aspect in
a module should be a deliberate choice on the part of the developer. Disal-
lowing wildcards for aspects also has the effect of defining a strict precedence
order for all aspects included in a module, which avoids problems caused by
undefined aspect precedence [8].

Figure 3.1 defines the open module grammar in BNF. The grammar is
an extension of the AspectJ grammar used by abc [1], and reuses several
AspectJ non-terminal symbols.

CHAPTER 3. OPEN MODULES IN ASPECTJ 30

3.2 Modules

Modules are the encapsulation constructs for Open Modules. Each module
contains a list of member classes, aspects and modules, and a set of signatures
that apply to its members.

Module declarations are placed in source files that are separate from Java
or AspectJ source files. The modules themselves are not part of the Java
or AspectJ namespace, and thus cannot be referenced by Java or AspectJ
code. This separation allows modules to be added to or removed from a
compilation with relative ease, as they will not require any modifications to
the source code.

Each module in a compilation must have a different name. However, as
the namespace for modules is different from that of aspects and classes, it is
allowed to have a module with a name that is identical to that of a class or
aspect.

The following listing shows a cached Fibonacci function using Open Mod-
ules, based on the Aldrich’s Fibonacci example [2]. The Fibonacci function is
implemented using the aspect Fib to provide the recursion, while the aspect
Cache caches the results of previous calls to fib().

Listing 3.1: Fibonacci Module Example

1 module FibMod {
2 aspect Fib;
3 aspect Cache;
4 class Math;
5 sig {
6 method int Math.fib(int);
7 //exposes cache misses
8 pointcut Cache.cacheMiss();
9 }

10 }
11

12 public class Math {
13 public int fib(int x) { return 1; }
14 }
15

16 aspect Fib {
17 pointcut fib(int x) : call(int Math.fib(int)) && args(x);

CHAPTER 3. OPEN MODULES IN ASPECTJ 31

18

19 int around(int x, Math m) : fib(x) && target(m){
20 if (x < 3) { return proceed(x,m); }
21 else { return m.fib(x−1) + m.fib(x−2); }
22 }
23 }
24

25 aspect Cache {
26 private Map cache = new HashMap();
27 pointcut cacheMiss(): call(∗ Cache.cacheMiss(..)) && within(Cache);
28

29 int around(int x) : Fib.fib(x){
30 Integer i = (Integer)this.cache.get(new Integer(x));
31 if (i != null) { return i.intValue(); }
32 Integer result = new Integer(proceed(x));
33 cacheMiss(x, result);
34 return result.intValue();
35 }
36 private void cacheMiss(int x, Integer value) {
37 cache.put(new Integer(x), value);
38 }
39 }

3.2.1 Members

At its simplest form, a module includes a list of classes and aspects, and a
set of signatures that apply to those classes and aspects. Member classes
are preceded by the keyword class, and member aspects by aspect. Other
modules may also be included by using the keyword module. The description
of the behavior induced by including a module is non-trivial, and is deferred
to the next section.

Member aspects must correspond to an existing aspect in the compila-
tion. In contrast, member classes may or may not match any class in the
compilation.

The order the member classes are declared is not significant, but the
order of member aspects in the module declaration is used to determine
aspect precedence. As such it is best to group all class members at the start

CHAPTER 3. OPEN MODULES IN ASPECTJ 32

or the end of the member list.
Classes and aspects may be a member of at most one module. This

prevents the creation of a new module that circumvents the set of signatures
that apply to a particular class or aspect. To add debugging aspects, one can
create a module that includes the debugging aspect and the modules that it
advises, which provides unrestricted access to members of the child modules.

3.2.2 Signatures

The set of signatures in a module defines the joinpoints of the members
that are exposed to external advice. External advice are applied to module
members only if they match at least one of the signature members in the
list of signatures. In this sense the signature set defines a disjunction of the
individual signature members.

There are two types of signatures: method and pointcut signatures.

Method Signatures

Method signatures expose a particular method or set of methods in the mem-
bers to external advice. Method signatures are defined using the method
keyword, followed by a method pattern. Method patterns are the same as
those for AspectJ, and may contain wildcards.

Method signatures expose only the external calls to the method to exter-
nal advice. In the Fibonacci example above, the method signature

method int Math.fib(int, int);

is equivalent to conjoining the pointcut

call(int Math.fib(int, int)) &&

!within(Math) && !within(Fib) && !within(Cache)

to the pointcuts of external advice when matching calls to functions belonging
to any of the module members.

Pointcut Signatures

Pointcut signatures are defined by the keyword pointcut followed by a point-
cut expression. The pointcut expression in signatures is similar in power to

CHAPTER 3. OPEN MODULES IN ASPECTJ 33

pointcut expressions in AspectJ, except that expressions with formal para-
meters, such as args(x), are not allowed as there are no formal parameters
with which they can be bound. However, dynamic checks that do not use
formal parameters, such as args(int), are allowed.

In the Fibonacci example above, the named pointcut Cache.cacheMiss()
is used to expose the internal event of a miss when trying to retrieve a value
from the cache. This allows external aspects to apply advice to the call to
cacheMiss() in Cache. As pointcut signatures do not allow formal parame-
ters, the parameters to the cacheMiss function will have to be extracted using
thisJoinPoint. This restriction, however, is not essential, and the addition of
parameters to module signatures may be explored in a future design.

As has previously been mentioned, exposing internal events should be
done with great care, as external aspects can weave around advice that does
not call proceed(). Even in the simple example above, such an advice will
completely nullify the Cache aspect.

Signatures and Internal Aspects

Signatures apply only to external advice, i.e. advice that are declared in
aspects that are not members of the module. Aspects that are members of a
module may apply their advice to other members without any restrictions.

In the example above, the Cache aspect applies its around advice to
Math, Fib and itself without being restricted by the signature. Because of
this, it matches the calls to Math.fib() inside the aspect Fib, while advice
declared in external aspects do not.

Equivalent Signature

We note that any set of signature members can be converted to a single
equivalent pointcut signature by putting the signature members in a disjunc-
tion. This idea of an equivalent signature indeed proves to be very useful in
both the implementation and later in a proof about the behavior of module
inclusion.

In the example above, the equivalent signature for FibMod is

(call(int Math.fib(int, int)) &&

!within(Math) && !within(Fib) && !within(Cache)

)

|| Cache.cacheMiss()

CHAPTER 3. OPEN MODULES IN ASPECTJ 34

Shadow Ownership

Signatures are taken into account only when matching shadows that belong
to a module. Determining which shadows belong to which modules requires
a definition of shadow ownership. A shadow’s owning module is the module
which signatures are used to constrain pointcuts that apply to that shadow.
A shadow’s owning module is usually the module that contains the shadow’s
enclosing class, i.e. the class where the shadow occurs. This is true for
method bodies (execution shadows). There are notable exceptions however.
Constructor calls, method calls and field references belong to the method or
field’s declaring class, that is, where the method or field was declared and
not where the call or reference appears.

Listing 3.2: Shadow Ownership

1 module ModuleA{
2 class A;
3 sig {
4 method ∗ A.foo(..);
5 }
6 }
7 class A {
8 static void foo() {};
9 static void all () {};

10 static void zig() {
11 foo ();
12 };
13 }
14 class B {
15 static void ak() {}
16 static void bar() {
17 ak();
18 A.foo();
19 A.all ();
20 }
21 }
22 aspect ExtAspect {
23 //matches all shadows, except those in ExtAspect
24 pointcut pc all() : !within(ExtAspect);

CHAPTER 3. OPEN MODULES IN ASPECTJ 35

25 before() : pc all() {
26 System.out.println(thisJoinPoint.getSignature());
27 }
28 }

In listing 3.2, ExtAspect potentially matches all shadows in the program,
except those in ExtAspect itself. However, class A is included in a module
that only exposes calls to foo. The before advice does match the body of
bar, and the body and call to ak, as the these shadows are owned by class B,
and class B is not included in any modules and hence is not affected by any
signatures. The calls to A.foo() and A.bar(), however, belong to class A, and
hence is owned by ModuleA. Since ModuleA exposes only calls to foo(), the
call to A.all() is not matched by the before advice. Note also that the call
to foo() in A.zig() is not matched, since it is a call internal to ModuleA.

