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Abstract. Research in the design of aspect-oriented programming languages re-
quires a workbench that facilitates easy experimentation with new language fea-
tures and implementation techniques. In particular, new features for AspectJ have
been proposed that require extensions in many dimensions: syntax, type checking
and code generation, as well as data flow and control flow analyses.
The AspectBench Compiler (abc) is an implementation of such a workbench. The
base version ofabc implements the full AspectJ language. Its frontend is built,
using the Polyglot framework, as a modular extension of the Java language. The
use of Polyglot gives flexibility of syntax and type checking. The backend is built
using the Soot framework, to give modular code generation and analyses.
In this paper, we outline the design ofabc, focusing mostly on how the design
supports extensibility. We then provide a general overviewof how to useabc to
implement an extension. We illustrate the extension mechanisms ofabc through
a number of small, but non-trivial, examples.
We then proceed to contrast the design goals ofabc with those of the original
AspectJ compiler, and how these different goals have led to different design de-
cisions. Finally, we review a few examples of projects by others that extendabc
in interesting ways.

1 Introduction and Motivation

The design and implementation of aspect-oriented programming languages is a buoy-
ant field, with many new language features being developed. In the first instance, such
features can be prototyped in a system like the Aspect Sand Box [17] via a definitional
interpreter. Such interpreters are useful in defining the semantics and in explaining the
compilation strategy of new language features [32]. The acid test for new language fea-
tures is, however, their integration into a full, industrial-strength language like AspectJ.
That requires a highly flexible implementation of AspectJ that can be extended in a
clean and modular way.

The purpose of this paper is to presentabc, the AspectBench Compiler for AspectJ,
which supports the whole of the AspectJ language implemented by ajc 1.2, and which
has been specifically designed to be an extensible frameworkfor implementing AspectJ
extensions.abcis freely available under the GNU LGPL [1].



Challenges An AspectJ compiler is already a complex piece of software, which, in
addition to the normal frontend and backend components of a compiler, must also sup-
port a matcher (for name patterns) and a weaver (both for intertype declarations and
for advice). Furthermore, the kinds of extensions that havebeen suggested for AspectJ
vary from fairly simple pointcut language extensions to more complex concepts which
require modifications in the type system, matcher and weaver. To make the challenges
explicit, we briefly review some previous work by others thathas motivated our design.

At one end of the spectrum, there are fairly small extensionsthat require changes
primarily to the syntax. An example of this kind is thename pattern scopesproposed by
Colyer and Clement [12], which provide an abstraction mechanism for name patterns.
To support this type of extension, our workbench needs an easy way of extending the
syntax, as well as introducing named patterns into the environment.

A more involved extension is theparametric introductionsof Hanenberg and Un-
land [23]. These are intertype declarations that depend on parameters evaluated at
weave-time. Their integration into AspectJ requires substantial changes to the type sys-
tem as well as the intertype weaver. This kind of extension thus motivates a highly
flexible implementation of types.

Most proposals for new features in AspectJ are, however, concerned with the dy-
namic join point model. Sakuraiet al. [39] proposeassociation aspects. These provide
a generalisation of per-object instantiation, where aspect instances are tied to a group
of objects to express behavioural relationships more directly. This requires not only
changes to the frontend, but also substantial changes to code generation. Making such
code generation painless is another design goal of our workbench.

The community as a whole is concerned with finding ways of singling out join
points based on semantic properties rather than naming. Forinstance, Kiczales has pro-
posed a new type of pointcut, calledpredicted cflow[29]. pcflow(p) matches at a join
point if there may exist a path to another join point wherep matches. It is correct to let
pcflow(p) match everywhere, but that would lead to inefficient programs. An efficient
implementation ofpcflow(p) needs substantial, interprocedural program analysis. Our
workbench needs to provide a framework for building such analyses.

In fact, examples where efficient implementation necessitates an analysis frame-
work abound. Particular instances include thedata flow pointcutsof Masuhara and
Kawauchi [31], and thetrace-based aspectsof Douenceet al. [14], as well as thecom-
munication history aspectsof Walker and Viggers [45].

All of the above are additions to the AspectJ language, but, of course, restrictions
can be equally important in language design. One promising example is the proposal of
Aldrich to restrict the visibility of join points to those that are explicit in the interface of
a class [2]. We aim to support the implementation of such restrictions, and this requires
a flexible implementation of the type system and the pointcutmatcher.

Finally, we note that the implementation of advanced staticchecking tools for aspect-
oriented programs, such as those investigated by Krishnamurthi et al. [30], require all
types of extensions discussed above, ranging from simple variations in syntax to making
advanced analyses such as escape analysis take into accountthe effects of advice.

In summary, we can see that an extensible AspectJ compiler must be able to handle
a wide variety of extensions, possibly touching on many components of the compiler,



including the frontend scanner and parser, the type checker, the matcher and weaver, and
potentially requiring relatively sophisticated program analysis to ensure correctness and
efficiency.

Design GoalsOne approach to implementing a language extension is to modify an ex-
isting compiler. However, this is not always the best approach, since existing compilers
may not have been designed with extensiblity as one of the main goals. Furthermore,
they may be constrained to work with infrastructures which themselves are not easily
extensible. In the case of AspectJ, the only pre-existing implementation isajc, which is
designed to support fast and incremental compilation and also to interact closely with
the Eclipse toolset.

