The abc scanner and parser, including an LALR(1) grammar for
AspectJ

Laurie Hendren, Oege De Moor, Aske Simon Christensen and the abc team

September 13, 2004

1 Introduction

The purpose of this document is to give a clear explanation of the scanner and parser for abc. In
defining the scanner and lexer our goal was to come up with clear rules for tokens and to express
the grammar in an LALR(1) specification that results in no shift-reduce or reduce-reduce conflicts.
Any language extensions implemented using abc should follow the same principles.

We have based our implementation on Polyglot [1], starting with the base Java compiler. The
scanner is an extended version of polyglot’s base Java scanner. The main difference is that the abc
scanner uses states to distinguish between different contexts. The parser uses polyglot’s mechanism
for extending an existing grammar.

The actual code specifying the scanner and parser can be found in the directory abc/src/abc/-
aspectj/parse in the files aspectj.flex and aspectj.ppg.

2 Lexical Structure

The lexical analysis of AspectJ is complicated by the fact that there are really three different
languages being parsed: (1) normal Java code, (2)aspect declarations, and (3) pointcut definitions.
Each of these three sub-languages has its own lexical structure, and it simplifies the subsequent
design of the grammar if the scanner has different states and rules for each sub-grammar.

2.1 Nested Lexical Scopes

From a conceptual point of view we can think of an AspectJ program consisiting of nested lexical
scopes. There are four kinds of lexical scopes which we refer to by the mode names, JAVA, ASPECT,
PoiNnTcUT and POINTCUTIFEXPR. Figure 1 shows an example of all four kinds of scopes and each
are discussed in more detail in the subsequent subsections.

2.1.1 JAvA mode

The outermost scope is always has JAVA mode. In this mode all tokens are scanned exactly as in
Java, with the exception that privileged, aspect and pointcut are considered to be keywords
and cannot be used an identifiers.

import java.lang.*;

class OrdinaryJavaClass {
public int x;
public int y;

String foo(int x)
{ return ("The value of x + 1is 7 + (x + 1));

}
}

privileged aspect /* a privileged aspect with a per declaration in the header */

OrdinaryAspect percflow ‘ (call(void Foo.m())) ‘

{

/* declare declaration */

declare ‘ warning: call(*1.Foo+.new(..)): “pkg ending in 1, class or subclass of Foo”;

/* pointcut declarations */

pointcut ‘ notKeywords(): call(void *if*.. *while*(int,boolean,*for*)); ‘

pointcut | hasSpeciallf(): iq (Tracing.isEnabled()) ‘;

/* advice declaration */
after‘ (Point p) returning(int x): target(p) && call(int getX()) ‘

{

System.out.println(“Returning int value ” + x + “ for p = 7 4+ p);

}

/* inter-type member declaration */
int OrdinaryJavaClass.incr2(int i)
{ return(x+2);

}

/* ordinary Java declarations */
int x;

static int incr3(int x)

{ return(x+3);

/* a nested class */

class

NestedClass {

/* In Java mode, after and before are not keywords. */
public int after;
public int getBefore()
{ return(OtherClass.before);

}
} // end of NestedClass

} // end of OrdinaryAspect

2

Figure 1: AspectJ code with nested lexical scopes

2.1.2 ASPECT mode

Inside the program one can have a nested ASPECT scope which begins just after the keyword aspect
and ends at the end of the aspect’s body. Figure 1 shows one ASPECT scope corresponding to the
body of the declaration of the aspect named ”OrdinaryAspect”.

In ASPECT mode all symbols are exactly the same as in JAVA mode, except for the addition of
keywords after, around, before, declare, issingleton, percflow, percflowbelow, pertarget,
perthis, pointcut, proceed. Just like normal Java keywords, these additional keywords cannot
be used as identifiers, inside of an ASPECT scope.

2.1.3 PoOINTCUT mode

Whereas the JAvA and ASPECT modes are very similar, basically differing only on the keywords
recognized, the POINTCUT mode has a completely different lexical structure. In Figure 1, the lexical
scopes for pointcuts are shown by the boxes nested inside the Aspect. There are four contexts in
which pointcut scopes occur, as follows:

Pointcut Context #1 - a Per clause in an aspect declaration: The header of an aspect dec-
laration ends with an an optional per clause. A per clause consists of either the keyword iss-
ingleton or a parenthesized pointcut expression preceded by one of the keywords percflow,
percflowbelow, pertarget or perthis. A POINTCUT scope starts after one of the per key-
words and ends at the matching closing parenthesis that surrounds the pointcut. Figure 1
shows a nested scope for a pointcut expression following the percflow keyword.