3.2.3 Precedence

The order in which the member aspects are declared in a module define the
precedence of the aspects. Aspects that are declared later have a higher
precedence.

In Listing 3.1, Cache has a higher precedence than Fib, as it was declared
last in FibMod. This results in the expected behavior, as the cache should
first be checked for a hit before proceeding to the recursive calls in Fib.

3.3 Module inclusion

As was previously mentioned, the list of module members may include other
modules. Signatures are “inherited” by module members, and aspects are
able to apply advice without restrictions to module members that are in
the same module. This provides a way to organize modules and propagate
the effects of aspects and signatures across multiple modules, and alleviates
the limitations of disallowing classes and aspects from being a member of
multiple modules.

Listing 3.3 shows an example of module inclusion. Three modules Mod-
uleA, ModuleB, and ModuleC are shown. ModuleB and ModuleC are mem-
bers of ModuleA. ModuleB is included using normal module inclusion, while
ModuleC is included using constrained module inclusion. These inclusion
modes shall be described in detail in the following sections.

CHAPTER 3. OPEN MODULES IN ASPECTJ 36

Listing 3.3: Module Inclusion

1 module ModuleA {
2 module ModuleB;
3 aspect AspectA;
4 constrain module ModuleC;
5 class A;
6 sig {
7 method ∗ f1(..);
8 }
9 }

10

11 module ModuleB {
12 aspect AspectB;
13 class B;
14 sig {
15 method ∗ f2(..);
16 }
17 }
18

19 module ModuleC {
20 aspect AspectC;
21 class C;
22 sig {
23 method ∗ f1(..);
24 method ∗ f2(..);
25 method ∗ f3(..);
26 }
27 }

3.3.1 Module members

Member modules are declared using the module keyword followed by the
name of the module. As with aspects and classes, a module can be a member
of at most one module. In addition, cyclical membership is disallowed, as
this will result in precedence conflicts should the modules in the cycle contain
aspects. The above restrictions imply that module inclusion will produce a
forest of one or more module trees, with each module in exactly one tree.

CHAPTER 3. OPEN MODULES IN ASPECTJ 37

Member modules must also correspond to an existing module.
The members of an included module are considered to be internal for the

purposes of aspect advice application. A class or aspect is considered internal
by the members of the module to which it belongs and all the ancestors of
that module in the inclusion tree. In the example above, the classes B and
C, as well as the aspects AspectB and AspectC are considered to be internal
to ModuleA, since ModuleB and ModuleC are members of ModuleA. Hence
AspectA can apply its advice to these classes and aspects without being
restricted by any signatures. It is, however, different in the context of the
included modules. The members of the including (parent) module, except
the included module itself, remain external to the members of the included
(child) module. Thus advice in aspects AspectB and AspectC must satisfy
the signature of ModuleA before they can be applied to A or AspectA.

Since members of included modules are considered to be internal, they
also affect the equivalent pointcut of method signatures. In the example
above, the signature of ModuleA includes B, C, AspectB and AspectC in the
!within checks, which results in the equivalent signature

call(* f1(..)) &&

!within(AspectA) && !within(A) &&

!within(AspectB) && !within(B) &&

!within(AspectC) && !within(C) &&

The order in which a member module appears in a module declaration
is significant, and is used to determine the precedence of the aspects in the
included module.

3.3.2 Signature Inheritance

The most significant effect of module inclusion is signature inheritance. The
signature of a module is inherited by all of its member modules. The in-
cluding module’s signatures are not affected by the inheritance. There are
two modes of signature inheritance: normal (disjunctive) inheritance and
constrained (conjunctive) inheritance.

Normal Inheritance

In normal module inclusion, this inheritance involves the addition of the
including module’s signature to the signature of its member modules, effec-

CHAPTER 3. OPEN MODULES IN ASPECTJ 38

tively expanding the extent of code that is exposed by the included module.
This allows a signature that would apply to multiple modules to be declared
in a single place, avoiding duplication and possible errors. This could be
especially useful for exposing logging or debugging points that are common
to multiple modules.

Listing 3.4: Exposing a debug pointcut for multiple modules

1 module DebugModule {
2 module Module1;
3 module Module2;
4 ...
5 sig {
6 pointcut DebugAspect.debugPointcut();
7 }
8 }

In the example in listing 3.3, ModuleB is included in ModuleA using
normal inheritance. As such, module inheritance is done using a disjunction,
which results in ModuleB having the effective signature

method * f1(..);

method * f2(..);

It is noted that this form of signature inheritance is different from the
result of sealing nested modules defined in [2]. The formal definition of Open
Modules specify that the signature be applied to the nested structure, thereby
hiding any labels not allowed by the signature of the containing structure.
This is akin to conjoining the signatures of the contained and the containing
modules. However, it is believed that the ability to add a common signature
to multiple modules will be more useful in practice, and as such is the default
behavior of signature inheritance. Signature inheritance that is more akin
to Open Modules as defined in [2] is provided by constrained inheritance,
described in the next section.

Constrained Inheritance

Constrained inheritance provides an alternate method for signature inheri-
tance, conjoining the signature of the including module to that of the included
module. This provides a mechanism for enforcing constraints that apply to

CHAPTER 3. OPEN MODULES IN ASPECTJ 39

multiple modules, such as an if pointcut that checks a boolean value at
runtime to effect run-time enabling and disabling of aspects.

Listing 3.5: Run-time toggling of aspects across multiple modules

1 module ToggleAspectModule {
2 constrain module Module1;
3 constrain module Module2;
4 ...
5 sig {
6 pointcut if(ToggleAspect.aspectsEnabled);
7 }
8 }

In the example in Listing 3.3, ModuleC is included in ModuleA using
constrained inclusion. The signature of ModuleA is conjoined with that of
ModuleC, which results in ModuleC having an effective signature of

method * f1(..);

Private Signatures

Private signatures provide a mechanism for adding a signature that affects
the member classes and aspects of a module, but is not inherited by member
modules. This allows the addition of signatures to a module without worrying
about its effects on member modules.

Private signatures are declared by prepending the keyword private to
method or pointcut signatures.

Listing 3.6: Private signatures

1 module ModuleA {
2 module ModuleB;
3 aspect AspectA;
4 constrain module ModuleC;
5 class A;
6 sig {
7 method ∗ f1(..);
8 private method ∗ f4(..);
9 }

10 }

CHAPTER 3. OPEN MODULES IN ASPECTJ 40

3.3.3 Precedence

The precedence of aspects in the included modules is determined by the
order of the declarations in the including module. Precedence of modules
is determined similar to the way it is determined between aspects, in that
the last declared has highest precedence. If a member module is declared
after an aspect, then the member aspects of the member module have higher
precedence than the aspect. The same criterion is used to determine the
precedence between two member modules.

In Listing 3.3, ModuleB is declared to be a member of ModuleA before
AspectA, while ModuleC is declared after. This implies that the member
aspect of ModuleC, namely AspectC, has a higher precedence than AspectA,
while the member aspect of ModuleB, namely AspectB, has a lower prece-
dence. This results in a strict precedence order equivalent to the declare
precedence declaration

declare precedence: AspectC, AspectA, AspectB;

Since AspectJ only allows for a single global ordering of aspects, this prece-
dence order applies to all applications of advice from the three aspects.
This provides a way to fully specify the order of aspects and avoid the non-
determinism caused by aspects unrelated in the precedence relation.