Our approach was to design and implementabc, the AspectBench Compiler, with
extensibility as its primary design goal. We also aimed for an optimising implementa-
tion of AspectJ, and we briefly summarise that perspective inour comparison withajc
in Section 6.5. To support extensibility, we distilled the following requirements from
the above discussion of the challenges involved.

simplicity: It must be relatively simple to develop new extensions. Users of the frame-
work should not need to understand complicated new conceptsor a complex soft-
ware design in order to implement their extensions.

modularity: We require two kinds of modularity. First, the compiler workbench itself
should be very modular, so that the different facets of each extension can be easily
identified with the correct module of the workbench.
Second, the extension should be modular (separate from the workbench code).
Users of the workbench should not need to change existing code; rather, they should
be able to describe the extensions as specifications or code that is separate from the
main code base.

proportionality: Small extensions should require a small amount of work and code.
There should not be a large overhead required to specify an extension.

analysis capability: The compiler workbench infrastructure should provide bothan
intermediate representation and a program analysis framework. This is necessary
for two reasons. First, some extensions may require relatively sophisticated analy-
ses to correctly implement their semantic checks and weaving. Second, some exten-
sions may lead to a lot of runtime overhead unless compiler optimisation techniques
are used to minimise that overhead.

The abc approachTo meet these objectives, we decided to build on existing, proven
tools, namely the Polyglot extensible compiler framework for the frontend [37], and the
Soot analysis and transformation framework for the backend[43]. [The McGill authors
of the present paper are the authors of Soot.] Indeed, Polyglot has been shown to meet
the criteria of simplicity, modularity and proportionality on a wide variety of extensions
to the syntax and type system of Java. By the same token, Soot has been shown to meet
all the above criteria for code generation, analysis and optimisation.

Given the success of these building blocks, we felt it extremely important to design
abcso that both are usedas is, without any changes that are specific toabc, in order to



allow easy migration to new releases of those frameworks. Asexplained in Section 2 be-
low, this has dictated an architecture where the frontend separates the AspectJ program
into a pure Java part and a part containing instructions for the backend.

Contributions In general terms, the contributions of this paper are the following:

comprehensive account of an AspectJ compiler: While ajc has been in use for
eight years or more, there are few publications that give a comprehensive account
of its main design decisions, a notable exception being the description of its advice
weaver in [27]. The present paper aims to provide a general overview of how to
build an AspectJ compiler, while pointing out the structurethat is common toajc
andabc. We also examine the consequences of the different design goals ofajc and
abc, in particular howabcplaces more emphasis on extensibility and optimisation.

extensible workbench for AOP research: We have identified the requirements for
a workbench for research in aspect-oriented programming languages by analysing
previous research in this area. We show howabc meets these requirements, and
validate our architecture with a number of small but non-trivial examples. Further-
more, we present an overview of extensions toabcthat have been implemented by
other researchers.

experience with Soot and Polyglot: abcbuilds on Polyglot and Soot without making
any changes to these two components. As such,abc is one of the largest projects
undertaken with either Soot or Polyglot. This paper is therefore also an experience
report, assessing the suitability of Polyglot and Soot for building aspect-oriented
programming tools.

At a more technical level, the contributions ofabcwith respect to extensibility are these:

pass structure: abchas a carefully designed pass structure, where each compiler pass
achieves exactly one task, so that it is never necessary to split an existing pass when
inserting a new one required by an extension. Designing sucha pass structure that
processes all types in the right order is quite hard, as witnessed, for example, by a
bug concerning ITDs on inner classes inajc [5]. Another example is the need for
three separate passes that evaluate classname patterns. The pass structure is outlined
in Section 2, and then further detailed as necessary for our examples.

separator: A separatorpass that splits the original AspectJ AST into a pure Java
part and the aspectinfo; by enforcing that separation very strictly, extensions never
need to modify the code generation pass, which is used unchanged from the Soot
framework. The separator is explained in Section 2.3.

use of Jimple: The use of a typed, stackless, 3-address intermediate representation,
namely Jimple, to significantly simplify doing a good job of writing a new weaver
for new joinpoint types. The advantages of Jimple (versus bytecode) for weaving
are discussed in Section 6.3.

regular IR for pointcuts: An intermediate representation of pointcuts that is more
regular than at source level. This representation makes it easier to represent new
pointcut primitives, and we shall illustrate this with the example of local pointcut
variables. The intermediate representation includes reducing complex pointcut ex-
pressions to disjunctive normal form. An added benefit is that it sorted out some



nettly problems with the treatment of disjunction (||) in ajc [4]. Our intermediate
representation for pointcuts is presented in Section 3.6.

reweaving: An explicit representation of residues via a meta-languagethat can be
optimised based on further analysis of woven Jimple; and a re-entrant design of
the weaver to exploit such opportunities via a weave-analyse-weave cycle. This re-
weaving architecture enables easy plug-and-play of complex optimisations. This
architecture is first introduced in Section 2.4, and we present some numbers that
demonstrate its advantages in Section 6.5.

Paper StructureThe structure of this paper is as follows. In Section 2, we first give an
overview of the main building blocks ofabc, namely Polyglot and Soot, and show their
role in the overall architecture ofabc. Next, in Section 3 we sketch the main points of
extensibility inabc. We then turn to describe some modest but representative examples
of AspectJ extensions in Section 4, and their implementation in Section 5. The design
goals ofabcare contrasted with those of the original AspectJ compilerajc in Section
6, and we examine how the different goals have led to different design decisions. A
particular topic highlighted in Section 6 is the use of Jimple in a weaver, why it is
good for extensions and for implementing optimisations. InSection 7, we review a few
examples by other researchers who have extendedabc. Also in Section 7, we discuss a
number of similar projects that shareabc’s goals. Finally, in Section 8 we draw some
conclusions from our experience in buildingabc, and we explore possible directions for
future research.

This paper is an enhanced, updated version of [6]. New material includes: the archi-
tecture of the weaver in Section 2, a detailed qualitative comparison toajc in Section 6,
a discussion of other projects that build onabc in Section 7, and many small improve-
ments throughout.

