abc : An extensible AspectJ compiler

Pavel Avgustino¥, Aske Simon ChristensénlLaurie Hendref, Sascha Kuzirls
Jennifer LhotaR, Ondfej LhotaR, Oege de Modt, Damien Serenj
Ganesh SittampalamJulian Tibblé

1 Programming Tools Group, Oxford University, United Kingalo
2 BRICS, University of Aarhus, Denmark
3 Sable Research Group, McGill University, Montreal, Canada

Abstract. Research in the design of aspect-oriented programmingisayes re-
quires a workbench that facilitates easy experimentatiin mew language fea-
tures and implementation techniques. In particular, natufes for AspectJ have
been proposed that require extensions in many dimensigniss type checking
and code generation, as well as data flow and control flow aesly

The AspectBench Compilealjc) is an implementation of such a workbench. The
base version oébcimplements the full AspectJ language. Its frontend is built
using the Polyglot framework, as a modular extension of #va Janguage. The
use of Polyglot gives flexibility of syntax and type checkifitne backend is built
using the Soot framework, to give modular code generatiohaamalyses.

In this paper, we outline the design alhc focusing mostly on how the design
supports extensibility. We then provide a general overvaéWwow to useabcto
implement an extension. We illustrate the extension meashenofabcthrough

a number of small, but non-trivial, examples.

We then proceed to contrast the design goalahafwith those of the original
AspectJ compiler, and how these different goals have ledfferent design de-
cisions. Finally, we review a few examples of projects byeostthat exten@bc

in interesting ways.

1 Introduction and Motivation

The design and implementation of aspect-oriented progiambanguages is a buoy-
ant field, with many new language features being develoetid first instance, such
features can be prototyped in a system like the Aspect Sard18¢ via a definitional
interpreter. Such interpreters are useful in defining timeaggics and in explaining the
compilation strategy of new language features [32]. Thd st for new language fea-
tures is, however, their integration into a full, indudtisé&rength language like AspectJ.
That requires a highly flexible implementation of Aspectdttban be extended in a
clean and modular way.

The purpose of this paper is to presaht, the AspectBench Compiler for AspectJ,
which supports the whole of the AspectJ language implenddntajc 1.2, and which
has been specifically designed to be an extensible framédmoirkplementing AspectJ
extensionsabcis freely available under the GNU LGPL [1].

Challenges An AspectJ compiler is already a complex piece of softwareicty in
addition to the normal frontend and backend components ofrgpder, must also sup-
port a matcher (for name patterns) and a weaver (both fortype declarations and
for advice). Furthermore, the kinds of extensions that leen suggested for AspectJ
vary from fairly simple pointcut language extensions to emoomplex concepts which
require modifications in the type system, matcher and wedeamake the challenges
explicit, we briefly review some previous work by others thas motivated our design.

At one end of the spectrum, there are fairly small extensibasrequire changes
primarily to the syntax. An example of this kind is thame pattern scopgsoposed by
Colyer and Clement [12], which provide an abstraction maddm for name patterns.
To support this type of extension, our workbench needs aywayg of extending the
syntax, as well as introducing named patterns into the enment.

A more involved extension is thgarametric introduction®f Hanenberg and Un-
land [23]. These are intertype declarations that dependasanpeters evaluated at
weave-time. Their integration into AspectJ requires safit#l changes to the type sys-
tem as well as the intertype weaver. This kind of extensiars timotivates a highly
flexible implementation of types.

Most proposals for new features in AspectJ are, howeveearoed with the dy-
namic join point model. Sakurai al.[39] proposeassociation aspect3hese provide
a generalisation of per-object instantiation, where assjpstances are tied to a group
of objects to express behavioural relationships more tjtethis requires not only
changes to the frontend, but also substantial changes gakeration. Making such
code generation painless is another design goal of our veoidtn

The community as a whole is concerned with finding ways oflgiggout join
points based on semantic properties rather than namingn$tance, Kiczales has pro-
posed a new type of pointcut, callededicted cflowf29]. pcflow(p) matches at a join
point if there may exist a path to another join point whpmaatches. It is correct to let
pcflow(p) match everywhere, but that would lead to inefficient prografm efficient
implementation opcflow(p) needs substantial, interprocedural program analysis. Our
workbench needs to provide a framework for building sucHyeses.

In fact, examples where efficient implementation necegsitan analysis frame-
work abound. Particular instances include tteta flow pointcutof Masuhara and
Kawauchi [31], and thérace-based aspects Douenceet al.[14], as well as theom-
munication history aspectsf Walker and Viggers [45].

All of the above are additions to the AspectJ language, Hutporse, restrictions
can be equally important in language design. One promisiagiele is the proposal of
Aldrich to restrict the visibility of join points to thosedhare explicit in the interface of
a class [2]. We aim to support the implementation of suchintisins, and this requires
a flexible implementation of the type system and the pointraticher.

Finally, we note that the implementation of advanced stdtéxking tools for aspect-
oriented programs, such as those investigated by Krishrthiai al. [30], require all
types of extensions discussed above, ranging from simpitiems in syntax to making
advanced analyses such as escape analysis take into atdeoafiects of advice.

In summary, we can see that an extensible AspectJ compilstrimelable to handle
a wide variety of extensions, possibly touching on many conents of the compiler,

including the frontend scanner and parser, the type chgbtieamatcher and weaver, and
potentially requiring relatively sophisticated progranabysis to ensure correctness and
efficiency.

Design GoalsOne approach to implementing a language extension is tofynadliex-
isting compiler. However, this is not always the best apphoaince existing compilers
may not have been designed with extensiblity as one of the g@als. Furthermore,
they may be constrained to work with infrastructures whiodniselves are not easily
extensible. In the case of AspectJ, the only pre-existingémentation isjc, which is
designed to support fast and incremental compilation asal tal interact closely with
the Eclipse toolset.

Our approach was to design and implemai¢, the AspectBench Compiler, with
extensibility as its primary design goal. We also aimed fooatimising implementa-
tion of AspectJ, and we briefly summarise that perspectimiincomparison wittajc
in Section 6.5. To support extensibility, we distilled tlaldwing requirements from
the above discussion of the challenges involved.

simplicity: It must be relatively simple to develop new extensions. EJséthe frame-
work should not need to understand complicated new conceptsomplex soft-
ware design in order to implement their extensions.

modularity: We require two kinds of modularity. First, the compiler wbench itself
should be very modular, so that the different facets of eatdnsion can be easily
identified with the correct module of the workbench.
Second, the extension should be modular (separate from dhikebench code).
Users of the workbench should not need to change existingj cather, they should
be able to describe the extensions as specifications or batlis separate from the
main code base.

proportionality: Small extensions should require a small amount of work amntkco
There should not be a large overhead required to specify temg®n.

analysis capability: The compiler workbench infrastructure should provide kenth
intermediate representation and a program analysis framkewhis is necessary
for two reasons. First, some extensions may require relgtsophisticated analy-
ses to correctly implement their semantic checks and wga%acond, some exten-
sions may lead to a lot of runtime overhead unless compilémigation techniques
are used to minimise that overhead.

The abc approachTo meet these objectives, we decided to build on existingye
tools, namely the Polyglot extensible compiler framewankthe frontend [37], and the
Soot analysis and transformation framework for the backé8H [The McGill authors
of the present paper are the authors of Soot.] Indeed, Rulligk been shown to meet
the criteria of simplicity, modularity and proportionglion a wide variety of extensions
to the syntax and type system of Java. By the same token, Seditden shown to meet
all the above criteria for code generation, analysis anhagation.

Given the success of these building blocks, we felt it extlgrimportant to design
abcso that both are useas is without any changes that are specifiatug, in order to

allow easy migration to new releases of those frameworkexfained in Section 2 be-
low, this has dictated an architecture where the frontepdrsges the AspectJ program
into a pure Java part and a part containing instructiondbgckend.

Contributions In general terms, the contributions of this paper are tHewahg:

comprehensive account of an AspectJ compiler: While ajc has been in use for
eight years or more, there are few publications that giveraprehensive account
of its main design decisions, a notable exception being diseription of its advice
weaver in [27]. The present paper aims to provide a geneeivaw of how to
build an AspectJ compiler, while pointing out the structtirat is common ta@jc
andabc We also examine the consequences of the different desiga gfajc and
abg in particular howabcplaces more emphasis on extensibility and optimisation.

extensible workbench for AOP research: We have identified the requirements for
a workbench for research in aspect-oriented programmimnguiages by analysing
previous research in this area. We show halve meets these requirements, and
validate our architecture with a number of small but nownidfiexamples. Further-
more, we present an overview of extensionaleothat have been implemented by
other researchers.

experience with Soot and Polyglot: abcbuilds on Polyglot and Soot without making
any changes to these two components. As sabhjs one of the largest projects
undertaken with either Soot or Polyglot. This paper is tf@eealso an experience
report, assessing the suitability of Polyglot and Soot faitding aspect-oriented
programming tools.

At amore technical level, the contributionsaifcwith respect to extensibility are these:

pass structure: abchas a carefully designed pass structure, where each compase
achieves exactly one task, so that it is never necessarjitarsgexisting pass when
inserting a new one required by an extension. Designing aysss structure that
processes all types in the right order is quite hard, as s, for example, by a
bug concerning ITDs on inner classesdijc [5]. Another example is the need for
three separate passes that evaluate classname patterpssbtstructure is outlined
in Section 2, and then further detailed as necessary for@amples.

separator: A separatorpass that splits the original Aspectd AST into a pure Java
part and the aspectinfo; by enforcing that separation \teictlg, extensions never
need to modify the code generation pass, which is used ugeldgnom the Soot
framework. The separator is explained in Section 2.3.

use of Jimple: The use of a typed, stackless, 3-address intermediateseyedion,
namely Jimple, to significantly simplify doing a good job ofiting a new weaver
for new joinpoint types. The advantages of Jimple (versuedmnde) for weaving
are discussed in Section 6.3.

regular IR for pointcuts: An intermediate representation of pointcuts that is more
regular than at source level. This representation makessieeto represent new
pointcut primitives, and we shall illustrate this with theaenple of local pointcut
variables. The intermediate representation includesaiadicomplex pointcut ex-
pressions to disjunctive normal form. An added benefit i$ ithsorted out some

nettly problems with the treatment of disjunctigf) {n ajc [4]. Our intermediate
representation for pointcuts is presented in Section 3.6.

reweaving: An explicit representation of residues via a meta-languhge can be
optimised based on further analysis of woven Jimple; andenteant design of
the weaver to exploit such opportunities via a weave-aealysave cycle. This re-
weaving architecture enables easy plug-and-play of comghimisations. This
architecture is first introduced in Section 2.4, and we preseme numbers that
demonstrate its advantages in Section 6.5.

Paper StructureThe structure of this paper is as follows. In Section 2, we §jiige an
overview of the main building blocks afbc namely Polyglot and Soot, and show their
role in the overall architecture @bc Next, in Section 3 we sketch the main points of
extensibility inabc We then turn to describe some modest but representativepea
of AspectJ extensions in Section 4, and their implemematic§ion 5. The design
goals ofabcare contrasted with those of the original Aspect] compijein Section
6, and we examine how the different goals have led to diftedesign decisions. A
particular topic highlighted in Section 6 is the use of Jimpl a weaver, why it is
good for extensions and for implementing optimisation$Séwetion 7, we review a few
examples by other researchers who have exteatledAlso in Section 7, we discuss a
number of similar projects that shaabcs goals. Finally, in Section 8 we draw some
conclusions from our experience in buildialgc and we explore possible directions for
future research.

This paper is an enhanced, updated version of [6]. New nahtadludes: the archi-
tecture of the weaver in Section 2, a detailed qualitativegarison tajc in Section 6,
a discussion of other projects that build @ncin Section 7, and many small improve-
ments throughout.

2 Architecture

As stated in the introductiombcis based on the Polyglot extensible compiler frame-
work [37] and the Soot bytecode analysis and transformdtemework [43]. Using
Polyglot as an extensible frontend enables customisafidheogrammar and seman-
tic analysis; in the backend, Soot provides a convenieatimédiate representation on
which to implement the weaving of extensions, as well asstéarlwriting any program
analyses that extensions may require.

Input classes can be given &bc as source code or class files, adatis able to
weave into both. Source files are processed by the Polygloténd, whereas only the
signature part of class files are read by Polyglot in orderatidopm type checking of
the source code. In both cases, weaving is performed on djrSplot’s intermediate
representation.