This strict ordering caused by module inclusion is another reason for the
constraint that aspects are allowed to be a member of at most one module,
as membership in multiple modules may cause precedence conflicts that are
not allowed in AspectJ.

Chapter 4

Implementation

This section describes the implementation of Open Modules in the Aspect-
Bench compiler (abc). Open modules was implemented as an extension
(openmod) of the AspectBench compiler. The implementation contained
2700 lines of code, and an additional 1500 lines of code for tests.

The abc openmod extension consists of three main components:

• the syntax extensions, which include the new AST node types;

• the internal module representation, which also contains the methods
that modify the matching behavior of advice pointcuts;

• and the compiler passes, which process the openmod AST nodes.

4.1 Syntax Extensions

The openmod extensions to the AspectJ syntax was defined using Polyglot’s
parser generator (PPG). PPG uses a yacc-like syntax for defining grammars,
and also allows for the extension of existing non-terminal symbols through
the use of the extends keyword. The openmod grammar uses non-terminals
of the AspectJ grammar, which itself is an extension of the Java grammar
used for the CUP java parser.

Each rule is expected to produce a return value, typically an AST node
or a list of AST nodes that represent the non-terminal on the left-hand side
of the rule. These return values are then used by Polyglot to build the AST.

The top-level non-terminal of Open Modules, the module declaration,
was defined as an additional production of compilation unit, the non-terminal

41

CHAPTER 4. IMPLEMENTATION 42

〈compilation-unit〉 ::= ...
| 〈module-declaration-list〉

〈module-declaration-list〉 ::= 〈module-declaration〉
| 〈module-declaration-list〉 〈module-declaration〉

Figure 4.1: Grammar extensions to compilation-unit

that represents source files. Multiple module declarations are allowed in a
single file, but once a source file contains a module, all its other contents
must also be modules.

Extending the grammar also included the definition of new AST nodes
to represent the non-terminals. The following table provides a summary of
the data structures used.

Name Description
ModuleDecl c A module declaration. Contains

the name of the module and the
module body.

ModuleBody c Represents the body of the module.
Contains a list of module members
and signature members.

ModMemberAspect c A member aspect. Contains the
name of the member aspect.

ModMemberClass c Represents a member class. Con-
tains the classname pattern expr
that is used to match the classes
that belong to the module.

ModMemberModule c A member module. Contains the
module name, and a boolean value
that is set if constrained inclusion
is used.

SigMemberMethodDecl c A method signature. Contains a
pointcut that is equivalent to the
method signature.

SigMemberPCDecl c A pointcut signature. Contains the
pointcut to be used as a signature.

CHAPTER 4. IMPLEMENTATION 43

DummyAspectDecl c A dummy aspect declaration asso-
ciated with a ModuleDecl c. This
is used to generate a dummy aspect
for each module that is used as a
container for code generated by dy-
namic matches, specifically by cflow
matches.

Table 4.1: openmod AST node data structures

Open module AST nodes are, for the most part, unaffected by the java
and AspectJ compiler passes. With the exception of possible precedence
conflicts with declare precedence statements, module files may be put into or
taken out of a compilation without affecting the property of it being a valid
AspectJ program. At worst, warnings may be generated, due to the effect of
modules on pointcut matching and precedence. Existing declare precedence
statements may conflict with the aspect precedence order specified by the
modules, but this can be remedied by changing the aspect precedence order
in the modules to be consistent with the declare precedence statements in the
code.

Such a separation of modules from java and AspectJ code should ease the
integration of modules into existing AspectJ software projects, as no changes
are required to the codebase to allow for the use of modules. Indeed, using
modules may reveal hitherto hidden flaws in the codebase caused by aspects
that violate the signatures of the modules.

The classes that represent signature members, SigMemberPCDecl c and
SigMemberMethodDecl c, store the equivalent pointcut of the signature mem-
ber. These stored pointcuts are put in conjunction with the pointcuts of
advice during matching. Storing the equivalent pointcut is straightforward
for pointcut signatures, as a pointcut expression is provided with the sig-
nature declaration. Method signature declarations only contain a method
pattern, and as such requires conversion to an equivalent pointcut. This is
done by creating a call pointcut that uses the method pattern as an argu-
ment, and later adding the !within checks for external calls once the set of
internal classes and aspects have been fully resolved. For example, a method
signature

CHAPTER 4. IMPLEMENTATION 44

method * foo(..);

is first converted to the call pointcut

call(* foo(..))

Once the set of internal classes and aspects has been fully determined, the
!within constraints that check that it is an external call are added

call(* foo(..)) && !within(class1) && !within(class2) ...

Cflow pointcuts caused a significant issue during the implementation of
openmod, and required the addition of a node to the AST. Abc implements
cflow by creating a counter that is incremented at the start of a call that
matches the cflow argument, and is decremented at the end of the call. The
following listings show an AspectJ program that uses a cflow pointcut and
the equivalent java code that is produced after weaving.

Listing 4.1: An AspectJ program that uses a cflow pointcut

1 class A {
2 public static void foo() {}
3 public static void test() { foo (); }
4 public static void main(String args[]) {
5 test ();
6 }
7 }
8 aspect AspectA {
9 pointcut pc() : cflow(call(∗ A.test (..))) &&

10 call(∗ foo (..)) && !within(AspectA);
11 before() : pc() {
12 System.out.println(”Before foo() while in test ()”);
13 }
14 }

Listing 4.2: The equivalent java program that is produced after weaving

1 class A {
2 public static void foo() {}
3 public static void test() {
4 //tests the counter before calling the before advice

CHAPTER 4. IMPLEMENTATION 45

5 if (AspectA.abc$cflowCounter$0.getThreadCounter().count > 0) {
6 ...
7 AspectA.aspectOf().before$0(staticpart);
8 }
9 foo ();

10 }
11 public static void main(String args[]) {
12 Counter c = AspectA.abc$cflowCounter$0.getThreadCounter();
13 //increment the counter before test , and decrement it after
14 c.count++
15 test ();
16 c.count−−;
17 }
18 }
19 public class AspectA {
20 //the cflow counter
21 public static CflowCounterInterface abc$cflowCounter$0;
22 //the counter initialization
23 private static void abc$preClinit() {
24 abc$cflowCounter$0 = CflowCounterFactory.makeCflowCounter();
25 }
26 //the before advice
27 public final void before$0(StaticPart staticpart) {
28 System.out.println(”Before foo() while in test ()”)
29 }
30 ...
31 }

As the example shows, this counter is normally placed in the aspect in
which the cflow was declared. As modules are non-aspect top level decla-
rations, it was necessary to create a blank dummy aspect, DummyAspect-
Decl c, associated with each module to contain any cflow counters which
may be created due to a cflow signature. Other than cflow initializations,
the dummy aspect contains no other code, such as advice, which may inter-
fere with the behavior of the rest of the program. Having a dummy aspect
for each module results in a class file ModuleName DummyAspect.class to
be created for each module included in the compilation. The following list-
ing shows a module declaration that has a cflow signature, and the dummy

CHAPTER 4. IMPLEMENTATION 46

aspect that is generated after compilation.

Listing 4.3: CFlow module and associated dummy aspect

1 module Module {
2 class A;
3 sig {
4 pointcut cflow(call (∗ A.a()));
5 pointcut cflow(call (∗ A.d()));
6 }
7 }
8

9 //The dummy aspect associated with Module
10 public class Module DummyAspect {
11 public static CflowCounterInterface abc$cflowCounter$0;
12 public static CflowCounterInterface abc$cflowCounter$1;
13 private static void abc$preClinit() {
14 abc$cflowCounter$0 = CflowCounterFactory.makeCflowCounter();
15 abc$cflowCounter$1 = CflowCounterFactory.makeCflowCounter();
16 }
17 ...
18 }

The parent-child relationship between the nodes in the AST is straight-
forward: given a non-terminal on the left-hand side of the rule, its children
are the non-terminals on the right-hand side. There is, however, a single
exception: a DummyAspectDecl c has the ModuleDecl c to which it is as-
sociated as its child. This makes passes process the DummyAspectDecl c
just before the ModuleDecl c, making it easy to store the association in the
module declaration and ensuring that passes go though both the module and
its associated dummy aspect exactly once.