2 Architecture

As stated in the introduction,abc is based on the Polyglot extensible compiler frame-
work [37] and the Soot bytecode analysis and transformationframework [43]. Using
Polyglot as an extensible frontend enables customisation of the grammar and seman-
tic analysis; in the backend, Soot provides a convenient intermediate representation on
which to implement the weaving of extensions, as well as tools for writing any program
analyses that extensions may require.

Input classes can be given toabc as source code or class files, andabc is able to
weave into both. Source files are processed by the Polyglot frontend, whereas only the
signature part of class files are read by Polyglot in order to perform type checking of
the source code. In both cases, weaving is performed on Jimple, Soot’s intermediate
representation.

Becauseabcworks with an unmodified Soot and Polyglot, it is easy for us, as the
developers ofabc itself, to update to the latest versions of Soot and Polyglotas they
are released. By the same token, authors of AspectJ extensions can upgrade to new ver-
sions ofabcwithout difficulty. This independence was achieved mainly by separating
the AspectJ-specific features in the code being processed from standard Java code. In
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the frontend,abcgenerates a plain Java abstract syntax tree (AST) and a separate as-
pect information structure containing the aspect-specificinformation. We call the aspect
information structure theAspectInfo. The unmodified backend can read in the AST (be-
cause it is plain Java), andabcthen uses theAspectInfoto perform all required weaving.
A simplified diagram of the architecture ofabc is shown in Figure 1. In many respects,
this architecture is similar to that ofajc. At this level of abstraction, the main differ-
ence is the strict use of a separator pass (labelled ‘Polyglot AST transformations’ in the
figure) for splitting the pure Java from any aspect-specific information. This separation
process is described in more detail below.

In the following subsections, we describe Polyglot and Sootin the context ofabc,
with a focus on how they contribute to extensibility. Finally we discuss in some more
detail how the two parts are connected.

2.1 Polyglot

Polyglot [37] is a frontend for Java intended for implementing extensions to the base
language. In its original configuration, Polyglot first parses Java source code into an
abstract syntax tree (AST), then performs all the static checks required by the Java lan-
guage in a number of passes which rewrite the tree. The outputof Polyglot is a Java
AST annotated with type information, which is written back to a Java source file. Poly-
glot is intended to perform all compile-time checks; when a class has passed through
all of the passes in Polyglot, the resulting Java file should be compilable without er-
rors by any standard Java compiler. When Polyglot is used as afrontend for Soot, the
Java to Jimplemodule inside Soot compiles the final AST into the Jimple intermediate
representation instead of writing it out to a Java file. Therefore, in abc, the final Poly-
glot passes separate the AspectJ program into pure Java (which is passed to the Java to
Jimple module in Soot) and instructions for the backend.

Several features of Polyglot make it well-suited for writing extensions, and also
help to make those extensions themselves extensible. Polyglot allows a new grammar
to be specified as a collection of modifications to an existinggrammar, where these
modifications are given in a separate specification file, not in the original grammar file.
The AspectJ grammar we developed forabc is specified as an extension of the Java
grammar, and the grammars for extensions are in turn specified as modifications to the
AspectJ grammar.

Polyglot makes heavy use of interfaces and factories, making it easy to extend or
replace most of its parts, such as the type system or the scoperules, as well as the list of
rewrite passes that are performed on the AST. Each pass in Polyglot non-destructively
rewrites the input tree. As a result, it is easy to insert new passes in between existing
ones, and each pass typically performs only a small amount ofwork compared to tra-
ditional compiler passes. Inabc, we have added many AspectJ-specific passes, and it
is easy for extensions to add further passes of their own. Theordering of passes must
be chosen carefully, since the semantic analysis of Java source code might depend on
changes to the program introduced by aspects.

Each AST node in Polyglot uses a mechanism ofextensionsanddelegatesto allow
methods to be replaced or added in the middle of the existing class hierarchy, achieving
an effect similar to what can be done in AspectJ using intertype declarations, but in



plain Java. This mechanism is commonly used by extensions ofabcto modify existing
AST nodes.

2.2 Soot

Soot [43], which is used as the back-end ofabc, is a framework for analysing and trans-
forming Java bytecode. The most important advantage of using Soot as the backend,
both for developingabcitself and for extending the language, is Jimple, Soot’s interme-
diate representation. Soot provides modules to convert between Jimple, Java bytecode,
and Java source code. It furthermore includes implementations of standard compiler
optimisations, whichabcapplies after weaving. We have already observed significant
speedups from these optimisations alone [7]. In addition toalready implemented analy-
ses and transformations, Soot has tools for writing new ones, such as control flow graph
builders, definition/use chains, a fixed-point flow analysisframework, and a method in-
liner. These features are useful for implementing extensions that need to be aware of the
intra-procedural behaviour of the program, such as pointcuts describing specific points
in the control flow graph.

The Jimple intermediate representation is a typed, stack-less, three-address code.
Rather than representing computations with an implicit stack, each Jimple instruction
explicitly manipulates specified local variables. This representation simplifies weaving
of advice, both for standard AspectJ features and for extensions. If it were weaving into
bytecode directly, the weaver would need to consider the effect of the woven code on
the implicit execution stack, and generate additional codeto fix up the stack contents.
None of this is necessary when weaving into Jimple. Moreover, when values from the
shadow point are needed as parameters to the advice, they arereadily available in local
variables; the weaver does not have to sift through the computation stack to find them.

