The abc scanner and parser

Laurie Hendren and the abc team

Challenges

e Unambiguous LALR(1) grammar for the complete
AspectJ language that is a natural extension of the
Java grammar. (easy to understand and extend)

e EXxpress as much of the language specification in the
grammar as possible (for example, differentiate in the
grammar where class pattern is required and where
a general type pattern is allowed).

e Handle the different sublanguages and associated
reserved words in a well-defined manner.

q b ‘ The abc scanner and p

arser — p.1/16

abc Solution Overview

a Jflex-based scanner that is built on top of Polyglot’s
Java scanner.

e abc’s scanner uses state to distinguish between
different scanning contexts.
abc/ src/abc/ aspect |/ parse/ aspect|.fl ex

e LALR(1) grammar expressed as a clean extension to
Polyglot’s base Java grammar (originally defined by
Scott Ananian - JavaCup)
abc/ src/ abc/ aspect |/ parse/javal2. cup
abc/ src/abc/ aspect |/ parse/ aspect| . ppg

29

ARt

The abc scanner and p

arser — p.2/16

Scanning AspectJ

o Really three different sublanguages:
1. normal Java code
2. aspect declarations
3. pointcut definitions
e Different sub-languages have different lexical

structure, for example

| fx.x1. Foo+. newW. .)

Java: reserved("if"), op("**"), op("."), op("*"),float(1.0), id("Foo"),
op("+"), reserved('new"), op("("), op("."). op("."), op(")")

Pointcut: IdPat("if*"), op("."), IdPat("*1"), op("."), Id("Foo"),
op("+"), reserved("new"), op("("), op(".."), op(")")

29

q b ‘ The abc scanner and parser — p.3/16

abc Scanner Uses States

Scanner maintains a stack of states.

o New state is pushed when entry into lexical scope Is

detected, and the scanner is put into the new state.

When the end of a lexical state is detected, state Is
popped from the stack and scanner put into the state
now at the top of the stack.

Four major states, each state has well-defined
entry/exit points, and its own lexical structure,
Including specific reserved words defined for that
state.

A reserved word is easily associated to two different
token types, based on current state of the scanner.
For example, i f can have two different token types,
one for the regular i f and one for the pointcut i f .

The abc scanner and p

arser — p.4/16

Scanner States

Java: Default state, aspect, pri vi | eged, and
poi nt cut are reserved words. This state is entered
atcl ass ori nt erface and exited at matching }.
(finding the matching } requires a nesting counter)

Aspect: Begins at the aspect keyword and ends at the
end of the aspect declaration’s body. Has, in addition
to above reserved words, af t er, ar ound, bef or e,
decl ar e, i ssi ngl et on, percfl ow,
per cfl owbel ow, pertarget, perthis,
poi nt cut , and pr oceed.

The abc scanner and p

arser — p.5/16

abc Scanner States (2)

Pointcut: Four contexts in which pointcut expressions

may be found:

perclause: pertarget (.....)

declare declaration: declare :

body of a pointcut declaration: pointcut :
header of an advice declaration:. after {

Reserved words in this state are only:

advi ceexecutionargs,call,cflow,

cf | owbel ow, error, executi on, get, handl er,
1f,initialization, parents, precedence,
preinitialization,returning,set,soft,
staticinitialization,target,this,

t hr ow ng, war ni ng, wi t hi n and w t hi ncode.

The abc scanner and p

arser — p.6/16

abc Scanner States (3)

PointcutlfExpr: INSide a pointcut, an if pointcut has a
nested expression, same scanning state as Aspect,
but state returns to pointcut state at terminating
parenthesis.

..... i) .

The abc scanner an

d parser — p.7/16

Defining a LALR(1) grammar as Polyglot ext.