4.2 Module Representation

The openmod extension creates an internal representation of the modules
that mirrors the contents of openmod nodes in the AST. This is necessary as
abc “cleans” the AST to prepare for weaving, removing non-java nodes such
as pointcut declarations and expressions. Matching and weaving is done
after the AST has been cleaned. As pointcut signatures contain pointcut

CHAPTER 4. IMPLEMENTATION 47

Figure 4.2: Internal Module Representation Data Structures

expressions and are used during matching, a separate internal representation
of these nodes must be created for use during matching. Open modules also
specify that internal aspects should apply without limitations to internal
classes, requiring that modules and their members be stored in some form
that allows checking for such conditions.

4.2.1 Data Structures

The internal representation of modules uses nodes to represent module, class
and aspect members. The abstract class ModuleNode represents a module,
class or aspect, which are then represented by the subclasses ModuleNode-
Module, ModuleNodeClass and ModuleNodeAspect respectively. Each Mod-
uleNodeModule has one upward link to its parent and a downward link for
each of its children. ModuleNodeAspect and ModuleNodeClass only have an

CHAPTER 4. IMPLEMENTATION 48

upward link to their parent module.
A ModuleNodeModule also contains equivalent pointcuts of its signatures,

one for non-private signatures and one for private signatures. These two
signatures are disjunctions of the individual signature members, and are up-
dated upon the addition of a new signature member. It was necessary to
separate the private pointcuts from the non-private pointcuts so that only
non-private pointcuts are inherited by included modules.

ModuleNodes are contained in a singleton ModuleStructure. ModuleStruc-
ture contains the module nodes in three separate hash maps indexed by name,
one hash map for each type of ModuleNode. Separate hash maps had to be
provided as the namespace of modules is different from that of aspects and
classes, thus a module may have the same name as an aspect or a class. The
compiler uses several different sets of data structures: Polyglot AST nodes
at the first stage of the compilation and Soot classes during matching and
weaving. Indexing the set by name allows a ModuleNode to be accessed at
many stages of the compilation process, as both Polyglot and Soot classes
provide methods to access the name of a class or aspect.

4.3 Compiler Passes

The openmod extension introduces seven new passes into the compiler. These
additional passes are mainly concerned with generating the internal represen-
tation of modules, checking non-syntax errors and generating the precedence
relation implied by the order of the aspects in a module declaration. Table
4.2 summarizes the new passes in the order that they are run, and provides
a short description for each.

Pass Name Description
CollectModules Creates ModuleNodeModules from

module declarations and adds them
to the ModuleStructure.

CHAPTER 4. IMPLEMENTATION 49

CheckModuleMembers Adds ModuleNodeClass and Mod-
uleNodeAspects with the appropri-
ate parent reference to the Mod-
uleStructure, and updates the par-
ent references of modules that are
members of other modules. Also
checks for duplicate aspect/module
inclusion, as well as for the exis-
tence of the members in the com-
pilation.

CheckModuleCycles Checks for any cyclical module in-
clusions.

CheckDuplicateClassInclude Checks if any classes are included in
more than one module.

OM ComputePrecedence Generates the precedence relation
that is defined by the sequence
of included aspects in the mod-
ule declarations. This comes be-
fore AspectJ’s ComputePrecedence
pass, so any precedence conflicts
will produce errors that refer to
the inconsistent declare precedence
statement.

CollectModuleAspects Attaches the Aspect representation
of a the dummy aspect to its asso-
ciated ModuleNodeModule. Aspect
is the representation of aspect dec-
larations for abc’s AspectInfo. This
pass occurs after all the AspectInfo
has been gathered, but before the
clean up of the AST prior to weav-
ing.

CheckModuleSigMembers Adds the signature members to
their parent ModuleNodeModule.
This pass occurs just before the
clean up of the AST.

CHAPTER 4. IMPLEMENTATION 50

Table 4.2: Open module compiler passes

4.3.1 Internal Representation Generation

The CollectModules, CheckModuleMembers, CollectModuleAspect and Check-
SigMembers passes generate the internal module representation stored in the
ModuleStructure. CollectModules and CheckModuleMembers are run rela-
tively early in the compilation, just after the pass patterns and parents
pass set of AspectJ, while CollectModuleAspect and CollectModules occur in
the pass set passes aspectj transforms, just before the AST is cleaned up
prior to Jimplification and weaving.

CollectModules only processes module declarations, creating the represen-
tative ModuleNodeModule and adding it to the ModuleStructure. It would
have been possible to add the member classes, aspects and modules at this
point, but it would not have been possible to check for the erroneous inclu-
sion of a member in more than one module. As such the addition of members
were deferred to another pass.

CheckModuleMembers creates ModuleNodeClass and ModuleNodeAspect
nodes for class and aspect members, pointing the parent reference to the
including module. It does the same for member modules, by searching for the
corresponding ModuleNodeModule and updating its parent reference. This
pass also checks the existence of a member aspect or member module in
the compilation, as well as for duplicate inclusion of modules and aspects.
Checking for duplicate inclusion of classes, however, is deferred to another
pass, as the abc compiler provides no method for returning the set of classes
that match a particular class name pattern. It does, however, provide a
method that returns true if a given class matches a particular name pattern,
pointing to an alternative method for checking duplicate class inclusions,
done in the pass CheckDuplicateClassInclude.

Adding a member class, aspect or module to a ModuleNodeModule also
updates its extPointcut. The extPointcut represents the !within checks for
verifying external calls. An addition of a member conjoins the existing ext-
Pointcut with a !within pointcut with the member as a parameter.

CollectModuleAspect updates a reference in ModuleNodeModule to the
Aspect representation of its associated dummy aspect. Aspect is the repre-
sentation for aspect declarations in AspectInfo, and is used during matching.

CHAPTER 4. IMPLEMENTATION 51

The CollectModuleAspect pass occurs after all the AspectInfo has been col-
lected, but before the clean up of the AST.

CheckModuleSigMembers adds the signature members of a module dec-
laration. This pass occurs just before the clean up of the AST. The pass
was deferred to this late stage as cflow pointcut signatures must be associ-
ated with their corresponding counter initializations and CflowSetups before
they can be used for matching. A CflowSetup is just an advice that imple-
ments the increment and decrement of the counter before and after the call,
and is created and associated with the cflow pointcut during the passes in
passes aspectj transforms.

4.3.2 Precedence

The OM ComputePrecedence pass generates the precedence relation that is
defined by the order of the inclusion of member aspects in modules. The
precedence relation in abc is implemented as a simple map, with an aspect
mapped to the set of aspects which have been defined to be of lower prece-
dence relative to it. The generation of this relation is a straightforward
matter of reading through aspect members and adding them to the relation,
taking module inclusion into account.

4.3.3 Non-Syntax Error checking

Two passes deal exclusively with non-syntax error checking: CheckModule-
Cycles and CheckDuplicateClassInclude. In addition, the pass CheckModule-
Members also performs error checks on module members, as has been previ-
ously mentioned. Both passes are run after the execution of abc’s passes -
patterns and parents.

CheckModuleCycles checks for any cyclical module inclusions by follow-
ing the upward link from each module, and generating a compile error if it
encounters the module again.

CheckDuplicateClassInclude checks if any class was included in more than
one module. This is done by matching each class declaration with the class
members of all modules, and generating a compile error if more than one
module produces a match.

CHAPTER 4. IMPLEMENTATION 52

4.4 Matching

Matching occurs after the completion of all compiler passes. Matching de-
termines which aspects apply to which joinpoint shadows. The results of
matching are used later by the weaver.