As input, Soot can handle both class files and Java source files. To convert byte-
code to Jimple, Soot introduces a local variable to explicitly represent each stack loca-
tion, splits the variables to separate independent uses of the same location, and infers a
type [20] for each variable. To convert source code to Jimple, Soot first uses Polyglot
to construct an AST with type information, and then generates Jimple code from the
AST. This process does not need to be modified inabc, becauseabcpasses Soot a plain
Java AST, keeping all the aspect-specific information in theseparate aspect information
structure. Normally, after all processing, Soot converts the Jimple code into bytecode
and writes it to class files, but it also includes a decompiler, dava[33], which is very
useful for viewing the effects of aspects and AspectJ extensions on the generated code.

2.3 Connecting Polyglot and Soot

We conclude the discussion ofabc’s architecture by examining in closer detail how
Polyglot and Soot interact. A key component of this interaction is the separation of the
AspectJ AST into a pure Java AST and the auxilliaryAspectInfostructure. This trans-
formation enablesabcto use the existing facility in Soot for translating a Polyglot AST
into the Jimple IR. This is an important design decision inabc, as it implies that ex-
tension writers never need to modify the existing code generator. Other aspect-oriented
systems that use a similar separation pass include AspectWerkz and Hyper/J [8,38].



The Java AST is basically the AspectJ program with all AspectJ-specific language
constructs removed. TheAspectInfostructure contains complete information about these
constructs. In cases where these contain actual Java code (advice bodies,if pointcut
conditions, intertype method/constructor bodies, intertype field initialisers), the code is
placed in placeholder methods in the Java AST.

The Java AST only contains Java constructs, but it is incomplete in the sense that
it may refer to class members which do not exist or are not accessible in the unwoven
Java program. More specifically, the Java AST will in generalnot be compilable until all
declare parentsand intertype declarations have been woven into the program. The first
of these can alter the inheritance hierarchy, and the secondcan introduce new members
that the pure Java parts may refer to. Since both of these features may be applied to class
files (for which we do not have an AST representation), it is not possible to perform this
part of the weaving process on the Polyglot representation before passing the AST to
Soot.

Fortunately, Soot allows us to conduct the conversion from Java to Jimple in two
stages, and the application ofdeclare parentsand intertype weaving can happen in be-
tween. In the first stage, Soot builds a class hierarchy with mere stubs for the methods:
it is a skeleton of a full program in Jimple, without method bodies. In the second stage,
Soot fills in method bodies, either by converting bytecode from class files, or by com-
piling AST nodes.

This setup permits both static weaving and advice weaving towork on the Jimple
IR, largely independent of whether the Jimple code was generated from source code or
bytecode. And since the skeleton that is filled out in the second stage has the updated
hierarchy and contains all intertype declarations, all member references in the code are
resolved correctly in the translation into Jimple.

The two-stage weaving (static and advice) is shared withajc. Indeed, the two stages
are dictated by the AspectJ language design: static weavingonly effects the type hi-
erarchy, whereas advice weaving effects runtime behaviour. Furthermore, one cannot
generate code without first adjusting the type hierarchy.

2.4 The advice weaver

The job of the advice weaver is to modify the Jimple code according to the instructions
in the AspectInfosuch that advice bodies are executed whenever the corresponding
pointcuts match the currently executing join point.

The architecture of the advice weaver is shown in Figure 2. The first step of advice
weaving is to identify alljoin point shadows, that is, all places in the Jimple code that
could potentially correspond to a join point in the execution of the program. Each of
these are then matched against all pointcuts in the program.If it is determined that a
pointcut might match a join point at a particular shadow, thematcher emits a weaving
instruction telling the weaver to weave the advice body at that shadow. Since a pointcut
can contain terms that depend on the runtime state of the program, it cannot always be
fully determined at compile time whether a particular pointcut matches at a shadow.
A weaving instruction thus consists of three parts: the shadow at which to weave, the
advice to weave in and adynamic residuespecifying what additional runtime checks
must be inserted to check that the pointcut actually matchesthe current join point. The
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dynamic residue also contains information about how to bindthe values that are to
become the arguments to the advice.

When all weaving instructions have been generated, the actual weaving is per-
formed. The result is a Jimple program whose behaviour includes all advice bodies
executing at the appropriate times. This program is then translated into bytecode by the
Soot bytecode generator and the result is written out to the target class files.

Some extensions might require some sophisticated analysisto be done on the Jimple
code. These fall roughly into two categories:pre-weaving analysis, where the analysis
is performed on the original Java code before the advice are woven in, andpost-weaving
analysis, where the analysis is performed on the woven code. Pre-weaving analysis is
typically employed when the analysis results are needed by the pointcut matcher, for
instance when implementing a new kind of pointcut. Post-weaving analysis is used
when some property of the final code is desired, for instance when doing optimisations
on the final code or checking behavioural properties of the program.

In some cases, such as thecflow optimisation mentioned in Section 6.5, the analysis
needs to be performed on the woven code, but the result is needed by the weaver. To fa-
cilitate such analyses,abcincludes a mechanism forre-weaving, which can throw away
the woven code and revert to the unwoven code while retainingthe analysis results ob-
tained from analysing the woven code. This is also illustrated in Figure 2. The results of
the analysis are channelled back into an optimisation pass which modifies the weaving
instructions to be used in a subsequent weaving pass. This process can be repeated as
many times as necessary.



3 Defining an Extension

We now outline the basic steps needed to create an extension,in a general manner. This
description is intended to give the reader an impression of the extension mechanisms
available inabc, without delving into excessive detail. After this genericdescription,
we shall introduce some concrete examples in Section 4, and show how the basic steps
are instantiated in Section 5.

This section serves two purposes. First, to outline how we build on the existing
extension mechanisms of Polyglot and Soot to achieve extensibility in abc (Sections
3.2, 3.3, 3.4, and 3.8). Second, we wish to present some design decisions that are unique
to abc, which address specific issues regarding the extension of AspectJ (Sections 3.1,
3.5, 3.6, 3.7 and 3.9).