Becauseabcworks with an unmodified Soot and Polyglot, it is easy for ssthe
developers ofbcitself, to update to the latest versions of Soot and Polygsothey
are released. By the same token, authors of Aspect] extarean upgrade to new ver-
sions ofabcwithout difficulty. This independence was achieved mainfysbparating
the AspectJ-specific features in the code being processaddtandard Java code. In

.clasg Java

I

Polyglot parser

]

Aspect]
AST

I

Polyglot AST transformations

v i

r Java Aspect

AST Info

vl—l

Soot skeleton generatior

|

Skeleton weaving

Soot jimple body generation

i

Jimple
IR

Advice weaving

v

Woven
Jimple

Analyses and optimisations|

v
Final
Jimple
il]
Soot bytecode generation Soot decompilation

A Q/ A \L
.class Jjava

Fig. 1.abcoverall design

the frontendabc generates a plain Java abstract syntax tree (AST) and aase@ar
pect information structure containing the aspect-speaiftrmation. We call the aspect
information structure th&spectinfoThe unmodified backend can read in the AST (be-
cause itis plain Java), amdbcthen uses thAspectinfdo perform all required weaving.
A simplified diagram of the architecture abcis shown in Figure 1. In many respects,
this architecture is similar to that @fjc. At this level of abstraction, the main differ-
ence is the strict use of a separator pass (labelled ‘Pdlp@d transformations’in the
figure) for splitting the pure Java from any aspect-spedaifiorimation. This separation
process is described in more detail below.

In the following subsections, we describe Polyglot and Sodhe context ofabg
with a focus on how they contribute to extensibility. Figalle discuss in some more
detail how the two parts are connected.

2.1 Polyglot

Polyglot [37] is a frontend for Java intended for implemagtextensions to the base
language. In its original configuration, Polyglot first pegslava source code into an
abstract syntax tree (AST), then performs all the statickbeequired by the Java lan-
guage in a number of passes which rewrite the tree. The oaffeolyglot is a Java
AST annotated with type information, which is written baolatJava source file. Poly-
glot is intended to perform all compile-time checks; wherlasg has passed through
all of the passes in Polyglot, the resulting Java file shoeldcdmpilable without er-
rors by any standard Java compiler. When Polyglot is usedfiastend for Soot, the
Java to Jimplenodule inside Soot compiles the final AST into the Jimplerimidiate
representation instead of writing it out to a Java file. Tfames inabc the final Poly-
glot passes separate the AspectJ program into pure Javeh(islpassed to the Java to
Jimple module in Soot) and instructions for the backend.

Several features of Polyglot make it well-suited for wigtiextensions, and also
help to make those extensions themselves extensible. IBobltpws a new grammar
to be specified as a collection of modifications to an exisgrgmmar, where these
modifications are given in a separate specification file, mtié original grammar file.
The AspectJ grammar we developed &lic is specified as an extension of the Java
grammar, and the grammars for extensions are in turn speifienodifications to the
AspectJ grammar.

Polyglot makes heavy use of interfaces and factories, ngakieasy to extend or
replace most of its parts, such as the type system or the solgse as well as the list of
rewrite passes that are performed on the AST. Each passyglBohon-destructively
rewrites the input tree. As a result, it is easy to insert nassps in between existing
ones, and each pass typically performs only a small amouwwbdf compared to tra-
ditional compiler passes. labc we have added many AspectJ-specific passes, and it
is easy for extensions to add further passes of their own.ofthering of passes must
be chosen carefully, since the semantic analysis of Javaesaode might depend on
changes to the program introduced by aspects.

Each AST node in Polyglot uses a mechanismdénsionanddelegatego allow
methods to be replaced or added in the middle of the existasg hierarchy, achieving
an effect similar to what can be done in AspectJ using inpertgeclarations, but in

plain Java. This mechanism is commonly used by extensioabaib modify existing
AST nodes.

2.2 Soot

Soot [43], which is used as the back-endbt; is a framework for analysing and trans-
forming Java bytecode. The most important advantage ofjuSoot as the backend,
both for developin@bcitself and for extending the language, is Jimple, Sootsrimte-
diate representation. Soot provides modules to conventdsst Jimple, Java bytecode,
and Java source code. It furthermore includes implememnigif standard compiler
optimisations, whictabc applies after weaving. We have already observed significant
speedups from these optimisations alone [7]. In additicr@ady implemented analy-
ses and transformations, Soot has tools for writing new aueh as control flow graph
builders, definition/use chains, a fixed-point flow analymework, and a method in-
liner. These features are useful for implementing exterssibat need to be aware of the
intra-procedural behaviour of the program, such as poisttescribing specific points
in the control flow graph.

The Jimple intermediate representation is a typed, stes¥-lthree-address code.
Rather than representing computations with an implicitisteach Jimple instruction
explicitly manipulates specified local variables. Thisresggntation simplifies weaving
of advice, both for standard AspectJ features and for exiraslf it were weaving into
bytecode directly, the weaver would need to consider thecefif the woven code on
the implicit execution stack, and generate additional dodé< up the stack contents.
None of this is necessary when weaving into Jimple. Moreavien values from the
shadow point are needed as parameters to the advice, thesadily available in local
variables; the weaver does not have to sift through the cteipa stack to find them.

As input, Soot can handle both class files and Java source Tdesonvert byte-
code to Jimple, Soot introduces a local variable to explicépresent each stack loca-
tion, splits the variables to separate independent uségedame location, and infers a
type [20] for each variable. To convert source code to Jimpmt first uses Polyglot
to construct an AST with type information, and then generdtmple code from the
AST. This process does not need to be modifieakig becausabcpasses Soot a plain
Java AST, keeping all the aspect-specific information irstgarate aspect information
structure. Normally, after all processing, Soot convedresdimple code into bytecode
and writes it to class files, but it also includes a decompilava[33], which is very
useful for viewing the effects of aspects and AspectJ eidas®n the generated code.

2.3 Connecting Polyglot and Soot

We conclude the discussion abcs architecture by examining in closer detail how
Polyglot and Soot interact. A key component of this intdmacts the separation of the
AspectJ AST into a pure Java AST and the auxillidgpectinfostructure. This trans-
formation enableabcto use the existing facility in Soot for translating a PoltghAST
into the Jimple IR. This is an important design decisiorabt, as it implies that ex-
tension writers never need to modify the existing code ganerOther aspect-oriented
systems that use a similar separation pass include Aspdct\Wed Hyper/J [8, 38].

The Java AST is basically the AspectJ program with all Aspspecific language
constructs removed. THespectinfestructure contains complete information about these
constructs. In cases where these contain actual Java cdded@odiesjf pointcut
conditions, intertype method/constructor bodies, ipfetfield initialisers), the code is
placed in placeholder methods in the Java AST.

The Java AST only contains Java constructs, but it is inceteph the sense that
it may refer to class members which do not exist or are notssiloke in the unwoven
Java program. More specifically, the Java AST will in geneatbe compilable until all
declare parentand intertype declarations have been woven into the programfirst
of these can alter the inheritance hierarchy, and the sezamadhtroduce new members
that the pure Java parts may refer to. Since both of thesaréssatay be applied to class
files (for which we do not have an AST representation), it isgussible to perform this
part of the weaving process on the Polyglot representagédore passing the AST to
Soot.

Fortunately, Soot allows us to conduct the conversion frara o Jimple in two
stages, and the application@éclare parentand intertype weaving can happen in be-
tween. In the first stage, Soot builds a class hierarchy wéhemstubs for the methods:
it is a skeleton of a full program in Jimple, without methodl&s. In the second stage,
Soot fills in method bodies, either by converting bytecodenficlass files, or by com-
piling AST nodes.

This setup permits both static weaving and advice weavingaik on the Jimple
IR, largely independent of whether the Jimple code was g¢eéfrom source code or
bytecode. And since the skeleton that is filled out in the sd®tage has the updated
hierarchy and contains all intertype declarations, all inemmeferences in the code are
resolved correctly in the translation into Jimple.

The two-stage weaving (static and advice) is shared ajgthndeed, the two stages
are dictated by the Aspect] language design: static weanhgeffects the type hi-
erarchy, whereas advice weaving effects runtime behaviauthermore, one cannot
generate code without first adjusting the type hierarchy.

2.4 The advice weaver

The job of the advice weaver is to modify the Jimple code adiogrto the instructions
in the Aspectinfosuch that advice bodies are executed whenever the cormisgon
pointcuts match the currently executing join point.

The architecture of the advice weaver is shown in Figure 2.firkt step of advice
weaving is to identify aljoin point shadowsthat is, all places in the Jimple code that
could potentially correspond to a join point in the executid the program. Each of
these are then matched against all pointcuts in the prodfatrs determined that a
pointcut might match a join point at a particular shadow,rtrecher emits a weaving
instruction telling the weaver to weave the advice body at $hadow. Since a pointcut
can contain terms that depend on the runtime state of thegmogdgt cannot always be
fully determined at compile time whether a particular poiritmatches at a shadow.
A weaving instruction thus consists of three parts: the shaakt which to weave, the
advice to weave in and dynamic residuespecifying what additional runtime checks
must be inserted to check that the pointcut actually matttesurrent join point. The

IR for
Pointcuts

Jimple IR
for Bytecode

— Shadow Shadows |~ Matcher
Finder
v
Weaving Optimiser
Instructions [~
I 1
Weaver Analysis
Results
v)
Woven | | Analyser
Jimple
I
Bytecode
Generator

Fig. 2. Design of theabcadvice weaver

dynamic residue also contains information about how to hivedvalues that are to
become the arguments to the advice.

When all weaving instructions have been generated, thealaateaving is per-
formed. The result is a Jimple program whose behaviour deduall advice bodies
executing at the appropriate times. This program is therstaded into bytecode by the
Soot bytecode generator and the result is written out toattget class files.

Some extensions might require some sophisticated anédysésdone on the Jimple
code. These fall roughly into two categoripse-weaving analysjsvhere the analysis
is performed on the original Java code before the advice avemin, angost-weaving
analysis where the analysis is performed on the woven code. Preingawalysis is
typically employed when the analysis results are neededhé@ypointcut matcher, for
instance when implementing a new kind of pointcut. Postwivegpanalysis is used
when some property of the final code is desired, for instarfeevwdoing optimisations
on the final code or checking behavioural properties of tlogmm.

In some cases, such as ttflow optimisation mentioned in Section 6.5, the analysis
needs to be performed on the woven code, but the result ieddscthe weaver. To fa-
cilitate such analyseapcincludes a mechanism fog-weavingwhich can throw away
the woven code and revert to the unwoven code while retathiagnalysis results ob-
tained from analysing the woven code. This is also illustiah Figure 2. The results of
the analysis are channelled back into an optimisation pagshwnodifies the weaving
instructions to be used in a subsequent weaving pass. Téiegs can be repeated as
many times as necessary.

3 Defining an Extension

We now outline the basic steps needed to create an exteims@ageneral manner. This
description is intended to give the reader an impressioh@ktension mechanisms
available inabc without delving into excessive detail. After this genediscription,
we shall introduce some concrete examples in Section 4,fzmd Bow the basic steps
are instantiated in Section 5.

This section serves two purposes. First, to outline how wied lmn the existing
extension mechanisms of Polyglot and Soot to achieve ekibtysin abc (Sections
3.2,3.3, 3.4, and 3.8). Second, we wish to present somerdésisions that are unique
to abg which address specific issues regarding the extensionpé@sd (Sections 3.1,
3.5,3.6,3.7and 3.9).

3.1 Syntax

The first step in implementing a new extension is usually defiwhat additional syn-
tax it will introduce to the language. Makirapc recognise the extended language in-
volves changing the lexer and the parser that it uses. Rilglyeady handles extending
grammars in a very clean and modular fashion. However, Hredsrd Polyglot lexer is
not extensible — extensions are expected to create theirlexem by copying it and
making appropriate modifications. Thus, in this subseatendescribe our approach
to making an extensible lexer in some detail, and then brgftpmarise the Polyglot
mechanism for extending grammars.

Lexer We have designed the lexer fabcto support a limited form of extensibility
that has been sulfficient for the extensions we have writtdars8pecifically, the set of
keywords recognised by the lexer can be modified by an exdepeid the actions taken
by the lexer when encountering one of these keywords aremisstble. More complex
extensions can still be achieved by reverting to Polyglapproach of copying and
modifying the lexer definition. This is in agreement with grenciple of proportionality
which was stated as a design goal — small extensions areaabgomplex ones are
possible.

The lexical analysis of AspectJ is complicated by the faat there are really several
different languages being parsed: ordinary Java codegctadpénitions, and pointcut
definitions. Consequently, ttebclexer is stateful — it recognises different tokens in
different contexts. The following example illustrates dired of problem that is dealt
with by the introduction of lexer states:

if**1. Foot+.new(..)

The expected interpretation of such a string as Java codaspdrt of a pointcut
will be very different; for example, in Java, we would exp&ct’ to become a floating
point literal, whereas in the pointcut language the decipoahit would be viewed as a
dot separating elements of a name pattern. Similarly, “*Jawa should be scanned as
an operator, while in pointcuts, it is part of a name pattdlote also the use of what
would be keywords in Java modié &ndnew) as part of a pattern.