Pointcut Context #2 - body of a declare declaration: Inside the body of an aspect one can
define a declare declaration. A lexical POINTCUT scope begins just after the keyword declare
and ends at the ; terminating the declaration.

The example program shows a declaration of a warning which matches all calls to construc-
tors of classes found in packages ending in the digit 1, with classname Foo or a subclass of
Foo.

Pointcut Context #3 - body of a pointcut declaration: Pointcut declarations are provided
in AspectJ as a way of defining a named pointcut. In the example program in Figure 1 two
such declarations are given, one for notKeywords and another for hasSpeciallf. Inside pointcut
declarations a pointcut lexical scope begins immediately following the pointcut keyword and
ends after the ; terminating the pointcut declaration. Pointcut declarations can appear both
inside aspects and inside ordinary Java classes.

Pointcut Context #4 - header of an advice declaration: Advice declarations have a point-
cut expression in their header. All such pointcuts will be preceded by one of the keywords
before, after or around. For example, in Figure 1, a pointcut follows an after keyword.
The pointcut ends before the body of the pointcut begins, signalled by a {.

Thus, a pointcut context starts immediately after a before, after or around token, and ends
at the first opening brace encountered.

2.1.4 PoINTCUTIFEXPR mode

Pointcuts have no lexical scopes nested inside them, except for one case, the if pointcut. The
if pointcut contains a boolean expression, which is just Java code. We define a special mode
called POINTCUTIFEXPR which starts right after the if keyword inside a pointcut, and ends at the
terminating parenthesis closing the boolean expression. The lexical structure, in terms of tokens
recognized, is identical to the ASPECT mode. However, in the implementation of the scanner, the
end of POINTCUTIFEXPR mode always signals a return to POINTCUT mode.

In Figure 1, the pointcut declaration named hasSpeciallf shows an example of a nested POINT-
CUTIFEXPR lexical scope.

2.2 Nested Aspects, Classes and Interfaces

In Aspect] classes, interfaces and aspects may be nested inside each other. In terms of nested
lexical scope, a new scope is entered each time the keywords class, interface and aspect are
entered, and the scope is exited at the closing right brace. In the case of class and interface the
scope entered has JAVA mode, whereas for the case of aspect the scope entered has ASPECT mode.

At the bottom of Figure 1 we give the declaration of a nested class called NestedClass. Note that
inside the class declaration is in JAVA mode, so the keywords recognized are those corresponding
to JAVA mode (i.e. Java keywords plus aspect, privileged and pointcut). Thus, in the example,
before and after are considered identifiers, not keywords. Note that this use of inner classes provides
a mechanism for referring to variables defined in other classes that may have the same name as
keywords in ASPECT mode. In our example we have defined the method getBefore to read the value
of OtherClass.before.

The above rule for entering a new lexical scope upon encounter of the keyword class is compli-
cated by the fact that class does not always signal a new class declaration in Java. In particular,
it can be used to return a Class object that represents a type, as in C.class (this is useful, for
example, to create typed lists, where the intended element type is stored with the list structure).
All such uses of the class keyword are preceded by a dot, and class declarations themselves are
never preceded by a dot. For that reason, the lexer records whether the last emitted token was a
dot; if it is, then the class keyword does mot cause a transition to a new lexical scope.

2.3 Lexical Structure of Pointcuts

The language for defining pointcuts is a very special purpose language that provides a way of
specifying identifier patterns, classname patterns, and more complex expressions involving patterns.

2.3.1 Examples of differences from the Java lexical structure

The example program clearly demonstrates ways in which the lexical structure of pointcuts is very
different from the lexical structure of Java.