3.1 Syntax

The first step in implementing a new extension is usually defining what additional syn-
tax it will introduce to the language. Makingabc recognise the extended language in-
volves changing the lexer and the parser that it uses. Polyglot already handles extending
grammars in a very clean and modular fashion. However, the standard Polyglot lexer is
not extensible — extensions are expected to create their ownlexer by copying it and
making appropriate modifications. Thus, in this subsectionwe describe our approach
to making an extensible lexer in some detail, and then brieflysummarise the Polyglot
mechanism for extending grammars.

Lexer We have designed the lexer forabc to support a limited form of extensibility
that has been sufficient for the extensions we have written sofar. Specifically, the set of
keywords recognised by the lexer can be modified by an extension, and the actions taken
by the lexer when encountering one of these keywords are customisable. More complex
extensions can still be achieved by reverting to Polyglot’sapproach of copying and
modifying the lexer definition. This is in agreement with theprinciple of proportionality
which was stated as a design goal — small extensions are easy,and complex ones are
possible.

The lexical analysis of AspectJ is complicated by the fact that there are really several
different languages being parsed: ordinary Java code, aspect definitions, and pointcut
definitions. Consequently, theabc lexer is stateful — it recognises different tokens in
different contexts. The following example illustrates onekind of problem that is dealt
with by the introduction of lexer states:

if*.*1.Foo+.new(..)

The expected interpretation of such a string as Java code andas part of a pointcut
will be very different; for example, in Java, we would expect“1.” to become a floating
point literal, whereas in the pointcut language the decimalpoint would be viewed as a
dot separating elements of a name pattern. Similarly, “*” inJava should be scanned as
an operator, while in pointcuts, it is part of a name pattern.Note also the use of what
would be keywords in Java mode (if andnew) as part of a pattern.



An important part of designing a stateful lexer is specifying when the lexer should
switch to a different state without adding too much complexity. The general pattern we
use is to maintain a stack of states, and recognise the end of astate when we reach an
appropriate closing bracket character for that state. For example, normal Java code is
terminated by the ‘}’ character. Of course, braces can be nested, so we need to recognise
opening braces and also count the nesting level. For more details regarding the lexer
states inabc, see section 5.2.

Parser Theabcparser is generated by PPG [9], the LALR parser generator forexten-
sible grammars which is included in Polyglot [37]. PPG allows changes to an existing
grammar to be entered in a separate file, overriding, inheriting and extending produc-
tions from the base grammar. This results in modular extensions, which can easily be
maintained should the base grammar change.

The example in Figure 3 (using simplified non-PPG syntax) demonstrates the basic
principles. An existing grammar can be imported with the “include” keyword. New
production rules can then be specified, and one can change existing rules using the
keywords “extend” and “drop” to add and remove parts of the rule. More advanced
changes, such as modifying the precedence of operators, arealso possible. For further
details on the specification of grammar, see [9].

File X File Y

S ::= a includeX
| b extend S::= d
| c | e

File Z Result

includeY S ::= a
drop S::= b | c

| d | e

Fig. 3.Grammar extension mechanism

3.2 Type system

Polyglot provides convenient facilities for extending thetype system. As a minimum,
this involves introducing a new kind of type object and lookup functions for these new
entitities in the environment. The new type of environment is then invoked by overriding
the environment factory method in a subclass ofAJTypeSystem, which describes the
type system of AspectJ itself.

To illustrate, consider the introduction of named class pattern expressions [12].
We would need to introduce a new type object to represent suchnames, sayNamed-
CPEInstance(in Polyglot, it is convention that identifiers for type classes end with
. . . Instance). The environment then maps (possibly qualified) names to objects of type
NamedCPEInstance.



The semantic checks for named patterns must enforce the requirement that there be
no cycles in definitions, since recursively defined named patterns do not make sense.
A similar check has already been implemented for named pointcuts, and it involves
building a dependency graph. Such data structures necessary for semantic checks are
typically stored in the type objects (hereNamedCPEInstance): because Polyglot oper-
ates by rewriting the original tree, it is not possible to store references to AST nodes.

Examples such as the parametric introductions of Hanenbergand Unland [23] would
require more invasive changes in the type system, for example by subclassingInter-
TypeMethodInstance(the signature of a method introduced via an intertype declaration)
to take account of the parameters that are to be evaluated at compile time.

3.3 Semantic checks

New semantic checks are usually implemented by overriding the appropriate method on
the relevant AST nodes. The most obvious place for simple checks is in theTypeChecker
pass; every AST node implements atypeCheck(TypeChecker) method. The type checker
is run after all variable references are resolved; all checks that do not require further data
structures are typically put in thetypeCheckmethod.

Later passes use data flow information to check initialisation of local variables and
the existence ofreturn statements. Again, each AST node implements methods to build
the control flow graph for these purposes. In the base AspectJimplementation, these are,
for example, overridden to take into account the initialisation of the result parameter in
after returning advice, and extensions can make variations of their own.

AspectJ is somewhat unusual in that some semantic checks have to be deferred to
the weaver. For example, it is necessary to type check the results of around advice at
each point where it is woven in. Becauseabc maintains precise position information
throughout the compilation process, such errors can still be reported at the appropriate
locations in the source.

3.4 Rewriting

The normal use of Polyglot is as a source-to-source compilerfor extensions to Java,
where the final rewriting passes transform new features intoan equivalent pure Java
AST. abc is different in that most of the transformation happens at a later stage, when
weaving into Jimple. It is, however, often useful to employ Polyglot’s original paradigm
when implementing extensions to AspectJ that have an obvious counterpart in AspectJ
itself.