An important part of designing a stateful lexer is specifyiwhen the lexer should
switch to a different state without adding too much compilexihe general pattern we
use is to maintain a stack of states, and recognise the endtafeawhen we reach an
appropriate closing bracket character for that state. kamgle, normal Java code is
terminated by the}” character. Of course, braces can be nested, so we needtnise
opening braces and also count the nesting level. For moedlsietgarding the lexer
states imbg see section 5.2.

Parser Theabcparser is generated by PPG [9], the LALR parser generatadian-
sible grammars which is included in Polyglot [37]. PPG aboshanges to an existing
grammar to be entered in a separate file, overriding, inhgrénd extending produc-
tions from the base grammar. This results in modular extessiwhich can easily be
maintained should the base grammar change.

The example in Figure 3 (using simplified non-PPG syntax)alesirates the basic
principles. An existing grammar can be imported with tlreclude’ keyword. New
production rules can then be specified, and one can changgngxiules using the
keywords ‘extend and “drop’ to add and remove parts of the rule. More advanced
changes, such as modifying the precedence of operatoralsar@ossible. For further
details on the specification of grammar, see [9].

File X FileY
S::= alincludeX
| blextend S:=d
| ¢ | e
Filez Result
includeY S:=a
drop S::=b | ¢
| d | e

Fig. 3. Grammar extension mechanism

3.2 Type system

Polyglot provides convenient facilities for extending tigpe system. As a minimum,
this involves introducing a new kind of type object and lopKunctions for these new
entitities in the environment. The new type of environmetthen invoked by overriding
the environment factory method in a subclassAdiTypeSystenwhich describes the
type system of Aspectd itself.

To illustrate, consider the introduction of named clasgguatexpressions [12].
We would need to introduce a new type object to represent santes, sajNamed-
CPElInstancg(in Polyglot, it is convention that identifiers for type ci@s end with
...Instancé The environment then maps (possibly qualified) names jiectbof type
NamedCPElInstance

The semantic checks for named patterns must enforce theeswnt that there be
no cycles in definitions, since recursively defined nametepad do not make sense.
A similar check has already been implemented for named @atisit and it involves
building a dependency graph. Such data structures negdssaemantic checks are
typically stored in the type objects (hexkamedCPEInstangebecause Polyglot oper-
ates by rewriting the original tree, it is not possible tasteferences to AST nodes.

Examples such as the parametric introductions of Hanermeltynland [23] would
require more invasive changes in the type system, for examplsubclassingnter-
TypeMethodInstandghe signature of a method introduced via an intertype dattm)
to take account of the parameters that are to be evaluatedygtile time.

3.3 Semantic checks

New semantic checks are usually implemented by overridiagppropriate method on
the relevant AST nodes. The most obvious place for simplekshis in theTypeChecker
pass; every AST node implementsypeChecklypeCheckgmethod. The type checker
is run after all variable references are resolved; all chdleht do not require further data
structures are typically put in thgpeCheclknethod.

Later passes use data flow information to check initiatisatif local variables and
the existence akturn statements. Again, each AST node implements methods @ buil
the control flow graph for these purposes. In the base Aspaptdmentation, these are,
for example, overridden to take into account the initigleaof the result parameter in
after returning advice, and extensions can make variations of their own.

Aspectd is somewhat unusual in that some semantic checkstvéoe deferred to
the weaver. For example, it is necessary to type check thétsexf around advice at
each point where it is woven in. Becauaslec maintains precise position information
throughout the compilation process, such errors can stitelported at the appropriate
locations in the source.

3.4 Rewriting

The normal use of Polyglot is as a source-to-source comfuiteextensions to Java,
where the final rewriting passes transform new featuresantequivalent pure Java
AST. abcis different in that most of the transformation happens aterlstage, when
weaving into Jimple. Itis, however, often useful to emplayyglot’s original paradigm
when implementing extensions to AspectJ that have an obwounterpart in AspectJ
itself.

For example, consider again the feature of named clasgpattpressions. A sim-
ple implementation would be to just inline these after appeade semantic checks have
been done, so that nothing else needs to change in the congileh inlining would
be implemented as two separate AST rewriting passes, ormdiécithe named pattern
definitions and the other to inline them — the two would themomunicate via an ex-
plicit data structure that is common to both passes. As #aglnot recommended to
store pieces of AST explicitly unless they are immediateipsformed away.

abcdoes extensive rewriting of the AST prior to conversion toplie. This consists
of introducing new placeholder methods (for instance forieg bodies), and storing

instructions for the backend in tespectinfoExtensions can participate in this process
by implementing methods that are called by the relevantgzass

3.5 Join points

Introducing new pointcuts will often involve extending tbet of possible join points.
For example, implementation of a pointcut that matches veheast instruction is exe-
cuted would require the addition of a join point at such stions.

Many new join points will follow the pattern of most existidgpectJ join points
and apply at a single Jimple statement. These can be addegfihind a new factory
class that can recognise the relevant statements, antbrégist with the global list of
join point types.

For more complicated join points, it will be necessary torode the code that
iterates through an entire method body looking for join pslmadows. The overriding
code can do any required analysis of the method body to findnoes of the new join
points (for example, one might want to inspect all controhfledges to find the back
edges of loops [25]), and then call the original code to firidha “normal” join point
shadows.

3.6 Pointcuts

As pointed out in the introduction, there are many propdseleew forms of pointcuts
in AspectJ. To meet our objective of proportionality (smattensions require little
work), we have designed an intermediate representationinfquts that is more regular
than the existing pointcut language of AspectJ. This makessier to compile new
pointcut primitives to existing ones.

Specifically, the backend pointcut language partitionsooits into the four cate-
gories listed below. Some of the standard AspectJ poinfitatisectly into one of these
categories and are simply duplicated in the backend, witilere must be transformed
from AspectJ into the representation usedfit

— Lexical pointcuts are restrictions on the lexical posit@fnwhere a pointcut can
match. For exampleithin andwithincode fall into this category.

— Shadow pointcuts pick out a specific join point shadow withimethod body. The
setpointcut is an example.

— Dynamic pointcuts match based on the type or value of sontewavalue. Point-
cuts such a#, cflow andthis are of this kind.

— Compound pointcuts represent logical connectives suchfas &

The motivation for this categorisation is that it allows thgplementation of each back-
end pointcut to be simpler and more understandable, whiphriticular makes it easier
for extension authors to define new pointcuts.

An example of an AspectJ pointcut that does not fit into thigledalirectly is the
execution({MethodPatteri) pointcut, which specifies both that we are inside a method
or constructor matchinlylethodPatterrand that we are at the execution join point. The
backend pointcut language therefore views this as the notign of a lexical pointcut
and a shadow pointcut.

To add a new pointcut, one or more classes should be added tmattkend, and
the frontend AST nodes should construct the appropriatkamatobjects during the
generation of théspectinfostructure.

The key class of théspectinfas the GlobalAspectinfalass — this is a single-
ton (it has precisely one instance during a compiler runj,iaoontains lists of advice
declarations, intertype declarations, and so on. It alstades mappings to retrieve the
precedence of two aspects, to find the non-mangled name da¥atepmtertype dec-
laration, and many similar mappings. The frontend insémtsatppropriate information
into these data structures via the accessor functionsgedyyGlobalAspectinfoThe
Aspectinfaalso contains classes for the intermediate pointcuts, landlass hierarchy
for these closely follows the above description.

The backend classes are responsible for deciding whethet tre pointcut matches
at a specific location. If this cannot be statically detemninthen the pointcut should
produce alynamic residugvhich specifies the generation of the required runtime code.

3.7 Advice

It appears that there are few proposals for truly novel tygfesdvice: most new pro-
posals can be easily rewritten to the existing idioms of tegfafter and around. For
example, the proposal for “tracecuts” [14,45] reduces toramal aspect, where a state
variable tracks the current matching state, and each pé&tthrice pair translates into
after advice. Such new types of advice are thus implemenégegkwriting, in the stan-
dard paradigm of Polyglot.

Nonetheless, adding a new kind of advice that follows theegtpmodel of advice
is straightforward: simply implement a new class and defim& bode should be gen-
erated to call that piece of advice and where in the join pslaidow this code should
go. For example, the bookkeeping requireddfiow is implemented as a special kind
of advice that weaves instructions both at the beginningesaatof a shadow.

3.8 Optimisations

The straightforward implementation of a new extension neaylt in inefficient runtime
code. Even in the basic AspectJ language, there are a nurhibestores that incur
significant runtime penalties by default, but in many caseshe optimisedabcaims
to make it as easy as possible to implement new optimisatishsther for the base
language or for extensions. In particular, it is straightfard to transform the AST in
the frontend and the Jimple intermediate code in the backend

Taking an example from the base AspectJ language, constuatthethisJoin-
Point is expensive because it must be done each time a join pointauatered at run-
time. abc (like ajc) employs two strategies for mitigating this overhead. thirsome
advice bodies only ever make use of tBmticPartmember ofthisJoinPoint, which
only needs to be constructed once. A Polyglot pass in theédnohis used to identify
advice bodies where this is the case and transform the ugieisdoinPointStaticPart
instead.

Secondly, the runtime code generated delays construatidras late as possible in
case it turns out not to be needed at all; this is complicagetidfact thaif pointcuts as

well as advice bodies may make use of it, so constructionataimply be delayed until
the advice body runabc generates code that instantiates thisJoinPoint variable
where needed it has not already been instantiatedsingnull as a placeholder until
that point. The Jimple code is then transformed to removeecessary checks and
initialisations, using a variation of Soot’s intraprocealnullness analysis which has
special knowledge that ttthisJoinPoint factory method cannot returrull.

3.9 Runtime library

The runtime library for AspectJ serves two purposes. Firgticontains bookkeeping
classes necessary for the implementation of languagerootssuch asflow. Exten-
sions such as data flow pointcuts [31] would require a similatime class in order to
store dynamic data about the source of the value in a paatigatiable.

Secondly, the runtime provides the objects accessibletfirthethisJoinPoinfam-
ily of special variables; these make information about theent join point available
to the programmer via reflection. Any new pointcut introddicelikely to have unique
signature information which would be accessible to the usean extension of th8ig-
natureinterface. For example, the standard AspectJ runtime oentamongst others,
AdviceSignaturg-ieldSignatureandMethodSignature

4 eaj — An AspectJ extension

This section describes a few particular extensions to thpeétd language that we have
implemented. These extensions have been chosen to iteistia most salient of the
mechanisms that were described in the previous sectionfullleurce code for these
examples is included with the standard distributioalo€[1]. For ease of reference, the
extended language is namedj, one compilesaj programs with the commanabc
-ext abc.edj This is the usual way of invoking extensions wihc

4.1 Private pointcut variables

In Aspect], the only way to introduce new variables into afmit is to make them ex-
plicit parameters to a named pointcut definition or advités sometimes convenient,
however, to simply declare new variables whose scope ispartyof a pointcut expres-
sion, without polluting the interface of the pointcut. Faeenple, it might be desired to
check that the value of an argument being passed has certgierfies, without actu-
ally using that value in the advice body. The new keywarigate introduces a locally
scoped pointcut variable. For instance, the following pnincould be used to check
that the argument is either a negatintor a negativelouble

pointcut negativefirstarg) :
private (int x) (args(x) && if(x < 0))
|| private (double } (args(x) && if(x < 0));

4.2 Global pointcuts

It is very common for many pieces of advice to share a commanuoat in their
pointcut. The idea of global pointcut is to write these common conjuncts only once.
An example use is to restrict the applicability of every pie€ advice within a certain
set of aspects. For example, we might write:

global : * : !'within (Hidden);

This would ensure that no advice within any aspect couldyapjthin theHiddenclass.

As another example, it is often useful to prevent advice feomaspect applying
within that aspect itself. The following declaration (fapeectAspect can achieve this
more concisely than putting the restriction on each pieaofce:

global : Aspect !within (Aspec);

In general, a global pointcut declaration can be put anye/aenamed pointcut dec-
laration can bei(e. directly within a class or aspect body). The location offsac
declaration has no effect on its applicability, except thatne patterns within such a
declaration will only match classes and aspects visiblmftioe scope of that declara-
tion.

The general form of a global pointcut declaration is as fe#io

global : (ClassPatterh : (Pointcub ;

It has the effect of replacing the pointcut of each advicelataton in each aspect
whose name match&lassPatterrwith the conjunction of the original pointcut and the
globalPointcut

4.3 Cast pointcuts

The purpose of theastpointcut is to match whenever a value is cast to another type.
A corresponding new type of join point shadow is added whicbueos at every cast
instruction, whether for reference or primitive types,he bytecode of a program.