For example, if one were to use the ordinary Java lexical rules, then the expression “*1.Foo+.new(..)”
would be tokenized as:

[op("*"), fp_literal(1.0), Id("Foo"), op("+"), op("."), keyword("new"), op("("),
op("."), op(".") op(")M1].
However, in pointcuts, the intended lexical structure is quite different and would be tokenized as:

[IdPat("*l"), OP("."), id("FOO"), OP(""'"), Op("."), keyword("new"), Op("("), Op(".."),

Op (n) n)] .
Note that “*1” is an identifier pattern, which matches any identifier ending in 1. Also note, the
sequence “..” is recognized as one token, which also simplifies the grammar.

Another example of the need for a special lexical structure for pointcuts is given in the defini-
tion of the pointcut notKeywords. The ordinary Java lexical rules would tokenize the expression
“Xif*. *while*” as:

[op("x"), keyword("if"), op("*"), op("."), op("."), op("*"), keyword("while"),
op("*")].
whereas this expression inside a pointcut has a completely different lexical structure, namely:

[IdPat("*if*"), op(".."), IdPat("*whilex")]

2.3.2 Tokens in pointcuts

Since the Java lexical structure clearly doesn’t match the pointcut language very well, a completely
different lexical structure is defined for pointcuts. This can be summarized as follows.

Keywords: All of the keywords in JAVA mode (including aspect and privileged), plus the follow-
ing: adviceexecution, args, call, cflow, cflowbelow, error, execution, get, handler,
initialization, parents, precedence, preinitialization, returning, set, soft, staticini-
tialization, target, throwing, warning, within, withincode.

Note that extra keywords in ASPECT mode, such as before, are not keywords in the POINT-
cuUT mode, and similarly the extra keywords in POINTCUT mode are not keywords in ASPECT
mode.

Symbols: The symbols recognized in pointcuts are: op (" ("), op(")"), op("["), op("."), 0p(","),
op(||:||)7 op(||;||)7 ()p(ll{ll)7 OI)(llii)7 op(ll | ll)7 Op("&&"), op(lll |||)7 op(ll- -ll)7 op(ll+ll)'

Identifiers and Identifier Patterns: Identifiers are matched using the same regular expression as in
JAvVA mode, namely:
Identifier = [:jletter:][:jletterdigit:]x*
Identifier patterns are recognized as:
IdentifierPattern = ("*" | [:jletter:]) ("x" | [:jletterdigit:])=*

Since identifiers and identifier patterns are used in pointcuts to specify names that may occur
anywhere, including Java code that has been defined in a library, it is possible that a pattern
might want to refer to something with the same name as one of the extra keywords. This
is handled later by the grammar, where the extra keywords are explicitly allowed as one
alternative of the rule for simple mame pattern, see Section 3.5.1.

3 LALR(1) Grammar

In this section we outline the grammar of AspectJ. If you have a colour version of this document,
you will see that all references to productions in the original Java grammar are given in red. The
base Java grammar was originally developed by Scott Ananian and is distributed with Polyglot.

In terms of the polyglot implementation, all red productions are part of the base Java grammar,
whereas the blue productions are those that are added as part of abc’s AspectJ grammar.

The abc AspectJ grammar is LALR(1) with no shift-reduce or reduce-reduce conflicts. In order
to achieve this conflict-free grammar there are several places where a slightly too large language is
specified, and these are places where further weeding must be used to weed out invalid programs.

3.1 Extensions to the Java Grammar

The following five rules are already found in the Java grammar. The alternatives given below are
additional alternatives to those rules. At the highest level (type_ declaration), we add the possibility
for declaring an aspect. Inside a class (class member declaration) and inside an interface (inter-
face_member_declaration), we add the possibility of declaring an aspect or a pointcut. Finally, we
add the special method call for proceed.

(type declaration) ::= (aspect_declaration)

(class_member_declaration) ::= (aspect_declaration)
| (pointcut_declaration)

(interface_member_declaration) ::= (aspect_declaration)
| (pointcut_declaration)

method__1nvocation) ::= ‘procee argument__l1st_opt
h d . - 9 d7 e l AR

3.2 Aspect Declaration

An aspect declaration has a header where the modifiers may include privileged. We keep the
privileged keyword separate from all other modifiers since it can only be used in this context.