4.4.1 Basic Matching

The matching process goes through all joinpoint shadows, and checks to see
if any advice should be applied to a shadow. Each advice has an associated
pointcut, which is used to match against a shadow.

The matching procedure produces a residue, which is conceptually the
code that checks whether a particular advice should apply to a shadow.
As have been previously mentioned, the resulting residue may be a static
residue, which means that the advice is always applied to the shadow or it is
never applied to the shadow, or a dynamic residue, which performs runtime
checks to determine if the advice is applicable. Residues may be negated, or
combined with other residues using conjunction or disjunction.

After the matching, the residue is woven into the code along with the
advice at the joinpoint shadow. For static residues, no additional code is
generated. Dynamic residues create code that perform the runtime checks
on whether to invoke its associated advice.

4.4.2 Matching and Signatures

Module signatures alter the matching behavior by adding additional con-
straints on the pointcuts of the advice that are being matched. A module’s
effective signature is conjoined with advice pointcuts when they are being
applied to shadows that belong to a member of the module. Otherwise
matching proceeds as normal.

The effective signature of a module is the disjunction of its public and
private signatures, plus any effects due to signature inheritance. Effects to
the effective signature due to inheritance are resolved by simply following
the upward links of the ModuleNodeModule, and combining the public sig-
natures of its ancestors, taking into consideration whether the inclusion was
constrained or unconstrained.

The residue that results from matching the conjunction of the effective
signature and the advice pointcut against the shadow is the value that is

CHAPTER 4. IMPLEMENTATION 53

passed to the weaver. If the residue is dynamic, then the weaver will weave
the residue code together with the advice.

4.4.3 abc Implementation Issues

Though the abc matcher was designed for extensibility, several issues were
exposed during the implementation of the openmod matcher. While there is
a provision for adding new pointcuts and shadows, there is no easy method to
modify the behavior of existing pointcuts. Implementing openmod through
subclassing would have meant a total redefinition of all the existing matching
classes to introduce the behavior added by signatures. This would have made
the openmod extension itself inflexible, as every new pointcut introduced by
other extensions must be modified to implement signature matching.

Another way to have implemented the change would have been to over-
ride the method that does the iteration through shadows, and introduce the
behavior of signatures. The method, however, was static and hence cannot
be overridden. In any case, overriding the method would have meant a total
re-implementation, with the signature matching code inserted in the middle
of the method, which would have made the overriding method ignore any
changes to its super implementation.

In the end, it was decided that the easiest solution is to accept that there
are existing problems in the extensibility of abc and to just directly modify
the abc code to implement openmod.

Chapter 5

Formal Definitions and Proofs

The formal definition of Open Modules outlined in chapter 2 effectively trans-
forms the code in a compilation into (code, signature) pairs, the signature
specifying the joinpoints in the code where external advice can be applied.
This chapter defines abstractions for modules, aspects and signatures of the
implementation, as well as a transformation from a set of Open Modules to
(code,signature) pairs, and shows that this transformation does not violate
the aspect precedence rules of AspectJ.

This chapter uses Z -like notation, but takes liberties with the Z language
[12] when the meaning of an expression is sufficiently clear.

5.1 Basic Definitions

[C]
A = P C → P C⊕

::=∨|∧
Σ ::= p | ¬ p | σ1 ⊕ σ2

Figure 5.1: Definitions for code, aspects and signatures

Figure 5.1 contains the basic definitions for code, aspects and signatures.
C is the type of all possible code. This represents class and aspect code

in a compilation.

54

CHAPTER 5. FORMAL DEFINITIONS AND PROOFS 55

A is the type of aspect applications. Aspect applications are defined as a
function from code to code. Note that an aspect application only represents
the transformations the aspect will perform on a given piece of code. It does
not represent the code of the aspect itself.

Abstracting aspects as transformations of source code are based on the
implementation of aspect-oriented compilers, and not the more common con-
ceptual view of aspects as entities that dynamically observe the behavior of
a program and is triggered by certain specified events.

The type
⊕

contains the logical operators ∨ and ∧ as used in signatures.
The type Σ is the type of signatures. A signature is a primitive pointcut p

or its negation, or two signatures σ1 and σ2 separated by an operator ⊕ :
⊕

.

5.2 Modules

5.2.1 Module Abstractions

M⊕ = M ×⊕

M = iseq(A ∪M⊕)× PC × Σ
MA = iseqA× PC × Σ

Figure 5.2: Definition of modules and basic modules

The type of modules M is a tuple that consists of an injective sequence of
aspect applications and modules, a set of code and a signature. An injective
sequence is a sequence that contains no repeating elements.

Given a module (s ,C , σ), the sequence s models the sequence of aspects
and modules declared in a module declaration. Modules in the sequence are
paired with an operator ∧ or ∨ to model the default and constrained module
inclusion modes defined for the implementation of Open Modules in AspectJ.
Aspects in this sequence only represent the application of an aspect, not its
code, which is included in the set of code C .

The set of code C defines the code that belongs to the module, which
corresponds to the classes and aspects declared in a module declaration. This
defines the set of code to which the signature applies.

CHAPTER 5. FORMAL DEFINITIONS AND PROOFS 56

The signature σ is the signature that applies to the set of code C . Since
the implementation allows for both non-private and private signatures, mod-
ule signatures may also be expressed as a disjunction σpub ∨ σpriv of the
public and private signature of a module.

The type MA is a subtype of M , in that the sequence can contain only
aspects. Modules that are of type MA are referred to as basic modules.

5.2.2 Notation Conventions

In the interest of brevity, a few conventions on notation are defined for this
and the following sections. The variable a and its variants are assumed to be
aspect applications, that is, of type A. The variable m and the tuple (s ,C , σ)
and their variants are assumed to be of type M . The operator variable ⊕ is
assumed to be of type

⊕
.

As in Z , sequences are modelled as a mapping from integers to elements
of a certain type. Hence the range of a sequence is the set of values that are
in the sequence.

5.2.3 Valid Open Module Sets

Figure 5.3 defines the type of valid open module sets SM . A finite set of
modules S is a valid open module set if and only if it satisfies the following
conditions:

1. An aspect is included in at most one module.

2. If a module m includes a module m ′, then m ′ must also be in the set.

3. A module can be included in at most one module, and there are no
cyclical module inclusions.

4. If an aspect application is in a module, then the code of that aspect
must also be in that module.

5. A piece of code c is included in at most one module.

The definition of SM uses the relation in and the function code. The
relation in relates x : (M ∪ A) and m = (s ,C , σ) if x appears in s . In
the context of the open module implementation, a module or aspect x is in

CHAPTER 5. FORMAL DEFINITIONS AND PROOFS 57

SM ⊂ PM
∀ S : SM | m ∈ S ∧ a in m •

@m ′ | m ′ ∈ S • m ′ 6= m ∧ a in m ′

∀ S : SM | m ∈ S ∧ m ′ in m • m ′ ∈ S
∀ S : SM | m,m ′ ∈ S ∧ m in m ′ •

(@m ′′ : M | m ′′ ∈ S • m ′′ 6= m ′ ∧ m in m ′′) ∧
@{m1,m2, ...,mn} ⊆ S | n ≥ 1 • m in m1 ∧ m1 in m2 ∧ ...mn in m

∀ S : SM | (s ,C , σ) ∈ S ∧ a in (s ,C , σ) • code(a) ∈ C
∀ S : SM | (s ,C , σ) ∈ S ∧ c ∈ C •

@(s ′,C ′, σ′) ∈ S • (s ,C , σ) 6= (s ′,C ′, σ′) ∧ c ∈ C ′

in : P((M ∪ A)× A)
in = {((s ,C , σ), (s ′,C ′, σ′)) | ((s ,C , σ),⊕) ∈ ran(s ′)} ∪

{(a, (s ,C , σ)) | a ∈ ran(s)}
code : A → C

toplevel : SM → PM
toplevel(S) = {m ∈ S | @m ′ ∈ S • m in m ′}

Figure 5.3: Definition of valid Open Module sets SM

a module m if x is included in the module declaration of m. The function
code merely maps an aspect application to its corresponding aspect code.