To illustrate, the following piece of advice can be used ttederuntime loss of
precision caused by casts fromianto ashort

before(int i):
casi(shor) && args(i)
&& if(i < Short.MIN_VALUE
||i > Short. MAX VALUE)

System.err.printl(fWarning: loss of ” +
“ precision casting " +
i +“to ashort.);

}

In general the syntax of@astpointcut iscast (TypePatterh); this will match at any
join point where the static result type of the cast is matdhe@lypePatternin keeping
with the pattern of other primitive pointcuts, the valuertgecast from can be matched
by theargspointcut, and the result of the cast can be matched by theradtparameter
to after returning advice (and is returned by tlpeoceedcall in around advice).

4.4 Throw pointcuts

The throw pointcut is introduced in the developer documentationdjur[28], and
we have implemented it ieaj to compare the ease-of-extension of both compilers.
It matches a new join point shadow which occurs at each thnetwuction.

The following example demonstrates how extended debugdgfognation can be
produced in the event of a runtime exception, using a piecaoce:

before(Debuggable it
this(d) && throw() && args(RuntimeException

d.dumpStatg;

5 Implementing eaj using abc

We have given a broad outline of how extensions are constluatd discussed some
specific extensions that we have implemented. We now shovetailchow this was
done, both to provide a guide for others and to enable a tieassessment of the work
involved.

5.1 Roadmap

As we do not wish to hide any of the difficulties involved in timg anabcextension,
the presentation in the next few subsections is necessahewhat technical, so let
us first outline a generic roadmap of abcextension. This will provide readers with a
high-level structure for the detailed explanations thiofa

Extension package#\n extension typically consists of five Java packages, phes t
new ‘driver’ classes that bind the extension to the existiage compiler. The five rel-
evant packages are shown in Figure 4. The first of these isecoed with syntax, and
serves to introduce new keywords and grammar rules: thdsbemiliscussed in Sec-
tions 5.2 and 5.3 below. Next, one needs to write new clagsesST nodes. In Section
5.4 we give an overview of what this involves for the examgdgextension. It is quite
common that new language features require new compileepaBsr the running ex-
ample, that is the case with global pointcuts, as it is nesgg® collect all of these
to make appropriate modifications to advice declaration&dction 5.5 we show how
to write a new pass for this purpose. This also requires agbirlg the existing AST
representation of advice declaration: such subclasseteresthe extensiorpackage.
For the simple examples in this paper, it is not necessamtémd the AspectJ type sys-
tem. All extensions to the backend of the compiler occur inpsickages ofveaving
Readers may wish to glance back at Figure 2 which depictsrtiétecture ofabcs
weaver. For the example in hand, one needs to extend thenetiate representation
for pointcuts (inaspectinfy, and then make appropriate changes to the shadow finder
and shadow matcher (imatching. More complex extensions may also introduce new
kinds of residue, or directly modify the weaving process fbuthe examples discussed
here, that is not needed.

abc{extension

parse new lexer and grammar rules

ast new ast classes

visit new compiler passes

extension overrides of existing ast behavigur
types new types in typechecker
weaving

aspectinfo |new IR for pointcuts

matching |finding new shadows;
matching shadows to pointcuts
residues new residue kinds

weaver changes to the weaver

Fig. 4. Package structure abcextensions.

Driver classes Apart from extending the packages in Figure 4, an extensithoa
must bind all the new functionality together, so that it canitvoked (via reflection)
by the base compiler. There are two ‘driver’ classes for phigpose irabg which any
extension must subclass.

The first of these is thAbcExtensiorlass. An extension can be specified when abc
is invoked by passing its core package namaltowith the-extflag. TheAbcExtension
class from this package is then loaded by reflection. All tteresibility hooks inabc
are passed through this class. There is a default implet@mtaf this class in the
abc.mainpackage, which extensions must subclass.

Another driver class iExtensionIinfoThis is part of the extensibility mechanism of
Polyglot; all frontend extensions (except for the lexeg) megistered by subclassing this
class. New instances of this class are returned by the sdeclabcExtension

Runtime Some extensions need support in the AspectJ runtime. Inteedcess re-
flective information about a new type of joinpoint, we neednake sure the runtime is
extended, so this is usually the last step required in implging a new extension. We
shall discuss a concrete example in Section 5.8.

Sources of extensibilityt may be helpful to point out at this stage what extensipilit
is unique toabg and what extensibility has been inherited from the comptmee
built on. We now briefly discuss that, going through the paelsan Figure 4. Polyglot
provides syntax extensibility; we have added an extensitiker inabc The way AST
nodes are extended abcis based on the principles of Polyglot. Of course the spe-
cific interfaces, say for implementing pointcuts, are usitpabc. Furthermore, more
than half of the passes @bc are specific to AspectJ, and therefore the extensibility
for introducing new aspect features is in large part deteechby our design for those
passes. The very small number of overrides of existing A&3$sds in Polyglot (in the
extensiorpackage) is testament to the extensibility of PolyglotisaJeompiler itself.

All parts of the weaver are particular &bc although (as further discussed in Section
6) it shares a lot of common structure wift. A particular feature that enables the ex-
tensibility ofabcs weaver is the use of the Jimple intermediate representdBiecause
this is so much easier to analyse and manipulate than eiivarsburce or bytecode,

extenders will find it much easier to implement crucial comguts like a new shadow
matcher.

5.2 Extending the lexer

As described in Section 3.4pcs lexer is stateful. There are four main lexer states for
dealing with the different sub-languages of Aspeci¥aJ AsPECW, POINTCUT and
PoOINTCUTIFEXPR. The first three are used in Java code, Aspect] code and pintc
expressions, respectively. Th@RTCUTIFEXPR state must be separate from the nor-
mal JavA state because the pointcut allows a Java expression to be nested inside a
PoINTCUT, but whereas theaJa state is terminated by &, we need to return to the
PoINTCUT state when reaching a matching closing ‘)’ character.

Keywords for each state are stored in state-spekifishMags which map each
keyword to an object implementing thexerActioninterface. This interface declares a
method

public int getToken(AbcLexer lexer)

which is called when the corresponding keyword is recoghikg return value is turned
into a parser token and passed to the parser for furtherginalyreference to the lexer
instance is passed as a parametgetidokeq..), so that side effects that affect the lexer
(like changing the lexer state) are possible. A default anpntation of this interface is
supplied, which offers sufficient functionality to assdeiaeywords with parser tokens
and (optionally) change the lexer state; custom implentiemiz of LexerActioncan
provide more flexibility. The default implementation prdes functionality sufficient
for all but 5 (out of more than 90) Java and AspectJ keywords.

Implementing theeaj extensions required adding several new keywords. In partic
ular, “cast was introduced as a keyword in theoRITCUT state, and lobal’ as a
keyword in all four lexer states. Botlptivate’ and “throw” are already keywords in all
states, and so do not need to be introduced specifically égurilrate pointcut variables
and throw pointcut extensions. Here is the code that addsstheords to the respective
states:

public void initLexerKeywords(AbcLexer lexer)
{
Il keyword for the “cast” pointcut extension
lexer.addPointcutKeywof(ttast”,
new LexerAction c(new Integer
(abc.eaj.parse.sym.PCAST));

Il keyword for the “global pointcut” extension
lexer.addGlobalKeywoidglobal”,
new LexerAction c(new Integer
(abc.eaj.parse.sym.GLOBAL
new Integellexer.pointcut state))));

// Add the base keywords
super.initLexerKeywords(lexer);

Both keywords use the default implementationL&kerAction i.e. theLexerAc-
tion_c class. We see the one-argument and two-argument consgdotahat class.
The first argument is always the parser token that shouldtbened for the keyword,;
the second argument (if present) is the lexer state thatdlbeuselected after the key-
word. As stated above, further logic can be implemented byglassingd_exerAction -

C.

5.3 Extending the parser

The grammar fragment below shows how two new productionsdded for private
pointcut variables and the cast pointcut, which can appsarlere a normal pointcut
could:

extendbasic pointcut expr::=
PRIVATE:X LPARENformal parameter list opt:a RPAREN
LPAREN pointcut expr:bRPARENY

{:
RESULT=
parser.nf.PCLocalVars(parser.pos(x,y), a, b);
3
| PC_CAST:XXLPARENtype pattern expr:arRPARENY
{:
RESULT=
parser.nf.PCCast(parser.pos(x,y), a);
3

The fragment closely resembles code one would use with thalapoCUP parser
generator, apart from thextend keyword, which signifies that these two productions
are to be added to the rules that already exist for the noimtatsymbobasic pointcut expr.

The first new production is for private pointcut variables. will be apparent from
this example, terminal tokens are indicated by capitaldeNuwat it is possible to bind
the result of parsing each grammar symbol to an identifieicated by a colon and a
name. For instance we bind the result of recognising thent&kRIVATE tox, and the
result of recognising pointcut exprto b. These named results can then be used in the
parser action associated with a production. This actioreliméeated with curly braces
and colons. Here we use the results of the first and last symitbé right-hand side
of the production to compute the position (via the garserpogx,y)) of the whole
private pointcut variable declaration. Positions in Ptdygre always a start location
(source file, line number, column number) together with ath lecation. Throughout
abg great care is taken to preserve such position informasiorthat it is possible to
track the origin of every piece of code, even after optiniiset have been applied. The
second grammar production in the above code fragment isafsdrpointcuts, and as it
is simpler than the first production, we do not discuss itifert

Apart from extending the alternatives for existing nontieras (as we did above),
the Polyglot Parser Generator PPG [9] also allows you to droguctions, transfer pro-
ductions from one non-terminal to another, and overridegtioeuctions of a particular
non-terminal.

5.4 Adding new AST nodes

As mentioned abovebcs frontend is built on the Polyglot extensible compilemfre-
work [37]. In fact, from Polyglot’s point of viewabcis just another extension. This
means thaabc“inherits” all the extensibility mechanisms provided bylRyot.

In particular, adding new AST nodes is common when writingnpder extensions,
and thus it is important to provide an easy and robust meshafur doing so.

All four extensions discussed above required new AST noHes.the sake of
brevity we will only present the node introduced by the glgimntcut extension here
— the other cases are handled very similarly.

In order to write a clean Polyglot extension, one has to agtwethe rigorous use of
factories and interfaces to create nodes and invoke theithaes, respectively. The first
step is therefore to define an interface for the new AST noaldadng any functionality
it wants to present to the outside world:

public interface GlobalPointcutDeckxtendsPointcutDecl

{
public void registerGlobalPointcut(GlobalPointcuts visitor,
Context context,
EAJNodeFactory nf);
}

We provide a method to insert the pointcut into a static diatectire keeping track
of the global pointcuts defined in the prograni. Section 5.5). Note that the inter-
face extendsbcs PointcutDeclinterface, so it provides all the functions relevant to a
pointcut declaration.

The next step is to write the class implementing that interfé&some boilerplate
code is required (a constructor and methods to allow visitowisit the node), and, of
course, the methoggisterGlobalPointcy) is given a concrete implementation.

In order to make sure we can instantiate this new node typesubelassabcs
default node factory (which, in turn, is derived from Polytg node factory) and create
a method for obtaining an instance®lobalPointcutDecl

public GlobalPointcutDecl
GlobalPointcutDecl (
Position pos,
ClassnamePatternExpr aspegattern,
Pointcut pc, String name,
TypeNode voidn)

return new GlobalPointcutDecl c(pos, aspectpattern,
pc, name, voidn);

}

Now the extended parser can prod@lebalPointcutDecbbjects when it encoun-
ters the appropriate tokensf (listing in Section 5.3).

Note that all changes are local to new classes we createddintfiese classes are
in a completely separate package). The fact #atitself didn’t have to be changed at
all makes the extension robust with respecabe upgrades. Also, since the new AST

node extends an existing node, very little functionalited®to be re-implemented.
The associated interfaces only have to declare the metipedsis to the new node’s
particular functionality.

In the same way, interfacd@CLocalVarsand PCCastwere defined, along with
implementing classes, for the private pointcut variables @ast pointcut extensions.
Corresponding factory methods were added to the extendeelcAlnode factory.

5.5 Adding new frontend passes

Implementing the “global pointcuts” extension describedection 4.2 requires two
new passes — first, all global pointcuts need to be colle@rd,then each pointcut
must be replaced with the conjunction of the original paibhnd all applicable global
pointcuts.

Polyglot’s visitor-based architecture makes implemeantinis very easy. We add
two new passes. The first stores all global pointcuts in &statiable, and the second
applies that pointcut to the relevant code. For reasonsas boevity, these two passes
are implemented by the same claGobalAspectsit uses a member variable called
passto distinguish which of the two functions it is performing.

The traversal of the AST is performed by tl®ntextVisitorPolyglot class. The
new pass extend3ontextVisitowith a method that performs the required action when
it encounters a relevant AST node.