For example, consider again the feature of named class pattern expressions. A sim-
ple implementation would be to just inline these after appropriate semantic checks have
been done, so that nothing else needs to change in the compiler. Such inlining would
be implemented as two separate AST rewriting passes, one to collect the named pattern
definitions and the other to inline them — the two would then communicate via an ex-
plicit data structure that is common to both passes. As said,it is not recommended to
store pieces of AST explicitly unless they are immediately transformed away.

abcdoes extensive rewriting of the AST prior to conversion to Jimple. This consists
of introducing new placeholder methods (for instance for advice bodies), and storing



instructions for the backend in theAspectInfo. Extensions can participate in this process
by implementing methods that are called by the relevant passes.

3.5 Join points

Introducing new pointcuts will often involve extending theset of possible join points.
For example, implementation of a pointcut that matches whena cast instruction is exe-
cuted would require the addition of a join point at such instructions.

Many new join points will follow the pattern of most existingAspectJ join points
and apply at a single Jimple statement. These can be added by defining a new factory
class that can recognise the relevant statements, and registering it with the global list of
join point types.

For more complicated join points, it will be necessary to override the code that
iterates through an entire method body looking for join point shadows. The overriding
code can do any required analysis of the method body to find instances of the new join
points (for example, one might want to inspect all control flow edges to find the back
edges of loops [25]), and then call the original code to find all the “normal” join point
shadows.

3.6 Pointcuts

As pointed out in the introduction, there are many proposalsfor new forms of pointcuts
in AspectJ. To meet our objective of proportionality (smallextensions require little
work), we have designed an intermediate representation of pointcuts that is more regular
than the existing pointcut language of AspectJ. This makes it easier to compile new
pointcut primitives to existing ones.

Specifically, the backend pointcut language partitions pointcuts into the four cate-
gories listed below. Some of the standard AspectJ pointcutsfit directly into one of these
categories and are simply duplicated in the backend, while others must be transformed
from AspectJ into the representation used inabc.

– Lexical pointcuts are restrictions on the lexical positionof where a pointcut can
match. For examplewithin andwithincode fall into this category.

– Shadow pointcuts pick out a specific join point shadow withina method body. The
setpointcut is an example.

– Dynamic pointcuts match based on the type or value of some runtime value. Point-
cuts such asif , cflow andthis are of this kind.

– Compound pointcuts represent logical connectives such as &&.

The motivation for this categorisation is that it allows theimplementation of each back-
end pointcut to be simpler and more understandable, which inparticular makes it easier
for extension authors to define new pointcuts.

An example of an AspectJ pointcut that does not fit into this model directly is the
execution(〈MethodPattern〉) pointcut, which specifies both that we are inside a method
or constructor matchingMethodPatternand that we are at the execution join point. The
backend pointcut language therefore views this as the conjunction of a lexical pointcut
and a shadow pointcut.



To add a new pointcut, one or more classes should be added to the backend, and
the frontend AST nodes should construct the appropriate backend objects during the
generation of theAspectInfostructure.

The key class of theAspectInfois theGlobalAspectInfoclass — this is a single-
ton (it has precisely one instance during a compiler run), and it contains lists of advice
declarations, intertype declarations, and so on. It also contains mappings to retrieve the
precedence of two aspects, to find the non-mangled name of a private intertype dec-
laration, and many similar mappings. The frontend inserts the appropriate information
into these data structures via the accessor functions provided byGlobalAspectInfo. The
AspectInfoalso contains classes for the intermediate pointcuts, and the class hierarchy
for these closely follows the above description.

The backend classes are responsible for deciding whether ornot the pointcut matches
at a specific location. If this cannot be statically determined, then the pointcut should
produce adynamic residuewhich specifies the generation of the required runtime code.

3.7 Advice

It appears that there are few proposals for truly novel typesof advice: most new pro-
posals can be easily rewritten to the existing idioms of before, after and around. For
example, the proposal for “tracecuts” [14,45] reduces to a normal aspect, where a state
variable tracks the current matching state, and each pattern/advice pair translates into
after advice. Such new types of advice are thus implemented via rewriting, in the stan-
dard paradigm of Polyglot.

Nonetheless, adding a new kind of advice that follows the AspectJ model of advice
is straightforward: simply implement a new class and define how code should be gen-
erated to call that piece of advice and where in the join pointshadow this code should
go. For example, the bookkeeping required forcflow is implemented as a special kind
of advice that weaves instructions both at the beginning andend of a shadow.

3.8 Optimisations

The straightforward implementation of a new extension may result in inefficient runtime
code. Even in the basic AspectJ language, there are a number of features that incur
significant runtime penalties by default, but in many cases can be optimised.abcaims
to make it as easy as possible to implement new optimisations, whether for the base
language or for extensions. In particular, it is straightforward to transform the AST in
the frontend and the Jimple intermediate code in the backend.

Taking an example from the base AspectJ language, construction of the thisJoin-
Point is expensive because it must be done each time a join point is encountered at run-
time. abc (like ajc) employs two strategies for mitigating this overhead. Firstly, some
advice bodies only ever make use of theStaticPartmember ofthisJoinPoint, which
only needs to be constructed once. A Polyglot pass in the frontend is used to identify
advice bodies where this is the case and transform the uses tothisJoinPointStaticPart
instead.

Secondly, the runtime code generated delays construction until as late as possible in
case it turns out not to be needed at all; this is complicated by the fact thatif pointcuts as



well as advice bodies may make use of it, so construction cannot simply be delayed until
the advice body runs.abc generates code that instantiates thethisJoinPoint variable
where neededif it has not already been instantiated, usingnull as a placeholder until
that point. The Jimple code is then transformed to remove unnecessary checks and
initialisations, using a variation of Soot’s intraprocedural nullness analysis which has
special knowledge that thethisJoinPoint factory method cannot returnnull.