The figure also contains the definition of the function toplevel , which
returns the top-level modules of a valid module set, that is, the modules
which are not included in any other modules in the set.

5.3 Basic Module Conversion

As previously mentioned, a basic module is a module which only includes
aspects, and not other modules. A basic module can be converted into a set
of (code, signature) pairs by applying the aspects to the code in the reverse
order they appear in the sequence. Figure 5.4 contains the definition of the
compile function, which performs this conversion.

CHAPTER 5. FORMAL DEFINITIONS AND PROOFS 58

compile : PMA → P(C × Σ)
compile(S) = {(apply(s ,C), σ) | (s ,C , σ) ∈ S}

apply : iseqA× P C → P C
apply(〈〉,C) = C
apply(〈a〉,C) = a(C)

apply(〈a〉a s ,C) = a(apply(s ,C))

Figure 5.4: Definition of compile

The resulting (code,signature) pairs are now the ones that are visible
to external advice. Since an external advice is applied to a joinpoint only
if the conjunction of its pointcut and the signature matches the joinpoint,
this effectively simulates the behavior of Open Modules as defined in [2],
where only a select set of labels defined by the signature is available for
external advice. However, a formal model and proof matching the behavior
of Open Modules in TinyAspect and in AspectJ is beyond the scope of this
dissertation.

5.4 Module Inclusion

The compile function is only defined for basic modules. To compile mod-
ules that include other modules, a conversion of modules in general to basic
modules must first be defined.

Before the definition of the conversion, a short note on notation. The op-
erator ¹ filters a sequence so that its members are of a certain type. For
example, s ¹ A filters the sequence s so that it contains only entities of
type A, maintained in the same order as they were in s . As an example,
〈a1, a2,m1, a3,m2, a4〉 ¹ A = 〈a1, a2, a3, a4〉. The right hand side of the ¹ op-
erator can also be a set, in which case the result is the sequence filtered so

that only elements which are in the set remain. The a operator concatenates
two sequences. The > value is the top signature value, and has the property
σ ∧ > = σ for any signature σ.

The convert function transforms a valid open module set into a set of
basic modules. The function itself is the union of the results of the function

CHAPTER 5. FORMAL DEFINITIONS AND PROOFS 59

convert : SM → PMA

convert(S) =∪
m∈toplevel(s)

include(〈(m,∧)〉,>)

include : seq(A ∪M⊕)× Σ → MA

let m ′ = (s ′,C ′, σ′pub ∨ σ′priv)
include(〈〉, σ) = {}
include(〈a〉, σ) = {}
include(〈(m ′,⊕)〉, σ) =

{(s ′ ¹ A,C ′, σ ⊕ (σ′pub ∨ σ′priv))} ∪ σ ⊕s include(s ′, σ′pub)

include(〈(m ′,⊕)〉a s , σ) =
append(s ¹ A, include(〈(m ′,⊕)〉, σ)) ∪ include(s , σ)

include(〈a〉a s , σ) = prepend(〈a〉, include(s , σ))

append : seqA× PM → PM

append(s ,M) = {(s ′ a s ,C ′, σ′) | (s ′,C ′, σ′) ∈M}
prepend : seqA× PM → PM

prepend(s ,M) = {(s a s ′,C ′, σ′) | (s ′,C ′, σ′) ∈M}

⊕s : Σ× PM → PM
σ ⊕s M = {(s ′,C ′, σ ⊕ σ′) | (s ′,C ′, σ′) ∈M}

Figure 5.5: Definition of convert

include invoked on the top-level modules of the open module set using >
as a signature and ∧ as an operator. This computes the basic modules
corresponding to the top-level modules without modifying their signatures.
The basic modules can then be transformed into (code, signature) pairs using
compile.

The include function defines a set of basic modules that correspond to
a set of included modules. Given a module m = (s ,C , σ) with σ as its
public signature, include(s , σ) recursively computes the basic modules that
correspond to modules included in m, taking into account the effect of the
inheritance of the signature σ. Note that it computes the modules corre-

CHAPTER 5. FORMAL DEFINITIONS AND PROOFS 60

sponding to the children of m and does not include the basic module that
corresponds to m itself; hence convert is defined as an invocation of the func-
tion include on a sequence that contains a top-level module m and using a
signature and operation that does not affect m.

The definition of include uses several auxiliary functions. The functions
prepend and append respectively insert a sequence of aspects before and after
the sequence component of a set of modules. These are used to define the
effect of the order of inclusion of aspects and modules to the precedence of
aspect applications. The operation ⊕s is an extension of an operator ⊕ :

⊕
.

It applies a signature σ to all the modules in a set of modules using the
operator ⊕, where ⊕ is either ∧ or ∨.

The first two rules that define include provide the base cases for an empty
sequence and a sequence that contains a single aspect. An empty sequence
produces an empty set of basic modules. Since include represents the basic
modules corresponding to the included modules, a sequence that contains
only an aspect also produces an empty set.

The third rule provides the base case for module inclusion. When a
module m ′ is included in a module with a public signature σ using an operator
⊕, it corresponds to a basic module (s ′¹A,C ′, σ⊕(σpub ∨ σpriv)) that contains
the sequence s ′ of m ′ filtered to contain only aspects, and with a signature
that is σ applied to the signature of m ′ using the specified operator ⊕. Since
s ′ may also contain other modules, the set of basic modules for the sequence
s ′ is also computed, this time using the public signature σ′pub of m ′. Since
the public signature σ of the parent of m ′ must also apply to its children, it
is applied to the result of include(s ′, σ′pub).

The remaining rules provide the step case for sequences. The rule for

a sequence 〈(m ′,⊕)〉 a s headed by a module m ′ is to append the rest of
the sequence s ¹ A filtered so that it only contains aspects. This models the
fact that aspects included in a module also apply to a module’s children,
and that any aspects that are included after an member module have higher
precedence. It then continues to compute the basic modules induced by the

rest of the sequence s . The rule for a sequence 〈a〉a s headed by an aspect
is to prepend the aspect to the sequence components of the basic modules
induced by the rest of the sequence.

Since the rules that add to the result of the function or modify the se-
quence component of the resulting modules (rules 3 to 5) always filter the
sequence to include only aspects, the result of an include contains only basic

CHAPTER 5. FORMAL DEFINITIONS AND PROOFS 61

modules. As a valid open module set does not allow cyclical inclusions, it
follows that the result of an include on a sequence s is a finite set, as long as
s belongs to a module m that is a member of a valid open module set.

5.5 Aspect Order Consistency

AspectJ specifies a global aspect precedence order, that is, if an aspect a1 is
applied before a2 at a joinpoint, it must be applied before a2 at all joinpoints
in the program. As the order of the inclusion of aspects in a module define a
precedence order, it must be proven that the precedence order defined by a
set of Open Modules S is consistent with a global aspect precedence. Each of
the basic modules in convert(S) specify a sequence of aspects that apply to a
particular set of code, thus it must be shown that each element of convert(S)
is consistent with some global aspect order.

First, we define aspect order consistency:

Definition (Aspect Order Consistency)
Given two sequences s , s ′ : iseqA of aspects such that ran(s ′) ⊆ ran(s),

the sequence s ′ is consistent with s if s ¹ ran(s ′) = s ′. Similarly, a basic
module m ′ = (s ′,C ′, σ′) is consistent with s if s ′ is consistent with s .

A module induces an aspect ordering that affects itself and its child mod-
ules. The following definition specifies the aspect order induced by the se-
quence component of a module.