The following code fragment illustrates the behaviour & trew visitor upon en-
tering an AST node:

public NodeVisitor entgiNode parent, Node)r{
if (pass == COLLECT
&& n instanceofGlobalPointcutDedl {
((GlobalPointcutDedl n).
registerGlobalPointcuthis, contex(), nodeFactory,

}

return super.entefparent n);

}

As mentioned above, both new passes are implemented byrtteectass, and hence
the check thapass==COLLECTmakes sure that we do the right thing. If the current
node is &GlobalPointcutDec{one of the new AST nodes defined in section 5.4), we call
its special method so it registers itself with the data $tmecstoring global pointcuts.
Then we delegate the rest of the work (the actual traversahe superclass.

The implementation of theeaveg) method, which is called when the visitor leaves
an AST node and has the option of rewriting the node if necgssavery similar. If
pass==CONJOINand we are at an appropriate node, we return the conjunctitmeo
node and the global pointcut.

The sequence of passes that the compiler goes through idiespec the special
singletonExtensioninfoclass. By subclassing it and inserting our new passes in an
overridden method which then calls the original method, wakensure the original
sequence of passes is undisturbed. Note that this mechar@kes the extension robust
with respect to changes in the baslec passes — we can add and rearrange passes
without breaking the extension.

5.6 Adding new join points

To implement the cast and throw pointcuts, we first need terekthe list of join point
types. This is done by adding to a list of factory objects \utive pointcut matcher
iterates over to find all join point shadows. TeShadowTypemethod is defined in
the AbcExtensiorlass and is overridden feaj. (here and elsewhere, the element type
of a collection is indicated by a comment of the fotta:ShadowType*/)

protected List /*<ShadowType*/ listShadowTypes()

{
List /*<ShadowType*/ shadowTypes
superlistShadowTypes();
shadowTypes.add(CastShadowMatch.shadowType());
shadowTypes.add(ThrowShadowMatch.shadowType());
return shadowTypes;
}

The definitions ofCastShadowMatcandThrowShadowMatchre very similar and
we therefore limit ourselves to discussing the former.

The CastShadowMatch.shadowTypeethod just returns an anonymous factory
object which delegates the work of finding a join point to distmethod in theCast-
ShadowMatclelass. This methodnatchesAt..), takes a structure describing a position
in the program being woven into and returns either a new ¢hggcesenting a join point
shadow omnull; the code for it is given in Figure 5.

public static CastShadowMatch
matchesAMethodPosition pgs
{

if (!(posinstanceofStmtMethodPosition
return null;

Stmt stmt ((StmtMethodPositigmpog.getStmg);

if (I(stmtinstanceofAssignStm)
return null;
Value rhs= ((AssignStmtstm).getRightOf);

if (I(rhsinstanceofCastExpy})
return null;
Type castto = ((CastExpj rhs).getCastTyp@;

return new CastShadowMatch
pos.getContaing), stmt cast to);

Fig. 5. The CastShadowMatch.matchesAt(...) method

The purpose of thtlethodPositiorparameter is to allowbcto iterate through all
the parts of a method where a join point shadow can occur, skdach factory object
whether one actually does. There are four typelslethodPositiorfor normal AspectJ
shadows:

— Whole body shadows: execution, initialization, preidization
— Single statement shadows: method call, field set, field get
— Statement pair shadows: constructor call

— Exception handler shadows: handler

Most shadows either fall into the category of “whole body™single statement”. Two
are special, namely constructor call join points and harmdiepoints. In both cases,
the special nature derives from the representation of gte@idows in Java bytecode,
and consequently their representation in Jimple. In Jatecbge, a constructor call is
not a single instruction, but instead it consists of two safgainstructionsnewcreates
a new instance, whereas/okespeciainitialises it. A constructor call join point there-
fore encompasses both of these instructions. Handler mimtgocan only be found by
looking at the exception handler table for a method, rathan fts statements.

If a new join point requires an entirely new kind of methodipos, then the code
that iterates over them can be overridden.

The first job of thematchesAt..) method is to check that we are at the appropriate
position for acastpointcut, namely one with a single statement. Next, we neetiéck
whether there is actually east taking place at this position; the grammar of Jimple
makes this straightforward, ascast operation can only take place on the right-hand
side of an assigment statement. If no such operation is fouadeturmull; otherwise
we construct an appropriate object.

Defining theCastShadowMatcblass also requires a few other methods, connected
with defining the correct values to be bound by an associatgs pointcut, report-
ing the information required to constructlainPoint.StaticParbbject at runtime, and
recording the information that a pointcut matches at théglskv in an appropriate place
for the weaver itself to use. The details are straightfodyand we omit them for rea-
sons of space.

5.7 Extending the pointcut matcher

Again, we describe the implementation of thestpointcut and omit discussion of the
almost identicathrow pointcut. Once the corresponding join point shadow has been
defined, writing the appropriate backend class is straigivdird. The pointcut matcher
tries every pointcut at every join point shadow found, sdradicast pointcut has to do

is to check whether the current shadow SastShadowMatcland if so verify that the
type being cast to matches tifgpePatterrgiven as argument to threastpointcut:

protected Residue matchesAt(ShadowMatch sm)

{

if (!(sminstanceofCastShadowMatgh
return null;
Type castto = ((CastShadowMatghsm).getCastTypg;

if ('getPatterif).matchesTygeast to))
return null;

return AlwaysMatch.);

The AlwaysMatch.{) value is adynamic residughat indicates that the pointcut
matches unconditionally at this join point. For those poits where matching cannot
be statically determined, this is replaced by one whichrisssome code at the shadow
to check the condition at runtime.

5.8 Extending the runtime library

AspectJ provides dynamic and static information about tireent join point through
thisJoinPointand associated special variables.

For thecast pointcut extension, this runtime interface was extendetveal the
signature of the matching cast. For example, the followisigeat picks out all casts
(except for the one in the body of the advice) and uses runtfiection to display the
type that is being cast to at each join point:

import org.aspectbench.eaj.lang.reflect.CastSignature

aspectFindCasts

{
before():
casi{(*) && ! within (FindCast$
{
CastSignature s (CastSignaturg
thisJoinPointStaticPart.getSignaturg);
System.out.printffiCast to: " +
s.getCastTyg@getNamé);
}
}

Implementing this requires changes both in the backendeofdimpiler (where the
static join point information is encoded for the runtimerdiby to read later), and the
addition of new runtime classes and an interface.

Static join point information is encoded in a string whiclparsed at runtime by a
factory class to construct the objects accessible ftaedoinPointStaticPartThis hap-
pens just once, namely in the static initialiser of the claksre the join point shadow
is located. The alternative, which is to directly generatgecto construct these objects,
would be expensive in terms of the size of the bytecode prdiucsing strings provides
a compact representation without too much runtime overhead

The static information for aastpointcut is encoded as follows. To allow us to eas-
ily reuse the existing parser for such strings, a fair amafrtummy information is
generated, corresponding to properties that cast jointpdio not have. For example,
modifiers such apublic are important for join points that have a method or field signa
ture associated with them, but make no sense for the cagbgam. The string for the
castpointcut is constructed from four parts:

— Modifiers (encoded as an integer — O for a cast)
— Name (usually a method or field name, but for a cast it is juast)
— Declaring type — class in which the join point occurs

— Type of the cast

For example, a cast join point within a method in the clasidashTablevhich casts
the value retrieved fromldashMapto anintegerwould produce the following encoded
string:

"0-cast - | nt HashTabl e- | nt eger "

The runtime factory is subclassed to add a method that areatebject implement-
ing the newCastSignaturenterface for appropriate join points. The aforementioned
AbcExtensiortlass has a method which specifies which runtime class sheulgsed
as a factory forthisJoinPointStaticPart objects, which is overriden so that runtime
objects are created with the new factory:

public String runtimeSJPFactoryCla8s
{

return
“org.aspectbench.eaj.runtime.reflect.EajFactory”;

5.9 Code measurements

To enable the reader to assess the amount of effort involtv@dplementing each of
these new features, we have summarised some statisticpirer. The table shows the
size of the whole parser, and of the boilerplate for fackimethe top and penultimate
row, respectively. The most interesting part is the breakdoy constructin the middle.
For private pointcut variables, all the work goes into defijnhew AST nodes, and
there is no need to define new passes or to touch the weavey inagn By contrast,
global pointcuts require the introduction of new Polyglaspes, which reduce the new
construct to existing AspectJ constructs. Finally, fort @asl throw pointcuts, there is
substantial work in the weaver, because these introduce &ype of join point.

It is pleasing to us that the distinction between the examiglso sharp, as it gives
good evidence that the aim of modularity has been achievsd.claim is also backed
up by the fact that none of the extensions required any chémgee code of the
base compiler: the extensions are clearly separated plagttules. We believe that
the amount of code that needs to be written also meets tlegioritof proportionality
that was introduced at the beginning of this paper. Therariteof simplicity is more
difficult to measure, but we hope that the sample code in #tian suffices to con-
vince the reader that we have succeeded in this respect b3 hekexamples presented
here do not demonstrate analysis capability: in Section daveowever discuss some
more substantial case studies done by others which maketiedsese of the analysis
framework inabc

6 Detailed comparison toajc

Thede factostandard workbench for research into variations and eixtes®f AspectJ
is theajc compiler. It has served this purpose admirably well, andf@mple [31, 39]
report on the successful integration of substantial newufea intoajc.

|eaj measurements [FilegLines of code

Parsing 1 74
Private AST nodes 2 13
pointcut |Passes 0 0
variables |Weaver 0 0
Runtime 0 0
Global AST nodes 4 64
pointcut |Passes 1 77|
declarationsNeaver 0 0
Runtime 0 0
Cast AST nodes 2 46
poincuts |Passes 0 0
Weaver 2 94
Runtime 2 27|
Throw AST nodes 2 46
pointcuts |Passes 0 0
Weaver 2 91
Runtime 2 16|
Extension information 7 205
and shared classes
Total 27 870
Fig. 6. Code measurements fegj
Throw-pointcut statistics ajc abg
Core compiler/runtime files modified 8 0
throw-specific files created 2 6
Factory subclasses created - 5
Total files touched 10 11
Lines of code writteh 103 18

Fig. 7. Thethrow pointcut inajc andabc

We believe that, in view of the explosion of research into features and analyses,
the time has now come to disentangle the code of the base lsrfrpim that of the
extensions. The benefits are illustrated by the table inrEigult compares the imple-
mentation of thehrow pointcut inabcandajc. In the case ofjc, we have to modify
a large number of existing files, thus tangling the new extensith the existing com-
piler base. At the cost of some subclassed factories (arsdsttme more lines of code),
abc disentangles the two completely: there is no need to modifypart of the base
code, andabcextensions are clearly separated plugin modules.

These differences follow directly from the design goalsjof which are quite dif-
ferent from those oébc it aims to be a production compiler, with very short compile
times and full integration with the Eclipse IDE. More infoation abougjc, including
a detailed description of its weaver, can be found in [27].d8ntrast,abcs overrid-

1 Note that the numbers in Figure 7 faibctake into account the relevant lines of files which are
listed under “Extension information and shared classe&igure 6.

ing design goals are extensibility and optimisation, ad aela complete separation
from the components it builds on. In the remainder of thigieacwe make a detailed
comparison between the architecturegfandabg in particular examining where the
different design goals led to different design decisions.

6.1 Separation from components

To examine the wagjc andabcuse their respective building blocks, we first measured
their size in lines of code, making a distinction between fioeitend and backend.
The overall size ofjc andabcare comparable, as shown in the following table. These
numbers were obtained in consultation with the authorgjgfusing the SLOCcount
tool:

| [ajc abc |
frontend|10,197116,444
backen23,93817,397
total 34,13533,841

At first glance it appears thajc’s frontend is much smaller than thatalbc As we
shall see shortly, this is achieved at the cost of making maagechanges in the source
of the Java compiler it builds on — and these changes arestetllhere. Furthermore,
abcuses Polyglot, which encourages the use of many tiny classgsequires a fair
amount of boilerplate for visitors and factories. Anothetable point in the above
table is the small size of the backendatifc, which performs the most complex part of
the compilation process (weaving). This is explained byuse of a clean intermediate
representation, Jimple (which we present in more detadvéh Section 6.3), as well
as the rich set of analyses available in the Soot framewogkn@w examine in some
detail how wellajc andabcare separated from the components that they build on.

Separation from base compiler: ajc. dailds on the Eclipse Java compiler. This com-
piler has been written for speed: for example, it eschewsuieeof Java’s collection
classes completely, in favour of lower-level data struesuit also uses dispatch on
integer constants in favour of inheritance whenever apjat

Unfortunately, the architecture of the Eclipse compilepli@s thatajc needs its
own copy of the source tree of that compiler, to which locaraes have been applied.
These changes are by no means trivial: 44 Java files are dheangthere are at least
119 source locations where explicit changes are made.édrantire, the grammar from
which the Eclipse parser is generated has been modified.dtaticpts, the new parser
simply reads in a string of “pseudo-tokens” that are theisgadiby hand (using a top-
down parser) in the relevant semantic actions.