3.9 Runtime library

The runtime library for AspectJ serves two purposes. Firstly, it contains bookkeeping
classes necessary for the implementation of language constructs such ascflow. Exten-
sions such as data flow pointcuts [31] would require a similarruntime class in order to
store dynamic data about the source of the value in a particular variable.

Secondly, the runtime provides the objects accessible through thethisJoinPointfam-
ily of special variables; these make information about the current join point available
to the programmer via reflection. Any new pointcut introduced is likely to have unique
signature information which would be accessible to the uservia an extension of theSig-
natureinterface. For example, the standard AspectJ runtime contains, amongst others,
AdviceSignature, FieldSignature, andMethodSignature.

4 eaj — An AspectJ extension

This section describes a few particular extensions to the AspectJ language that we have
implemented. These extensions have been chosen to illustrate the most salient of the
mechanisms that were described in the previous section. Thefull source code for these
examples is included with the standard distribution ofabc[1]. For ease of reference, the
extended language is namedeaj; one compileseaj programs with the command ‘abc
-ext abc.eaj’. This is the usual way of invoking extensions withabc.

4.1 Private pointcut variables

In AspectJ, the only way to introduce new variables into a pointcut is to make them ex-
plicit parameters to a named pointcut definition or advice. It is sometimes convenient,
however, to simply declare new variables whose scope is onlypart of a pointcut expres-
sion, without polluting the interface of the pointcut. For example, it might be desired to
check that the value of an argument being passed has certain properties, without actu-
ally using that value in the advice body. The new keywordprivate introduces a locally
scoped pointcut variable. For instance, the following pointcut could be used to check
that the argument is either a negativeint or a negativedouble:

pointcut negativefirstarg() :
private (int x) (args(x) && if (x < 0))

|| private (double x) (args(x) && if (x < 0));



4.2 Global pointcuts

It is very common for many pieces of advice to share a common conjunct in their
pointcut. The idea of aglobal pointcut is to write these common conjuncts only once.
An example use is to restrict the applicability of every piece of advice within a certain
set of aspects. For example, we might write:

global : * : ! within (Hidden);

This would ensure that no advice within any aspect could apply within theHiddenclass.
As another example, it is often useful to prevent advice froman aspect applying

within that aspect itself. The following declaration (for aspectAspect) can achieve this
more concisely than putting the restriction on each piece ofadvice:

global : Aspect: !within (Aspect);

In general, a global pointcut declaration can be put anywhere a named pointcut dec-
laration can be (i.e., directly within a class or aspect body). The location of such a
declaration has no effect on its applicability, except thatname patterns within such a
declaration will only match classes and aspects visible from the scope of that declara-
tion.

The general form of a global pointcut declaration is as follows:

global : 〈ClassPattern〉 : 〈Pointcut〉 ;

It has the effect of replacing the pointcut of each advice declaration in each aspect
whose name matchesClassPatternwith the conjunction of the original pointcut and the
globalPointcut.

4.3 Cast pointcuts

The purpose of thecastpointcut is to match whenever a value is cast to another type.
A corresponding new type of join point shadow is added which occurs at every cast
instruction, whether for reference or primitive types, in the bytecode of a program.

To illustrate, the following piece of advice can be used to detect runtime loss of
precision caused by casts from anint to ashort:

before(int i):
cast(short) && args(i)

&& if (i < Short.MIN VALUE
|| i > Short.MAX VALUE)

{
System.err.println(“Warning: loss of ” +

“ precision casting ” +
i + “ to a short.”);

}

In general the syntax of acastpointcut iscast(〈TypePattern〉); this will match at any
join point where the static result type of the cast is matchedby TypePattern. In keeping
with the pattern of other primitive pointcuts, the value being cast from can be matched
by theargspointcut, and the result of the cast can be matched by the optional parameter
to after returning advice (and is returned by theproceedcall in around advice).



4.4 Throw pointcuts

The throw pointcut is introduced in the developer documentation forajc [28], and
we have implemented it ineaj to compare the ease-of-extension of both compilers.
It matches a new join point shadow which occurs at each throw instruction.

The following example demonstrates how extended debugginginformation can be
produced in the event of a runtime exception, using a piece ofadvice:

before(Debuggable d):
this(d) && throw () && args(RuntimeException)

{
d.dumpState();

}

5 Implementing eaj using abc

We have given a broad outline of how extensions are constructed and discussed some
specific extensions that we have implemented. We now show in detail how this was
done, both to provide a guide for others and to enable a realistic assessment of the work
involved.

5.1 Roadmap

As we do not wish to hide any of the difficulties involved in writing anabcextension,
the presentation in the next few subsections is necessarilysomewhat technical, so let
us first outline a generic roadmap of anabcextension. This will provide readers with a
high-level structure for the detailed explanations that follow.