(aspect__declaration) =
(modifiers_opt) ’privileged’ (modifiers_opt) ’aspect’ IDENTIFIER (super_opt)
(interfaces opt) (perclause opt) (aspect body)

| (modifiers _opt) ’aspect’ IDENTIFIER (super opt) (interfaces opt) (perclause_opt)
{(aspect__body)

3.2.1 Per Clause

An aspect declaration has an optional per clause. Note that this is one place in the grammar where
pointcut expressions are introduced. The last alternative has been introduced for compatibility
with ajc.

(perclause opt) ::= e | (perclause)

(perclause) :=
‘pertarget’ '(’ (pointcut_expr) ')’
| ’perthis’ '(’ (pointcut expr) ’)’
| ‘percflow’ '(’ (pointcut_expr) ’)’
| ’percflowbelow’ ’(’ (pointcut_expr) ’)’
| ’issingleton’
| issingleton’ ’(’ ’)’

3.2.2 Aspect Body

An aspect body consists of zero or more declarations. These include all valid class body declarations,
plus three new kinds of declarations specific to AspectJ. Note that

79 9

(aspect_body) ::= | 7 (aspect_body declarations)
(aspect_body__declarations) ::=
(aspect_body _declarations)
| (aspect_body_ declarations) (aspect_body_declaration)

(aspect_body __declaration) ::=
(class_body declaration)
| (declare_declaration)
| (advice declaration)
| (intertype_member_declaration)

3.3 Aspect Body Declarations

3.3.1 Declare Declarations

(declare_declaration) ::=
‘declare’ 'parents’ ’:” (classname_pattern expr) ’extends’ (class type list) ’;

| ’declare’ 'parents’ ’:’ (classname_pattern_expr) 'implements’ (interface_type_list)

| ’declare’ 'warning’ ;" (pointcut expr) '’ STRINGLITERAL ’;’

| ’declare’ ’error’ '’ (pointcut_expr) ’:’ STRINGLITERAL ’;’

| 2.7

|

‘declare’ ’soft’ "’ (pointcut expr) ’;
'declare’ 'precedence’ ;" (classname_ pattern_expr_list) 7y

3.3.2 Pointcut Declarations

(pointcut_declaration) ::=
(modifiers_opt) 'pointcut’ IDENTIFIER '(* (formal parameter list_opt) ’)
| (modifiers _opt) ’pointcut’ IDENTIFIER '(° (formal parameter list_opt))

(pointcut_expr) '3

9 9.
I

9.9

Note, a later weeding phase must ensure that:

e For the first alternative the modifiers must include abstract.
e For the second alternative the modifiers must not include abstract.
3.3.3 Advice Declarations

(advice_declaration) ::=
(modifiers_opt) (advice_spec) (throws_opt) ' (pointcut_expr) (method_body)

(advice_spec) =
'before’ ’(’ (formal _parameter_list_opt) ’)’

(type) ’around’ ’(* (formal_parameter_list_opt) ')’
'void’ ’around’ ’(’ (formal_parameter_list_opt) ')’

| Cafter’ '(’ (formal_parameter_list_opt) ’)

| Cafter’ '(’ (formal_parameter list_opt) ’)’ ‘returning’

| Cafter’ '(" (formal_parameter_list_opt) ’)’ returning’ ’(’ ’)’

| Cafter’ '(’ (formal_parameter list_opt) ’)’ 'returning’ ’(’ (formal_parameter) ’)’
| Cafter’ '(" (formal_parameter list_opt) ’)’ ’throwing’

| Cafter’ '(" (formal_parameter_list_opt) ’)’ *throwing’ ’(’ *)’

| Cafter’ '(" (formal_parameter list_opt) ’)’ throwing’ ’(’ (formal_parameter) ’)’
|

|

Notes:

e The only valid modifier for an advice declaration is strictfp.

o The superfluous parentheses in the second alternatives of returning and throwing have been
introduced for compatibility with ajc.