The 119 changes have complex dependencies. For exampleatisethat imple-
ments Java’s scope rules needs to be changed in 8 placédsetidase of such changes
to the Eclipse source tree that it can be fairly painful togeaijc with the latest version
of the Eclipse compiler.

Separation from base compiler: ab®y contrast,abc does not require any changes
to the source of its base compiler, which is Polyglot. Payblas been carefully engi-
neered to be extensible, and indedxtis just another Polyglot extension. The changes
to the scope rules are handled by introducing a new type fara@mments and a new
type system. These are implemented as simple extensiohe obtresponding classes
in Polyglot. It is thus very easy to upgrade to new version®aolfyglot, even when
substantial changes are made to the base compiler.

There are 14 types of AST nodes in Polyglot where it is necg$saverride some
small part of the behaviour. This is necessary, for exaniy@eaus¢his has a different
semantics in Aspectd when it occurs inside an intertypeadatbn. However, since
Polyglot has been designed to allow changes of this nature tnade by subclassing,
rather than by changing the source of Polyglot itself, naaewtork is required when
updating to a new version of Polyglot.

Finally, as we have described earligbcprovides a clean LALR(1) grammar, pre-
sented in a modular fashion thanks to Polyglot’s parser igeoie which allows a neat
separation between the Java grammar and that of an extengibras AspectJ.

Separation from bytecode manipulation: ajc. ages BCEL, a library for directly ma-
nipulating bytecode, in order to perform weaving and codegation. As in the case of
the base compiler, however, a special version of this libiemaintained as part of the
ajc source tree. Originally this was regularly synchronisetthwlie BCEL distribution,
using a patch file of about 300 lines. The specialised veisinow developed as part of
ajc, as BCEL is no longer actively maintained. The modified BCBhsists of 23,259
lines of code.

Separation from bytecode manipulation: abc. @completely separate from the Soot
transformation and code generation framework; no charmg8sot are required what-
soever.

We conclude thaabcis the first AspectJ compiler to achieve a clean-cut separati
between the components it builds on. It seems likely thatlithe possible to port the
ideas that helped achieve this to extending other progragtanguages with aspect-
oriented features.

6.2 Compile time

It is natural to inquire what the impact of using aspects ishantime taken to compile

a program: an AspectJ compiler does a lot more work than a java compiler. To
assess this issue, we decided to compare four differentcAspempilers: normajc,

ajc plus an optimisation pass of Soot over its out@ijt (- soof), abcwith all optimisa-
tions turned off &ébc -OQ, andabcwith its default intraprocedural optimisatiore().

We measured compile times for six benchmarks from [16], asvehin Table 8. Our
experiments were done on a dual 3.2GHz Xeon with 4GB RAM noghiinux with

a 2.6.8 kernel. We compiled using abc 1.0.1, soot 2.2.0,.2jd nd javac 1.4.2. The
first column shows the benchmark name. We then give the sii@eafource in lines
(as counted wittsloccoun} and the number of times advice needs to be woven into a

| benchmarfSLOC/APPY ajc[ajc + soofabc-OQ abdjavad
bean| 124 4(1.77 4.00 3.30 3.59 -
bean-javd 104 0/1.43 3.21] 3.05 3.03 0.54

sim-nullptn| 1474 1382.96 12.0Q 10.3810.69 -
sim-nullptr-javal 1547 0/1.75 6.52 7.45 8.64 0.76

figure 94 12/1.62 3.43 2.95 3.07 -
figure-java] 98 0[1.25 2.83 2.63 2.6 0.5]

| LoD-sim]| 158§ 13374.10 29.87 36.4746.14 -
| dom| 1669 3593.37 17.01 14.7417.49 |
| tetris] 1043 292.64 842 5849 899 |

Fig. 8. Compile times usingjc, abcandjavac (seconds)

shadow. The remainder of the columns show the four diffecentpilers, plugavac
where applicable.

The first three AspectJ benchmarks (bean,figure,sim-muHpve Java equivalents,
where the weaving has been performed by hand (bean-javafigua,sim-nullptr-java).
As expected, aspect weaving has a significant impact on ¢enipies. The main rea-
son is that an AspectJ compiler needs to make a pass ovenaliajed code to identify
shadows and possibly weave in advice. It may be possiblertaitsuch a pass, for ex-
ample by determining from information in the constant pbalkino pointcut can match
inside a given class. We plan to investigate such ways ofdiaguthe extra cost of
aspect weaving in future work.

The last three benchmarks (LoD-cflow, dcm, tetris) make hese of aspects so
there are no hand-woven Java equivalents.

Overall, the compile times indicate thaibcis significantly slower thaajc. This is
no surprise, aabcs code has not been tuned in any way for compile time perfanaa
whereas short compile times are an explicit design goajmiThe sim-nullptr bench-
mark is typical: the difference betweabcandajc for programs of a few thousand lines
is usually a factor of about 4. For examples whabe does a lot of optimisation, such
as LoD-sim, the gap can be slightly larger. For very largeitapsuch aabccompiling
itself, the difference can be a factor of 14.

The compile times o&bcreflect the cost of its powerful optimisation framework.
In particular, an appropriate comparison is not vétb (which lacks such optimisation
capabilities), but withajc + soot. This comparison shows that the compile timesbaf
andajc + soot are quite similar, which is encouraging.

It is furthermore pleasing that a research compiler sucibasan cope with very
sizeable examples (such as compiling itself); we belieat time natural use aibc
would be for optimised builds of programs whose day-to-deyetbpment is carried
out withajc.

6.3 Weaving into Jimple @bc) versus weaving into bytecoded|c)

We illustrate the advantage of weaving into the three-asfdiample representation (as
abcdoes) compared to weaving directly into bytecodegjasdoes) with a simple ex-
ample of weaving a piece of advice before the call to methad in the Java code

shown in Figure 9(a). The results of weaving into this codh lairectly on bytecode
and through Jimple are shown in Figure 9(b)-(d). In all caesinstructions inserted
in weaving are shown in boldface.

public int f(int x,int y,int z)

return bar(x, y, z)

}
(a) base Java code

public int f(int x,int y,int z)
0: aload_0O
1: iload 1
2: iload_2
3: iload_3
4. istore %
6: istore %
8. istore %
10: astore %W
12: invokestatic

A. aspect O ()LA;
15: aload W
17: invokevirtua

A aj c$bef or e$3A$124 (LFoo;)V
20: al oad %
22: iload %
24: iload %
26: iload %
28: invokevirtual Foo.bar (I111)lI
31: ireturn

(b) direct weaving into bytecodajc)

public int f(int,int,int)

{ Foo this;
int x, y, z, $i0
A t heAspect;
this := @his;
X = @baranetero
y := @araneterl;
z = @baraneterz

t heAspect = A aspect O ();
t heAspect . bef or e$0(t hi s);
$i0 = this.bar(x, vy, z);
return $i 0

(c) weaving into Jimpledbg

public int f(int x,int y,int z)
0: invokestatic A aspectOf ()LA;
3: aload_0

4 i nvokevi rtua

A. before$0 (LFoo;)V

al oad_0

iload_1

iload_2

10: iload_3

11: invokevirtual Foo.bar (I11)I
14: ireturn

©oN

(d) bytecode generated from Jimphb()

Fig. 9. Weaving into bytecode versus weaving into Jimple

Figure 9(b) shows the bytecode for the method after the@#tld before advice has
been woven byjc. Note that of the inserted bytecodes, only those at offszthrbugh
17 implement the lookup of the appropriate aspect and thecctde advice body. All
of the remaining bytecodes are stack fix-up code that musehergted to fix up the
implicit bytecode computation stack.

Figure 9(c) shows the Jimple code for the same method aerah to the before
advice has been woven lapc The key difference is that Jimple does not use an im-
plicit computation stack. Instead, all values are denotdguexplicit variables. Prior
to weaving, the Jimple code is as in Figure 9(c), but withbetthree lines in boldface.
To weaveabcneeds only declare a Jimple variable, then insert the tves lin lookup
the aspect and call the before advice. No additional code tepfiany implicit stack is
needed.

Figure 9(d) shows the bytecode that Soot generates fronirtipgelcode from Fig-
ure 9(c). This bytecode has the same effect agjtrgenerated code in Figure 9(b), but
it is significantly smaller because of Soot’s standard badlaptimisations. In addition,
it uses only three local variables, compared to seven reqby theajc-generated code.
We have observed that, even with modern JITs which perfogister allocation, the

excessive number of local variables required when weavirggitly into bytecode has
a significant negative impact on the performance of the woeeie.

6.4 Using Soot Optimisations in Weaving

The use of Soot as a backend fdrcenables it to leverage Soot’s existing optimisation
passes to improve the generated code. This simplifies thigrde$ the weaver, but
also enables aspect-specific optimisations that wouldflieudi or impossible to apply
directly during weaving. In these cases, the Java optimisstre typically augmented
with AspectJ-specific information.

For example, Aspect) makes a special variable natmisdoinPointavailable in
advice bodies. This variable contains various reflectif@rimation about the join point
that must be gathered at runtime and is relatively expensiwnstruct, so botabc
andajc implement “lazy” initialisation for this variable, so thdtis only constructed
when it will really be needed by an advice body, but that iteger constructed more
than once even if more than one piece of advice applies angppint. This is done
by first setting the variable toull, then initialising it with the proper value just before
advice is called, but only if it still containsull.

In ajc, the implementation does not work if there is any around @lat the join
point (for technical reasons), and it is special-cased didathe unnecessary laziness if
there is only one piece of advice at the join pointali, the lazy initialisation is used
in all cases, and a subsequent nullness analysis is usethioatk the overhead of
the laziness in most cases (including the one where themdysooe piece of advice).
The analysis is a standard Java one, which has been givexttiaeirformation that
the AspectJ runtime library method which constructsttii®JoinPointobject can never
returnnull. Thus, the implementation is simpler and more robust thaajthversion.

6.5 Performance of object code

It is beyond the scope of the present paper to do a detailepaason of the efficiency
of code generated ajc andabc In earlier work, in preparation for the construction of
abcitself, we conducted a detailed study of the dynamic behawid aspect-oriented
programs [16]. Through a specially constructed set of nreasent tools, we were able
to confirm the common belief that in many AspectJ program®tieehead introduced
by aspects is negligible. However, we were also able to ifecdmmon cases where
the overheads are surprisingly high. Motivated by theselt®sve made it an explicit
goal ofabcto be able to experiment with new aspect-specific optinogati

Because optimisations are an explicit design goadlwf it is important that such
experiments are thorough and realistic. In a companionrd@peve provide a detailed
account of the most important optimisationsioc, and of their effect on run times. The
reader is referred to that paper for a detailed technicalwatcaimed at compiler writ-
ers; below we review the most salient points that are relgeathe present comparison
with ajc.

The first kind of optimisation is an improved implementatwharound advice,
giving a 6-fold speedup of on some benchmarks. In certaies;ag reverts to gener-
ating closures in order to implememoceed When this happens, a lot of heap space is

used, leading to very significant overheads. By contrasthowe are able to avoid the
construction of closures in all but very rare pathologi@ses. In cases wheag does
notgenerate closures, it performs a great deal of inlinings Thn result in significant
code bloat, especially where the advice is woven at mangrdifit joinpoint shadows.
Again, the compilation strategy employeddiycstrikes a careful balance between code
size and speed. This is illustrated in Figure 10. Furtheaitdedf the benchmarks can
be foundin [7, 16].

Time (s) | Size (instr.)
Benchmark abc ajc abc ajc

sim-nullptr 21.9 21.4 7893 10184
sim-nullptr-rec |23.6 124.0 8216 10724
weka-nullptr {19.0 16.0103018 134290
weka-nullptr-re¢l8.9 45.3103401 130483
ants-delayed [17.5 18.2 3688 3784
ants-profiler [22.5 21.2 7202 13401

Fig. 10. Execution Times and Code Size

The second kind of optimisation is a set of intraprocedumgirovements taflow.

In ajc 1.2, the implementation afflow used expensive manipulations of a stack, where
a simple counter would have sufficed. Also it retrieved thraesthread-local state mul-
tiple times in a single procedure body, and it did not sharekvaetween multiple
occurrences of the sansflow pointcut. All these problems were eliminatedaing and
compared to version 1.2 ajfc, these small optimisations yield improvements of 382
(the LoD-sim benchmark). The simplest of these optimiseticounters and sharing)
were incorporated intajc 1.2.1.

In earlier work, prior to the start of thebc project, we showed how an interproce-
dural analysis can be used to completely eliminate the dadtaw [40]. This is a good
example where the full analysis capabilitiesabccome into play. The essential idea is
to construct a static approximation of the dynamic call frao that for each shadow,
we can determine at compile time whether it will be in tiflow of a given pointcut.
Such call graph construction is notoriously hard [21], dmaktit is important that we
do not need to construct a new analysis from scratch for A3pecindeed for every
extension of AspectJ.