Definition (Induced Aspect Order)
Given a module m = (s ,C , σ) that is an element of a valid open module

set S : SM , the induced aspect order aspectorder(s) of the sequence compo-
nent of the module is

aspectorder : iseq(M⊕ ∪ A) → iseqA
aspectorder(〈〉) = 〈〉
aspectorder(〈a〉) = 〈a〉
aspectorder(〈(m ′,⊕)〉) = aspectorder(getseq(m ′))
aspectorder(〈(m ′,⊕)〉a s) = aspectorder(〈(m ′,⊕)〉) a aspectorder(s)

aspectorder(〈a〉a s) = 〈a〉a aspectorder(s)

CHAPTER 5. FORMAL DEFINITIONS AND PROOFS 62

where getseq is

getseq : M → iseq(M⊕ ∪ A)
getseq((s ,C , σ)) = s

Since m is a member of a valid open module set, it can be deduced
that aspectorder(getseq(m)) does produce an injective sequence, that is, a
sequence that has no recurring elements. This is due to the constraints on
open module set that do not allow cyclical inclusions and only allow an aspect
to be included in at most one module. The sequence aspectorder(getseq(m))
also contains all the aspects that are included in m and its descendants.

Before proceeding to prove that the basic modules induced by an open
module set is consistent with the induced aspect order, we first prove a lemma
about consistency.

Lemma(Aspect Subsequence Consistency)
Given a module m = (s ,C , σ) that is a member of a valid open module

set S , then (s ¹ A) is consistent with aspectorder(s).

Proof by Induction:
Inductive Hypothesis: Given a module m = (s ,C , σ) that is a member of
a valid open module set S , then s ¹ A is consistent with aspectorder(s).
Base-〈〉: Let s = 〈〉

s ¹ A = 〈〉 = aspectorder(〈〉) = aspectorder(s)

Base-〈a〉: Let s = 〈a〉

s ¹ A = 〈a〉 = aspectorder(〈a〉) = aspectorder(s)

Base-〈(m,⊕)〉: Let s = 〈(m,⊕)〉

s ¹ A = 〈〉

The empty sequence is consistent with any sequence, since for any se-
quence s ′

s ′ ¹ ran(〈〉) = s ′ ¹∅ = 〈〉

CHAPTER 5. FORMAL DEFINITIONS AND PROOFS 63

Thus

s ¹ A = 〈〉 = aspectorder(s) ¹ ran(〈〉)

Step-〈(m ′,⊕)〉a s ′: Let s = 〈(m ′,⊕)〉a s ′.

s ¹ A = (〈(m ′,⊕)〉a s ′) ¹ A = s ′ ¹ A

aspectorder(s) = aspectorder(〈(m ′,⊕)〉) a aspectorder(s ′)

Since m = (s ,C , σ) is a member of a valid open module set S , then the
module m ′′ = (s ′,C , σ) is also a member of some valid open module set (an
example would be S with m ′′ substituted for m). Thus by the inductive
hypothesis, s ′ ¹ A is consistent with aspectorder(s ′), that is

s ′ ¹ A = aspectorder(s ′) ¹ ran(s ′ ¹ A)

Again since m = (s ,C , σ) is a member of a valid open module set, then
aspectorder(s) contains no repeating elements. As

aspectorder(s) = aspectorder(〈(m ′,⊕)〉) a aspectorder(s ′)

then

ran(aspectorder(〈(m ′,⊕)〉)) ∩ ran(aspectorder(s ′)) = ∅

And since aspects may only appear in at most one module, it is true that

ran(aspectorder(〈(m ′,⊕)〉)) ∩ ran(s ′ ¹ A) = ∅

Thus

aspectorder(s) ¹ ran(s ′ ¹ A)

= (aspectorder(〈(m ′,⊕)〉) a aspectorder(s ′)) ¹ ran(s ′ ¹ A)
= aspectorder(s ′) ¹ ran(s ′ ¹ A)
= s ′ ¹ A = s ¹ A

Step-〈a〉a s ′: Let s = 〈a〉a s ′.

s ¹ A = (〈a〉a s ′) ¹ A = 〈a〉a (s ′ ¹ A)

CHAPTER 5. FORMAL DEFINITIONS AND PROOFS 64

Using reasoning similar to that used in the previous case, then by the induc-
tive hypothesis, s ′ ¹ A is consistent with aspectorder(s ′). That is

s ′ ¹ A = aspectorder(s ′) ¹ ran(s ′ ¹ A)

Prepending 〈a〉 to both sides maintains the consistency, since

(〈a〉a aspectorder(s ′)) ¹ ran(〈a〉a (s ′ ¹ A))

= 〈a〉a (aspectorder(s ′) ¹ (ran(〈a〉a (s ′ ¹ A)))

= 〈a〉a (aspectorder(s ′) ¹ ran(s ′ ¹ A))

= 〈a〉a (s ′ ¹ A)

2

We can now prove the main theorem that will be used to show that
convert(S) is consistent with some global aspect order.

Theorem (Module Aspect Order Consistency)
Given a module m = (s ,C , σ) that is a member of a valid open module

set S , then

∀m ′ ∈ include(s , σ) • getseq(m ′) = aspectorder(s) ¹ ran(getseq(m ′))

Proof by induction:
Inductive Hypothesis: Given a module m = (s ,C , σ) that is a member of
a valid open module set S , then

∀m ′ ∈ include(s , σ) • getseq(m ′) = aspectorder(s) ¹ ran(getseq(m ′))

Base-〈〉: Let m = (〈〉,C , σ).

include(〈〉, σ) = ∅

Thus the condition is vacuously true.

Base-〈a〉: Let m = (〈a〉,C , σ).

include(〈a〉, σ) = ∅

Again, the condition is vacuously true.

CHAPTER 5. FORMAL DEFINITIONS AND PROOFS 65

Step-〈(m ′,⊕)〉: Let m = (〈(m ′,⊕)〉,C , σ), and m ′ = (s ′,C ′, σ′pub ∨ σ′priv)

include(〈(m ′,⊕)〉, σ)
= {(s ′ ¹ A,C ′, σ ⊕ (σ′priv ∨ σ′pub))} ∪ σ ⊕s include(s ′, σ′pub)

aspectorder(〈(m ′,⊕)〉) = aspectorder(getseq(m ′)) = aspectorder(s ′)

By the inductive hypothesis, all the elements of include(s ′, σ′pub) are consis-
tent with aspectorder(s ′). Since the operator ⊕s only changes the signatures
of include(s ′, σ′pub), then all the members of σ ⊕s include(s ′, σ′pub) are also
consistent with aspectorder(s ′).

Finally, by the subsequence consistency lemma, s ′ ¹ A is consistent with
aspectorder(s ′). Hence all the elements of include(〈(m ′,⊕)〉, σ) are consistent
with aspectorder(〈(m ′,⊕)〉).

Step-〈(m ′,⊕)〉a s: Let m = (〈(m ′,⊕)〉a s ,C , σ).

include(〈(m ′,⊕)〉a s , σ)
= append(s ¹ A, include(〈(m ′,⊕)〉, σ)) ∪ include(s , σ)

aspectorder(〈(m ′,⊕)〉a s) = aspectorder(〈(m ′,⊕)〉) a aspectorder(s)

By the inductive hypothesis, all the elements of include(〈(m ′,⊕)〉, σ) are
consistent with aspectorder(〈(m ′,⊕)〉), and all the elements of include(s , σ)
are consistent with aspectorder(s).