3.3.4 Intertype Member Declarations

(intertype_member_declaration) ::=
(modifiers_opt) ’void’ (name) ’. IDENTIFIER ’(* (formal_parameter list_opt))’
(throws__opt) (method_body)
(modifiers_opt) (type) (name) ’." IDENTIFIER ’(’ (formal_parameter_list_opt) ')’
(throws__opt) (method_body)
| (modifiers_opt) (name) ’. ’‘new’ ’(’ (formal_parameter_list_opt) ’)’ (throws_opt)
(constructor _body)

(modifiers_opt) (type) (name) ’.> IDENTIFIER ’;’

(modifiers_opt) (type) (name) . IDENTIFIER "=’ (variable_initializer) ’;

3.4 Pointcut Expressions

(pointcut__expr) =
(or_pointcut_expr)
| (pointcut_expr) *&&’ (or pointcut expr)

(or_pointcut_expr) =
(unary_pointcut_expr)
| (or_pointcut_expr) || (unary_pointcut_expr)

unary_pointcut__expr) =
ntcut
(basic_pointcut_expr)
|’V (unary_pointcut_expr)

(basic_pointcut_expr) ::=
(" {pointcut_expr) ')’

| call’ ’(’ (method_constructor_pattern) ')’

| ’execution’ ’(’ (method_constructor_pattern) ')’

| initialization’ '(’ (constructor_pattern) ’)’

| ’preinitialization’ ’(’ (constructor_pattern) ’)’

| ’staticinitialization’ '(* (classname_ pattern_expr) ’)’

| get’ '’ (field_pattern) ')’

| set’ ’(’ (field pattern) ’)’

| handler’ ’(’ (classname_pattern_expr) ’)’

| ’adviceexecution’ ’(’ ')’

| within’ ’(" (classname_pattern_expr) ’)’

| ’withincode’ '(* (method_constructor pattern) ’)’

| cflow’ ’(’ (pointcut_expr) ')’

| ’cflowbelow’ (" (pointcut_expr))

| if? ’(C (expression))

| ’this’ ’(’ (type_id_star))’

| target’ '(’ (type_id_star))’

| args’ (" (type_id_star_list_opt))’

| (name) (" (type id_star list opt))

9

3.5 Patterns
3.5.1 Name Patterns

In this section we give the rules for specifying names as patterns. The grammar explicitly allows
the extra keywords introduced for AspectJ to be a valid simple name_pattern.

(name_pattern) ::=
(simple_name_pattern)
| (name_pattern) ’. (simple_name_ pattern)
| (name_pattern) ’..’ (simple_name_pattern)

(simple_name_pattern) ::=
3%k
| IDENTIFIER
| IDENTIFIERPATTERN
| (aspectj_reserved_identifier)

(aspectj_reserved_identifier) ::=
‘aspect’ | 'privileged’
"adviceexecution’ | ’args’ | 'call’ | 'cflow’ | "cflowbelow’ | ’error’
‘execution’ | 'get’ | "handler’ | ’initialization’ | 'parents’
'precedence’ | 'preinitialization’ | returning’ | ’set’
'soft’ | ’staticinitialization’ | 'target’ | ’throwing’

| ’warning’ | 'withincode’

We also require two special name patterns to distinguish between the cases when the pat-
tern terminates with an identifier or the token new. Note that in the next two grammar rules
we allow a parenthesized type pattern expression when we really want to allow only a class-
name_ pattern__expression. This is required to make the grammar for method_pattern and con-
structor _pattern LALR(1), and must be checked at weeding time.

(classtype_dot_id) ::=
(simple _name_ pattern)

| (name_pattern) ’. (simple_name_pattern)

| (name_pattern) '+’ . (simple_name_pattern)
| (name_pattern) ’..’ (simple_name_pattern)

| bl

(’ (type_pattern_expr)) . (simple_name_ pattern)
(classtype_dot_new) ::=

bl bl

| ‘new

| (name_pattern) ’.” 'new’

| (name_pattern) '+’ . 'new’
| (name_pattern) ’.. ‘new’

’ b

20))

(" (type_pattern_expr) ’) new

3.5.2 Type Pattern Expressions

This section defines type pattern expressions. These are a superset of class name pattern expres-
sions. The main difference is what is allowed at the leaves of the pattern. In the case of class name
patterns the leaves were name patterns, whereas with type pattern expressions the leaves can be
any valid type, including primitive types, void and array types.