We would therefore like to leverage existing analyses fee@ava. To that endbc
provides the technique @&-weaving which we briefly touched upon in Section 2, in
particular Figure 2. The compiler does a first pass over tognam, weaving advice
naively. The result of this process is a representation@fttimplete program as pure
Jimple code, without any aspect-oriented features. Thikaa analysed in the usual
manner. The results of the analysis are fed back into an aatimof theadvice-lists
which can be viewed as little meta-programs that contaitrintons to the weaver.
The optimisations usually consist of turning a piece of dyitaresidue (like updates of
thecflow stack) into a no-op.

The effectiveness of our optimisationsaffow is shown in Figure 11. The message
for researchers that wish to implement their own advancezhsions to AspectJ is that
abc provides the necessary infrastructure to overcome théectga of implementing

these new features efficiently. It is our belief that new sgls for robust semantic
pointcuts €.9.[15, 45]) necessitate the same type of optimisations anlysemthat we
have used to makeflow efficient.

u abc ajC
Benchmarld no-optsharing sharing+ sharingtinter-prog 1.2 1.2.1
counters countersg+ (no-opt) (sharingt
reuse counters

1.96| 450.5 167.Y
27.3| 1235 28.9
20.4 29.7 24.2
13.1 33.0 32.4
23.7| 4776.2 35.
66.3| 2349.2 113.
23.1| 1107.4 56.
73.6 76.8 69.(

figure 1072.2 238.3 90.3 20.
quicksort || 122.3 75.1 27.9 27.
sablecc 29.0 29.1 22.8 22.
ants 18.7 18.8 18.7 17.
LoD-sim |{1723.9 46.6 32.8 26.
LoD-weka|[1348.7 142.5 91.9 75.
Cona-stack 592.8 80.1 41.2 27.
Cona-sim ﬂ 75.8 75.3 73.8 72.

O UT =

O F NN OOrsS W

Fig. 11.Optimisations otflow

7 Related work

The related work falls into two parts. First of all, otherssréanade an independent
assesment of the extensibility albc by implementing extensions of their own. We first
discuss some of these. Second, we review a number of alterpadposals for building
an AOP language workbench, and we contrast them with theoappitaken irabc

7.1 Users ofabc

Harbulot and Gurdapply aspect-oriented techniques to parallelise sciemtifile [25].
For these applications, it is imperative to be able to defingppints for loop iteration
— the alternative is to refactor the code to expose such jointg via spurious method
calls. It is, however, not an easy task to define a robust natitoop join points, which
does not depend on the syntactic presentation of the code pftblem is addressed
in [26], and solved by a language extension that is impleattimabc

To illustrate, suppose that we wish to advise loop iteratiover a given array. Say
we want to intercept the loop

for (inti = 0;i < array.lengthi +=1) {
Object itenw array|i];

}

In the proposed extension of Harbulot and Gurd, this can beeeed with the pointcut

pointcut arrit(Objecf] array, int min, int max int stride) :
loop() && args(min, max stride, array);

Note, however, that it is highly non-trivial to detect théexant patterns in bytecode;
their implementation first recovers loop structure by cotmgudominators, and then it
does a flow analysis of the loop body to determine the lootiei its lower and upper
bound (0 andarray.lengthabove), as well as the stride (1 in the above example). The
joinpoint shadow matching depends on the precision of thesdyses: there may be
loop iterations for which the correntin, maxandstridecannot be statically determined.
The implementation described by [26] does however workpeaeent of whether the
user employedavhile or for to express a computation.

This case study thus provides a good example of the needémgsainalysis capa-
bilities in an extensible compiler for AspectJ. Similar eyales abound in the literature,
such as Kiczalespredicted cflowThe analysis capabilities @bcare also indispens-
able to efficiently implement advanced pointcuts such asl#teflow pointcuof [31].

Stolz and Boddempropose to use aspect-orientation for the runtime verifinaif tem-
poral properties. They define an extension of Aspect] winereiger can specify prop-
erties as LTL formulae [42]. The implementation is an exiemef abc

The atoms of the LTL formulae are pointcuts; and a formulawhele is translated
into an alternating automaton, coded as a regular Aspegettad he translation is thus
done entirely using Polyglot, and no changes to the backendeseded. This illustrates
one of the advantages of our architecture: it has a gentleifepcurve, and there is no
need to enter into the complications of generating Jimptleaf is not desired.

Experience seems to suggest that many beginning useixstart by implement-
ing an extension as a source-to-source transformationeaty on in the compiler,
even prior to name disambiguation. Then, when more sophtstil error checking is
required, the transformation is moved later, and delayédialhchecking is complete.
Indeed, such is the intended use of the Polyglot framework.

In the case of these novel features for runtime verificatimwever, there would
be a clear benefit to delaying at least part of the code geoeraten further, so that
it is possible to take advantage of the analysis framewotkénbackend to examine
control flow. Againabcprovides all support necessary for making such a step frem th
implementation described in [42].

Aotani and Masuharalt is natural to seek language-level mechanisms to enhduace t
expressive power of pointcuts. A particularly promisingagach is put forward by
Aotani and Masuhara [3], and they have implemented it w&lih Here the idea is to
useif-pointcuts and joinpoint reflection to conveniently exgresintcuts such as “all
calls where the declared type of the receiver is an intetface

pointcut interfaceCal() :
call(x x(..)) && if(isInterfacdthisJoinPoint));

static boolean isInterfagdoinPoint tjp {
return tjp.getSignature().getDeclaringType().isInterface()
}

When used directly in AspectJ, this would lead to quite icéffit code.
Instead, Aotani and Masuhara adopt the perspectiyeadial evaluation evalu-
ating if pointcuts at compile time. Strictly speaking this is therefnot an extension

of the AspectJ language, but rather a change in compilatiategy. Again both the
Polyglot-based frontend and the Soot-based backend lemasiives very well to im-
plementing such transformations.

Other extensions of abd@’he overview above is not exhaustive, and many other re-
searchers are actively developing extensiorebaf Examples include DJCutter (a dis-
tributed AOP language) [36]; Cona (a tool for checking caats) [41]; trace-based
aspects [15, 45]; a model checker for aspects [30]; and togderform tasks such as
slicing [46]. We are very encouraged by all these develogsmand we believe it pro-
vides fairly strong independent evidence of the claimsatocs extensibility made in
this paper.

7.2 Other workbenches for AOP language research

Of course we are not the first to realise the need for a workbémeconduct aspect-
oriented programming language research, and below wevedme earlier approaches
put forward by others.

JavassistJavassist is a reflection-based toolkit for developing bgtecode translators
[11]. Compared to other libraries such as BCEL, it has théndjasishing feature that
transformations can be described using a source-levebutsry. Compared tabg it
provides some of the combined functionality of the Javaditople translator plus the
advice weaver, but its intended applications are diffeiargarticular, it is intended for
use at load-time. Consequently, Javassist does not pravidmalysis framework like
Soot does irabc. In principle, such a framework could be added, but it wogguire
the design of a suitable intermediate representation akimtple.

Josh Josh is an open implementation of an AspectJ-like languagedon Javassist
[10], and as such it is much closer in spiritabc Indeed, the primary purpose of Josh
is to experiment with new pointcut designators, althoughit also be used for features
such as parametric introductions. Because of the impleatienttechnology, there is no
special support for the usual static checks in the fronteutich is provided inabc by
the infrastructure of Polyglot. Josh does not cover the @loblAspectd, which limits
its utility in realistic experiments.

Logic meta-programmingA more radical departure from traditional compiler tech-
nology is presented blpgic meta-programmingas proposed by [13, 22]. Here, pro-
gram statements where extra code should be woven in ardexkleg means of full-
fledged Prolog programs. This adds significant expressiveepand like Josh, the
design makes it easy to experiment with new kinds of poistclihe system operates
on abstract syntax trees, which are not a convenient repesm for transformation
and analysis — many years of research in the compilers corntyhave amply demon-
strated the merits of a good intermediate representatidartAer disadvantage, in our
view, is the lack of static checks due to the increased ezjw&power. The success of
AspectJ can partly be explained by the fact that it providagyaly disciplinedform

of meta-programming; some of that discipline is lost in togieta-programming, be-
cause the full power of Prolog precludes certain static kfieldevertheless, a system

based on these ideas is publicly available [44], and it isl @sea common platform by
a number of researchers.

Pointcuts as functional querie&ichberg, Mezini and Ostermann have very recently
suggested an open implementation of pointcuts, to enalske @gerimentation with
new forms of pointcuts [18]. Their idea is closely relatedhtat of logic meta-program-
ming, namely to use a declarative query language to idefuify point shadows of
interest. A difference is that they opt for the use of the XMlegy language XQuery
instead of a logic language. Furthermore, [18] only dealh wtatic join points. As
argued in the introduction, several recent proposals farp@ntcut primitives require
data flow analyses. We believe that it is not convenient taesgsuch analyses via
queries on syntax trees. It is however quite easy to trassfere of the ideas of [18]
to abg by letting the queries range over Polyglot ASTs. A chalkerten, is to define
appropriate type rules to implement as part of the frontend.

8 Conclusions and Future Work

We have presenteaabg and its use as a workbench for experimentation with ext@ssi
of AspectJ. Our primary design goal was to completely desegie new features from
the existing codebase, and this goal has been met. In parniextensions need not
make any changes to the code of the base compiler: they dyestrparated plugin
modules. We hope that such disentangling will enable yetemaypid developments in
the design of aspect-oriented programming languagesharidtegration of ideas from
multiple research teams into a single system, where thedaasevolve independently
of the extensions.

This project has also been an evaluation of the extensilmfiPolyglot and Soot,
from the perspective of aspect-oriented software devedoprive now summarise their
role in the extensibility of our design, and identify podsilmprovements.

Polyglot Polyglot turned out to be highly suited to our purposes.itemsion mecha-
nisms are exactly what is needed to implement AspectJ isedn extension of Java,
with only minimal code duplication. This in turn makes thevelepment ofabcrela-
tively independent of further improvements to Polyglot.

As we have remarked earlier, the Polyglot mechanisetégatesnimicks that of
ordinary intertype declarations, whereadension nodesoughly correspond to what
an AspectJ programmer would naturally do declare parentsand interface inter-
type declarations. Polyglot achieves this effect by cuglyicreating a replica of the
inheritance hierarchy in code, which then provides the Bdok appropriate changes.
Arguably that mechanism is somewhat brittle, and it is ¢efffarerbose, replicating the
same information in multiple places of the code.

We thus face the question whether it would be possible tanebeabcusing Aspect],
or indeed any other dialect of Java that features open da3$e answer is in the
positive, asabcis written in pure Java. Todd Millstein has used Relaxed Mala [35]
in precisely this way, using open classes in lieu of Polygldélegate and extension
nodes, to implement his recent work on predicate dispatéh [Bfollows that users
who prefer to use AspectJ to extealdccan do so without further ado.

Would the result be more compact and understandable codePtumately, a sig-
nificant proportion of Polyglot's extensions is taken up lojiérplate code for generic
visitors in each new AST node. To generate that automatjaaile would need reflec-
tion or a feature akin to parametric introductions [23]. Th#ection route has been
used with much success, in a framework by Hanson and Progl&#] that is very
similar to Polyglot.

On the whole we feel our choice of Polyglot has been justifledurther assess its
merits, we are now engaged in a comparative study of Polggrtension mechanism
and more advanced technologies such as aspect-orientedrreé attribute grammars
[19]. In particular, we would like to investigate how muliépindependent extensions
can be composed.

Soot The choice of Soot as the basis for our code generation andeweas had a
fundamental impact not only on the quality of the code thgkiserated, but also on the
ease by which the transformations are implemented. Theldimggrmediate represen-
tation of Soot has been honed on a great variety of optinsisatand analyses before
we applied it toabc and we reap the benefits of this large body of previous work.

Equally important has been the use of the Dava decompiléighpart of the Soot
framework. This makes it much easier to pinpoint potentrabpems, and to commu-
nicate the ideas about code generation to others. It alsesdpe way to exciting new
visualisations, for example to indicate at source levettyavhat dynamic residue was
inserted at a join point shadow.

In the comparison witlajc we demonstrated the importance of the analysis frame-
work in Soot: it is indispensable to eliminate the overheaftedvanced language fea-
tures such asflow. The need for such optimisation is likely to increase witkvipgo-
posed extensions such as predicted control flow [29], datadftmntcuts [31] and trace
cuts [14, 45]. Apart from optimisation, Soot’s analysis @hitities are also crucial in
the robust implementation of new pointcuts, for instanceséhfor loop iteration [26].