It need to be shown that all the elements of the set

sa = append(s ¹ A, include(〈(m ′,⊕)〉, σ))

are consistent with aspectorder(〈(m ′,⊕)〉a s). A element ma of sa is of the

form (s ′′ a (s ¹ A),C ′′, σ′′) where (s ′′,C ′′, σ′′) ∈ include(〈(m ′,⊕)〉, σ). By the
subsequence consistency lemma, s ¹ A is consistent with aspectorder(s). All
the elements of include(〈(m ′,⊕)〉, σ) are consistent with aspectorder(〈(m ′,⊕)〉),
therefore s ′′ is consistent with aspectorder(〈(m ′,⊕)〉). Therefore s ′′ a (s ¹ A)

is consistent with aspectorder(〈(m ′,⊕)〉) a aspectorder(s), and so is ma .
The module m belongs to a valid open module set, which allows an as-

pect or module to be included in at most one module, and does not allow

CHAPTER 5. FORMAL DEFINITIONS AND PROOFS 66

cyclical or multiple module inclusions. It then follows that the set of aspects
contained in the modules of include(s , σ) is disjoint from the set of aspects
in aspectorder(〈m ′,⊕〉). As all the elements of include(s , σ) are consistent

with aspectorder(s), then they are also consistent with aspectorder(〈m ′,⊕〉)a
aspectorder(s).

Since all the elements of append(s¹A, include(〈(m ′,⊕)〉, σ)) and include(s , σ)

are consistent with aspectorder(〈(m ′,⊕)〉a s), then all the elements of

include(〈(m ′,⊕)〉, σ) are consistent with aspectorder(〈(m ′,⊕)〉a s).

Step-〈a〉a s: Let m = (〈a〉a s ,C , σ).

include(〈a〉a s ,C , σ) = prepend(〈a〉, include(s , σ))

= {(〈a〉a s ′,C ′, σ′) | (s ′,C ′, σ′) ∈ include(s , σ)}

aspectorder(〈a〉a s) = 〈a〉a aspectorder(s)

By the inductive hypothesis, all the elements of include(s , σ) are con-
sistent with aspectorder(s). Prepending 〈a〉 to the sequence component of
every element of include(s , σ) as well as to aspectorder(s) maintains the con-
sistency.

2

Finally, it can now be proved that all the elements of convert(S) are
consistent with a global aspect order.

Theorem (Convert Aspect Order Consistency)
Given a valid module set S , then all the elements of convert(S) are con-

sistent with

aspectorder(〈(m1,∧)〉) a aspectorder(〈(m2,∧)〉) a ...
aspectorder(〈(mn ,∧)〉)

where

toplevel(S) = {m1,m2, ...,mn}

Proof

convert(S) =∪
m∈toplevel(s)

include(〈(m,∧)〉,>)

CHAPTER 5. FORMAL DEFINITIONS AND PROOFS 67

Define a set of modules m ′
1 to m ′

n such that m ′
1 = (〈m1,∧〉,∅,>), m ′

2 =
(〈m1,∧〉,∅,>) and so on up to m ′

n . The set S ∪ {m ′
1,m

′
2, ...,m

′
n} is also

a valid open module set, which allows us to use the module aspect order
consistency theorem.

By the module aspect order consistency theorem, all the elements of
include(〈(mx ,∧)〉,>) are consistent with aspectorder(〈(mx ,∧)〉), where mx ∈
{m1...mn}. Since S is an valid open module set, and the modules m1 to mn are
top-level modules, the sequences aspectorder(〈(m1,∧)〉) to aspectorder(〈(mn ,∧
)〉) are disjoint, that is, they do not have any common elements in their
ranges. Therefore all the elements of the sets include(〈(mx ,∧)〉,>),mx ∈
toplevel(S) are consistent with

aspectorder(〈(m1,∧)〉) a aspectorder(〈(m2,∧)〉) a ...
aspectorder(〈(mn ,∧)〉)

and so is convert(S).
2

Note that the order of the concatenations that define the global aspect
order in the previous theorem does not matter. This reflects the fact that
each top-level module and its descendants define an aspect precedence order
that is disjoint from the other top level modules.

Chapter 6

Conclusion

6.1 Summary

The dissertation has presented an implementation of Open Modules in As-
pectJ as an extension of the AspectBench compiler. The syntax of the con-
version of Open Modules from the original TinyAspect language to AspectJ
was defined, as well as its corresponding effect on the behavior of pointcut
matching.

The design also introduced module inclusion, which behaves similarly to
module nesting as defined in the original Open Modules, but adds additional
features such as multiple inclusion modes (constrained and non-constrained)
as well as private signatures.

The details of the implementation of Open Modules as an extension of the
AspectBench compiler was also described. The relative ease in which most of
the extension was integrated highlights the extensibility of the AspectBench
compiler. However, several problems that came up during the implementa-
tion show that the extensibility is not complete, and provide starting points
for further improvement.

The semantics of the open module implementation was also described
formally, and was shown to transform a set of modules into (code, signature)
pairs without violating the global aspect precedence rule of AspectJ.

68

CHAPTER 6. CONCLUSION 69

6.2 Future work

Open Modules provide an interface that only restricts advice applications.
AspectJ has other features that may affect the ability to evolve code, such as
intertype declarations and declare parents. The analysis of the effect of these
features on modularity and the extension of Open Modules to provide means
to constrain these features is a logical progression from this dissertation.

The semantics defined for Open Modules in this dissertation only provide
a transformation from modules to (code, signature) pairs. Although it is
believed that this transformation simulates the behavior of Open Modules,
it would be desirable to devise a formal model to prove the equivalence of the
semantics of the implementation to Open Modules as defined for TinyAspect.

AspectJ also has pointcut primitives other than call, such as execution,
cflow and if, which were not considered in the original definition of Open
Modules. This would require a extension of the formal definition of Open
Modules to include these primitives.

The implementation of Open Modules in AspectJ allows an evaluation of
its effectiveness in actual software. Such an evaluation may expose problems
in Open Modules, and provide starting points for its improvement or the de-
sign of alternative modularity mechanisms for aspect-oriented programs. The
existence of an implementation also allows for the design and development
of tools to integrate Open Modules in the development process of AspectJ
programs.

Bibliography

[1] abc. The AspectBench Compiler. Home page with downloads, FAQ,
documentation, support mailing lists, and bug database. http://

aspectbench.org.

[2] Jonathan Aldrich. Open modules: A proposal for modular reasoning
in aspect-oriented programming. Technical Report CMU-ISRI-04-108,
Institute for Software Research, Carnegie Mellon University, 2004.

[3] C. Clifton and G. Leavens. Observers and assistants: A proposal for
modular aspect-oriented reasoning. In Proceedings of the workshop on
the Foundations of Aspect-Oriented Languages (FOAL ’02), 2002.

[4] G. Kiczales. Aspect-oriented programming. ACM Computing Surveys,
28A(4), 1996.

[5] Gregor Kiczales and Mira Mezini. Aspect-oriented programming and
modular reasoning. In ICSE ’05: Proceedings of the 27th international
conference on Software engineering, pages 49–58, New York, NY, USA,
2005. ACM Press.

[6] Ramnivas Laddad. AspectJ in Action. Manning, 2003.

[7] K. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual collaborations:
Combining modules and aspects. The Computer Journal, 46(5):542–
565, 2003.

[8] Nathan McEachen and Roger T. Alexander. Distributing classes with
woven concerns: an exploration of potential fault scenarios. In AOSD
’05: Proceedings of the 4th international conference on Aspect-oriented
software development, pages 192–200, New York, NY, USA, 2005. ACM
Press.

70

BIBLIOGRAPHY 71

[9] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Poly-
glot: An extensible compiler framework for Java. In 12th International
Conference on Compiler Construction, volume 2622 of Lecture Notes in
Computer Science, pages 138–152, 2003.

[10] The AspectJ Team. The AspectJ Programming Guide.

[11] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. Soot - a java bytecode optimization frame-
work. In CASCON ’99: Proceedings of the 1999 conference of the Cen-
tre for Advanced Studies on Collaborative research, page 13. IBM Press,
1999.

[12] J C P Woodcock and J Davies. Using Z. Prentice Hall, 1996.