10

(type_ pattern_expr) ::=
(or_type_pattern_expr)
| (type_pattern_expr) '&&’ (or type pattern_expr)

(or_type pattern_expr) :=
(unary_type_ pattern__expr)
| (or type pattern_expr)’||" (unary type pattern expr)

(unary type_pattern_expr) ::=
(basic_type_pattern)
| 'V (unary_type_pattern_expr)

(basic_type_pattern) ::=
"void’
| (base_type_pattern)
| (base_type_pattern) (dims)

| C (type_pattern_expr))

(base_type_pattern) ::=
(primitive_type)

| (name_pattern)

| (name_pattern) '+’

3.5.3 Class Name Pattern Expressions

This section defines the expressions that can be specified on class name patterns. Note that by
classname we mean the name of any class, interface or aspect.

11

(classname_pattern expr list) ::=
(classname__pattern_expr)
| (classname_pattern_expr list)) (classname_ pattern_expr)

(classname_pattern_expr) =
and__classname__pattern_expr
d_cl tt
| (classname_pattern_expr) ’||" (and_ classname_ pattern_expr)

(and_classname_pattern_expr) ::=
(unaryiclassnameipattemieﬂcpr>
| (and_classname_pattern_expr) "&&’ (unary_classname_pattern__expr)

(unary_classname_pattern_expr) ::=
(basic_ classname_ pattern)
| 1 (unary_classname_pattern_expr)

(basic_classname_pattern) ::=
(name_ pattern)
| (name_pattern) "+’
| ’C (classname_pattern_expr) ’)’

(classname_pattern_expr_nobang) ::=
(and_ classname_ pattern_expr nobang)
| (classname_pattern_expr_nobang '—— jand_classname_pattern_expr)

(and__classname_pattern_expr_nobang) ::=
(basic__classname_ pattern)
| (and_classname_pattern_expr_nobang) '&&’ (unary_classname_pattern_expr)

12

3.5.4 Method, Constructor and Field Patterns

(method__constructor pattern) ::=
(method_pattern)
| (constructor pattern)

(method__pattern) ::=
(modifier_pattern__expr) (type_pattern_expr) (classtype_dot_id)
(" (formal_pattern_list _opt)) (throws pattern_list_opt)
| (type_pattern_expr) (classtype_dot_id)
(" (formal_pattern_list _opt)) (throws pattern_list_opt)

(constructor_pattern) ::=
(modifier_pattern_expr) (classtype_dot_new)
(" (formal_pattern_list_opt) ’) (throws_ pattern_expr_opt)
| (classtype_dot new)
'(* (formal_pattern_list_opt) ’)’ (throws_pattern_expr_opt)

(field_pattern) ::=
(modifier pattern__expr) (type pattern_expr) (classtype dot_id)
| (type_pattern_expr) (classtype_dot_id)

3.5.5 Modifier Patterns

(modifier_pattern__expr) ::=
(modifier)
|’V (modifier)
| (modifier_pattern_expr) (modifier)
| (modifier_pattern_expr) ' (modifier)

3.5.6 Throws Patterns

(throws _pattern_list_opt) ::=
€
| ’throws’ (throws_pattern_list)

(throws__pattern_list) ::=
(throws__pattern)
| (throws_pattern_list) ’) (throws_pattern)

(throws_pattern) ::=
(classname_pattern expr nobang)
| 'V (classname_pattern_expr)

13

3.5.7 Parameter List Patterns

Different levels of patterns are used for different formal patterns. In the following, the most general
formal pattern is given, and then special restricted patterns that are used for pointcut parameters.
General parameter list patterns

(formal_pattern_list_opt) ::=
€
| (formal_pattern_list)

(formal_pattern_list) ::=
(formal_pattern)
| (formal_pattern_list) °, (formal_pattern)

(formal_pattern) ::=
P
| 7'7 7'7

| (type_pattern_expr)

Pointcut parameter list patterns

(type_id_star_list_opt) ::=
€
| (type_id_star_list)

(type_id_star_list) ::=
(type_id_star)
| (type_id_star_list) ') (type_id_star)

(type_id_star) ::=
9%

’ 7..7
| (type)
| (type) "+’
Acknowledgments

This work was supported, in part, by EPSRC and NSERC.

References

[1] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible compiler framework
for Java. In 12th International Conference on Compiler Construction, volume 2622 of LNCS,
pages 138-152, 2003.

14