In summary, we have demonstrated (both through experinoértsr own and by
reviewing work of others) thaabc provides an extensible framework for experiments
in the design of aspect-oriented programming languagestingethe criteria osim-
plicity, modularity, proportionality andanalysis capabilityset out in the introduction.
The next step in its development, namely the upgrade to Jayavill provide a further
opportunity to hone these characteristics. Soot is readthfs transition, but Polyglot
still needs to be updated to Java 1.5.

Acknowledgments

This work was supported, in part, by NSERC in Canada and EPBRRe United
Kingdom. Our thanks to Chris Allan for his comments on a doéthis paper. Adrian
Colyer gave helpful advice on how to collect relevant staisregarding the source of
ajc.

References

1. abc. The AspectBench Compiler. Home page with downld@al®, documentation, support
mailing lists, and bug databad#.t p: / / aspect bench. or g.

10.

11.

12.

13.

14.

15.

16.

17.

. Jonathan Aldrich. Open Modules: Modular Reasoning aBduice. In Andrew Black, ed-
itor, 19th European Conference on Object-Oriented Programmiz@JOP 2005)volume
3586 ofLecture Notes in Computer Scienpages 144-168. Springer-Verlag, 2005.

. Tomoyuki Aotani and Hidehiko Masuhara. Compiling coratiall pointcuts for user-level
semantic pointcuts. IRroceedings of the SPLAT workshop at AOSD 2@0B5. Available
fromhttp://ww. dai m . au. dk/ ~eernst/ spl at 05/ .

. AspectJ bug database. Wrong variable binding| ipointcuts. Seétt ps:// bugs.
ecl i pse. org/ bugs/ show bug. cgi ?i d=61568, 2004.

. AspectJ bug database. ITD on inner class: missing acoesthod. Seét t ps: // bugs.
ecl i pse. org/ bugs/ show bug. cgi ?i d=73856, 2005.

. Pavel Avgustinov, Aske Simon Christensen, Laurie Hemdi®ascha Kuzins, Jennifer
Lhotak, Ondrej Lhotak, Oege de Moor, Damien Sereni, Ghr@ittampalam, and Julian
Tibble. abc An extensible Aspectd compiler. In Peri Tarr, editéth International Con-
ference on Aspect-Oriented Software Development (AOSH) 288ges 87—-98. ACM Press,
2005.

. Pavel Avgustinov, Aske Simon Christensen, Laurie Hemdi®ascha Kuzins, Jennifer
Lhotak, Ondrej Lhotak, Oege de Moor, Damien Sereni, Gar&ttampalam, and Julian Tib-
ble. Optimising AspectJ. In Vivek Sarkar and Mary W. Halliteds, ACM SIGPLAN Confer-
ence on Programming Language Design and Implementatio®(RR05), pages 117-128.
ACM Press, 2005.

. Jonas Bonér. AspectWerkz — dynamic AOP for Java. Avlldtom URL: http://
codehaus. or g/ ~j boner/ paper s/ aosd2004 aspect wer kz. pdf , 2004.

. Michael Brukman and Andrew C. Myers. PPG: a parser genefat extensible grammars,

2003. Available atwwv. cs. cor nel | . edu/ Pr oj ect s/ pol ygl ot/ ppg. ht i .

Shigeru Chiba and Kiyoshi Nakagawa. Josh: an open Asfliketlanguage. In Karl Lieber-

herr, editor3rd International Conference on Aspect-Oriented Softvizegelopment (AOSD

2004) pages 102-111, 2004.

Shigeru Chiba and Muga Nishizawa. An easy-to-use tofalkefficient Java bytecode trans-

lators. In Frank Pfenning and Yannis Smaragdakis, edifomg International Conference on

Generative Programming and Component Engineering (GPQE;, #®Ilume 2830 of ecture

Notes in Computer Sciengaages 364—376. Springer-Verlag, 2003.

Adrian Colyer and Andrew Clement. Large-scale AOSD faldieware. In Karl Lieberherr,

editor,3rd International Conference on Aspect-Oriented Softvizaegelopment AOSD 2004

pages 56-65. Association for Computing Machinery, 2004.

Kris de Volder. Aspect-oriented logic meta-progranmgniin Pierre Cointe, edito2nd In-

ternational Conference on Meta-level Architectures anfléRéon volume 1616 oLecture

Notes in Computer Scienggages 250-272. Springer-Verlag, 1999.

Rémi Douence, Pascal Fradet, and Mario Stidholt. Csitio, reuse and interaction anal-

ysis of stateful aspects. In Karl Lieberherr, edit®nd International Conference on Aspect-

Oriented Software Development (AOSD 20@&ges 141-150. ACM Press, 2004.

Rémi Douence, Pascal Fradet, and Mario Sudholt. Tosased aspects. In Robert Filman,

Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit, editokspect-Oriented Software Devel-

opment Addison-Wesley, 2004.

Bruno Dufour, Christopher Goard, Laurie Hendren, Oegkldor, Ganesh Sittampalam, and

Clark Verbrugge. Measuring the dynamic behaviour of Aspecbgrams. IrProceedings

of the 19th ACM SIGPLAN conference on Object-oriented pnmimng, systems, languages,

and applicationspages 150-169. ACM Press, 2004.

Chris Dutchyn, Gregor Kiczales, and Hidehiko Masuharatorial: AOP language explo-

ration using the Aspect Sand Box. In Gregor Kiczales, editstrInternational Conference

on Aspect-Oriented Software Development (AOSD 2002 Press, 2002.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

Michael Eichberg, Mira Mezini, and Klaus Ostermann. nRaits as functional queries. In
Wei-Ngan Chin, editorSecond ASIAN Symposium on Programming Languages and Sys-
tems (APLAS 2004)olume 3302 ofLecture Notes in Computer Sciengages 366—-381.
Springer-Verlag, 2004.

Torbjorn Ekman and Gorel Hedin. Rewritable refereattebuted grammars. In Mar-
tin Odersky, editorl8th European Conference on Object-Oriented Programmi@QOP
2004) volume 3086 of_ecture Notes in Computer Scienpages 144—-169. Springer-Verlag,
2004.

Etienne Gagnon, Laurie J. Hendren, and Guillaume Marcé&dficient inference of static
types for Java bytecode. In Jens Palsberg, ediiatic Analysis Symposiympages 199—
219, 2000.

David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chamlggall graph construction in
object-oriented languages. In Toby Bloom, edifa&,M Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSlaes 108-124. ACM Press,
1997.

Kris Gybels and Johan Brichau. Arranging language featfor more robust pattern-based
crosscuts. In Mehmet Aksit, editd2nd International Conference on Aspect-Oriented Soft-
ware Development (AOSD 2003gages 60-69. ACM Press, 2003.

Stefan Hanenberg and Rainer Unland. Parametric inttimohs. In Mehmet Aksit, edi-
tor, 2nd International Conference on Aspect-Oriented Softiiaeelopment (AOSD 20Q3)
pages 80-89. ACM Press, 2003.

David Hanson and Todd Proebsting. A research C# comp8eftware — Practice and
Experience34(13):1211-1224, 2004.

Bruno Harbulot and John R. Gurd. Using Aspect] to sepa@icerns in parallel scien-
tific Java code. In Karl Lieberherr, edit@rd International Conference on Aspect-Oriented
Software Development (AOSD 200gages 122—-131. ACM Press, 2004.

Bruno Harbulot and John R. Gurd. A join point for loops iep&ctJ. In Curtis Clifton,
Ralf Lammel, and Gary T. Leavens, editoFgundations of Aspect-Oriented Languages
(FOAL 2005) pages 11-20, 2005. Technical report 05-05, Departmenbwigbiter Science,
lowa State University. Available fromht t p: / / ww. cs. i ast at e. edu/ ~ eavens/
FOAL/ i ndex- 2005. shtm .

Erik Hilsdale and Jim Hugunin. Advice weaving in AspedtdKarl Lieberherr, editor3rd
International Conference on Aspect-Oriented Softwaredipment (AOSD 2004pages
26-35. ACM Press, 2004.

Jim Hugunin. Guide for developers of the AspectJ compitel weaver, 2004. Available
at http://dev. eclipse.org/viewvs/index. cgi / ~checkout ~/ org.
aspectj / nodul es/ docs/ devel oper/ conpi | er- weaver/i ndex. htm ?
rev=1. 1&cont ent - t ype=t ext/ ht ml &vsr oot =Technol ogy Proj ect.

Gregor Kiczales. The fun has just begun. Keynote ad@es©SD. Available anosd.

net / ar chi ve/ 2003/ ki czal es- aosd- 2003. ppt , 2003.

Shriram Krishnamurthi, Kathi Fisler, and Michael Greery. Verifying aspect advice mod-
ularly. In Richard N. Taylor and Matthew B. Dwyer, editoACM SIGSOFT International
Symposium on the Foundations of Software Engineepgages 137-146, 2004.

Hidehiko Masuhara and Kazunori Kawauchi. Dataflow pitin aspect-oriented program-
ming. In Atsushi Ohori, editorlst Asian Symposium on Programming Languages and Sys-
tems volume 2895 of_ecture Notes in Computer Scienpages 105-121. Springer-Verlag,
2003.

Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchiompilation and optimization
model for aspect-oriented programs. In Gorel Hedin, editdth International Conference
on Compiler Constructionvolume 2622 of_ecture Notes in Computer Sciengages 46—
60. Springer-Verlag, 2003.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Jerome Miecnikowski and Laurie J. Hendren. Decompilavg bytecode: problems, traps
and pitfalls. In R. Nigel Horspool, editot1th International Conference on Compiler Con-
struction volume 2304 ofLecture Notes in Computer Sciengmges 111-127. Springer-
Verlag, 2002.

Todd Millstein. Practical predicate dispatch. In JohnWissides and Douglas C. Schmidt,
editors,Conference on Object-oriented Programming, Systems,uages and Applications
(OOPSLA 2004)pages 345-364. ACM Press, 2004.

Todd Millstein, Mark Reay, and Craig Chambers. Relaxadtifava: Balancing extensi-
bility and modular typechecking. In Ron Crocker and Guy leebtlr., editorsConference
on Object-Oriented Programming, Systems, Languages apticAfions (OOPSLA 2003)
pages 224-240. ACM Press, 2003.

Muga Nishizawa, Shigeru Chiba, and Michiaki Tatsubé&temote pointcut — a language
construct for distributed AOP. In Karl Lieberherr, edit8rd International Conference on
Aspect-Oriented Software Development (AOSD 20@ges 7-15. ACM Press, 2004.
Nathaniel Nystrom, Michael R. Clarkson, and Andrew C.ekéy Polyglot: An extensible
compiler framework for Java. In Gorel Hedin, editd2th International Conference on
Compiler Constructionvolume 2622 ofLecture Notes in Computer Sciengmges 138—
152. Springer-Verlag, 2003.

Harold Ossher and Peri Tarr. Hyper/J: multi-dimendiseparation of concerns for java. In
22nd International Conference on Software Engineerpages 734-737, 2000.

Kouhei Sakurai, Hidehiko Masuhara, Naoyasu Ubayashék® Matsuura, and Seiichi
Komiya. Association aspects. In Karl Lieberherr, edifrd International Conference on
Aspect-Oriented Software Development (AOSD 2Q8eijes 16—25. ACM Press, 2004.
Damien Sereni and Oege de Moor. Static analysis of aspéntMehmet Aksit, editor,
Proceedings of the 2nd International Conference on As@einted Software Development
(AOSD 2003)pages 30-39. ACM Press, 2003.

Therapon Skotiniotis and David H. Lorenz. Cona: aspfectsontracts and contracts for
aspects. IMOOPSLA '04: Companion to the 19th annual ACM SIGPLAN confareon
Object-oriented programming systems, languages, andicgifuns pages 196-197, New
York, NY, USA, 2004. ACM Press.

Volker Stolz and Eric Bodden. Temporal Assertions ugisgect]. InFifth Workshop on
Runtime Verification (RV'05Electronic Notes in Theoretical Computer Science, Edigibu
Scotland, UK, 2005. Elsevier Science Publishers.

Raja Vallee-Rai, Etienne Gagnon, Laurie J. HendretridRd_am, Patrice Pominville, and
Vijay Sundaresan. Optimizing Java bytecode using the Saatdwork: Is it feasible? In
David A. Watt, editor,Compiler Construction, 9th International Conference (CQ0Q)
pages 18-34, 2000.

Kris De Volder. The TyRuBa metaprogramming system. lawdé atht t p: // t yr uba.
sour ceforge. net/.

Robert Walker and Kevin Viggers. Implementing protscoh declarative event patterns. In
ACM Sigsoft International Symposium on Foundations ofw&aé Engineering (FSE-12)
pages 159-169, 2004.

Jianjun Zhao. Slicing aspect-oriented softwarelQth IEEE Workshop on Program Com-
prehensionpages 251-260, 2002.