1. Define new alternatives to existing rules in the
polyglot Java grammar.

2. Define new grammar productions. (sometimes must
accept a slightly too large language and then weed)

The abc scanner an

d parser — p.8/16

All new alternatives

(type declaration) ::= (aspect declaration)

(class_member declaration) ::= (aspect declaration)
| (pointcut declaration)

(interface_member_declaration) ::= (aspect_declaration)
| (pointcut_declaration)

(method _invocation) ::= ’proceed’ '(’ (argument_list opt) ')’

Q¢

The abc scanner and parser — p.9/16

Adding alternatives in Polyglot

[+ add the possibility of declaring an
aspect to type declaration x/

extend type declaration ::=
aspect decl aration: a
{: RESULT = a; :}

The abc scanner an

d parser — p.10/16

New aspect-specific productions

aspect declaration ::=
nodifiers opt:a PRI VILEGED nodifiers opt:al
ASPECT: n | DENTI FI ER: b
super _opt:c interfaces opt:d
percl ause opt:f
aspect body: g
{: RESULT = parser.nf.Aspect Decl (parser. pos(n,qg),

true, a.set(al), b.getldentifier(),
c, d, f, 9);

The abc scanner and parser — p.11/16

aspect_declaration (continued)

nodi fiers_opt:a
ASPECT: n | DENTI FI ER: b
super _opt:c interfaces opt:d
percl ause opt:f
aspect body: g
{: RESULT = parser.nf.Aspect Decl (parser. pos(n,q),

false, a, b.getldentifier(),
c, d, f, 0);

The abc scanner and parser — p.12/16

abc grammar includes pointcuts

(basic_pointcut_expr) ::=

'(’ (pointcut_expr) ')’

‘call’ (" (method_constructor pattern) ’)’
‘'execution’ '(" (method_constructor_pattern) ’)’
'Initialization’ ’(" (constructor_pattern))’
'preinitialization’ ’(" (constructor_pattern) ')’

'get’ (" (field pattern))’
'set’ '(’ (field pattern) ')’
'handler’ (" (classname pattern_expr) ')’ ...

'staticinitialization’ ’(’ (classname_pattern_expr) ')’

The abc scanner and parser — p.13/16

(continued)

(basic_pointcut_expr) = ...

‘adviceexecution’ (" ")’

'within’ '(" (classname_pattern_expr) ")’
'withincode’ (" (method_constructor pattern) ’)’
'cflow’ ’(" (pointcut_expr) ’)’

'cflowbelow’ (" (pointcut_expr) ')’

'if" ’(" (expression))’

'this’ ’(" (type id star) ')’

'target’ '(’ (type id star) ')’

‘args’ '(’ (type id star list_opt) ')’

(name) '(’ (type_id_star_list_opt) ')’

)

q b ° The abc scanner and parser — p.14/16

Specific Patterns

(method constructor pattern) ::=
(method _pattern)
| (constructor pattern)

(method _pattern) ::=
(modifier pattern expr) (type pattern expr)
(classtype dot id)
'(’ (formal_pattern_list_opt) ')’ (throws pattern_list opt)
| (type pattern_expr) (classtype dot id)
'(’ (formal_pattern list opt) ')’ (throws pattern list opt)

The abc scanner

and parser — p.15/16

29

ARt

Summing up

e State-based scanner, plus LALR(1) grammar:

Q

Q

Q

Q

clearly defines lexical scopes and associated
reserved words

naturally handles different sub-languages in
AspectJ

clean addition to the base Java grammar
easy to understand
easy to extend

a More detailed scanning/parsing document at:
http://abc. conl ab. ox. ac. uk/ doc

The abc scanner and p

arser — p.16/16

	Challenges
	abc Solution Overview
	Scanning AspectJ
	abc Scanner Uses States
	Scanner States
	abc Scanner States (2)
	abc Scanner States (3)
	Defining a LALR(1)
grammar as Polyglot ext.
	All new alternatives
	Adding alternatives in Polyglot
	New aspect-specific productions
	aspect_declaration (continued)
	abc grammar includes pointcuts
	(continued)
	Specific Patterns
	Summing up