Extension packagesAn extension typically consists of five Java packages, plus two
new ‘driver’ classes that bind the extension to the existingbase compiler. The five rel-
evant packages are shown in Figure 4. The first of these is concerned with syntax, and
serves to introduce new keywords and grammar rules: these will be discussed in Sec-
tions 5.2 and 5.3 below. Next, one needs to write new classes for AST nodes. In Section
5.4 we give an overview of what this involves for the exampleeaj extension. It is quite
common that new language features require new compiler passes. For the running ex-
ample, that is the case with global pointcuts, as it is necessary to collect all of these
to make appropriate modifications to advice declarations. In Section 5.5 we show how
to write a new pass for this purpose. This also requires subclassing the existing AST
representation of advice declaration: such subclasses reside in theextensionpackage.
For the simple examples in this paper, it is not necessary to extend the AspectJ type sys-
tem. All extensions to the backend of the compiler occur in subpackages ofweaving.
Readers may wish to glance back at Figure 2 which depicts the architecture ofabc’s
weaver. For the example in hand, one needs to extend the intermediate representation
for pointcuts (inaspectinfo), and then make appropriate changes to the shadow finder
and shadow matcher (inmatching). More complex extensions may also introduce new
kinds of residue, or directly modify the weaving process, but for the examples discussed
here, that is not needed.



abc.〈extension〉
parse new lexer and grammar rules
ast new ast classes
visit new compiler passes
extension overrides of existing ast behaviour
types new types in typechecker
weaving

aspectinfo new IR for pointcuts
matching finding new shadows;

matching shadows to pointcuts
residues new residue kinds
weaver changes to the weaver

Fig. 4. Package structure ofabcextensions.

Driver classes Apart from extending the packages in Figure 4, an extension author
must bind all the new functionality together, so that it can be invoked (via reflection)
by the base compiler. There are two ‘driver’ classes for thispurpose inabc, which any
extension must subclass.

The first of these is theAbcExtensionclass. An extension can be specified when abc
is invoked by passing its core package name toabcwith the-extflag. TheAbcExtension
class from this package is then loaded by reflection. All the extensibility hooks inabc
are passed through this class. There is a default implementation of this class in the
abc.mainpackage, which extensions must subclass.

Another driver class isExtensionInfo. This is part of the extensibility mechanism of
Polyglot; all frontend extensions (except for the lexer) are registered by subclassing this
class. New instances of this class are returned by the subclassedAbcExtension.

Runtime Some extensions need support in the AspectJ runtime. Indeed, to access re-
flective information about a new type of joinpoint, we need tomake sure the runtime is
extended, so this is usually the last step required in implementing a new extension. We
shall discuss a concrete example in Section 5.8.

Sources of extensibilityIt may be helpful to point out at this stage what extensibility
is unique toabc, and what extensibility has been inherited from the components we
built on. We now briefly discuss that, going through the packages in Figure 4. Polyglot
provides syntax extensibility; we have added an extensiblelexer inabc. The way AST
nodes are extended inabc is based on the principles of Polyglot. Of course the spe-
cific interfaces, say for implementing pointcuts, are unique toabc. Furthermore, more
than half of the passes inabc are specific to AspectJ, and therefore the extensibility
for introducing new aspect features is in large part determined by our design for those
passes. The very small number of overrides of existing AST classes in Polyglot (in the
extensionpackage) is testament to the extensibility of Polyglot’s Java compiler itself.
All parts of the weaver are particular toabc, although (as further discussed in Section
6) it shares a lot of common structure withajc. A particular feature that enables the ex-
tensibility ofabc’s weaver is the use of the Jimple intermediate representation. Because
this is so much easier to analyse and manipulate than either Java source or bytecode,



extenders will find it much easier to implement crucial components like a new shadow
matcher.

5.2 Extending the lexer

As described in Section 3.1,abc’s lexer is stateful. There are four main lexer states for
dealing with the different sub-languages of AspectJ: JAVA , ASPECTJ, POINTCUT and
POINTCUTIFEXPR. The first three are used in Java code, AspectJ code and pointcut
expressions, respectively. The POINTCUTIFEXPR state must be separate from the nor-
mal JAVA state because theif pointcut allows a Java expression to be nested inside a
POINTCUT, but whereas the JAVA state is terminated by a ‘}’, we need to return to the
POINTCUT state when reaching a matching closing ‘)’ character.

Keywords for each state are stored in state-specificHashMaps which map each
keyword to an object implementing theLexerActioninterface. This interface declares a
method

public int getToken(AbcLexer lexer)

which is called when the corresponding keyword is recognised. Its return value is turned
into a parser token and passed to the parser for further analysis. A reference to the lexer
instance is passed as a parameter togetToken(...), so that side effects that affect the lexer
(like changing the lexer state) are possible. A default implementation of this interface is
supplied, which offers sufficient functionality to associate keywords with parser tokens
and (optionally) change the lexer state; custom implementations of LexerActioncan
provide more flexibility. The default implementation provides functionality sufficient
for all but 5 (out of more than 90) Java and AspectJ keywords.

Implementing theeaj extensions required adding several new keywords. In partic-
ular, “cast” was introduced as a keyword in the POINTCUT state, and “global” as a
keyword in all four lexer states. Both “private” and “throw” are already keywords in all
states, and so do not need to be introduced specifically for the private pointcut variables
and throw pointcut extensions. Here is the code that adds thekeywords to the respective
states:

public void initLexerKeywords(AbcLexer lexer)
{

// keyword for the “cast” pointcut extension
lexer.addPointcutKeyword(“cast”,

newLexerAction c(new Integer
(abc.eaj.parse.sym.PCCAST)));

// keyword for the “global pointcut” extension
lexer.addGlobalKeyword(“global”,

newLexerAction c(new Integer
(abc.eaj.parse.sym.GLOBAL),

new Integer(lexer.pointcut state())));

// Add the base keywords
super.initLexerKeywords(lexer);

}



Both keywords use the default implementation ofLexerAction, i.e. theLexerAc-
tion c class. We see the one-argument and two-argument constructors for that class.
The first argument is always the parser token that should be returned for the keyword;
the second argument (if present) is the lexer state that should be selected after the key-
word. As stated above, further logic can be implemented by subclassingLexerAction -
c.

5.3 Extending the parser

The grammar fragment below shows how two new productions areadded for private
pointcut variables and the cast pointcut, which can appear anywhere a normal pointcut
could:

extendbasic pointcut expr ::=
PRIVATE:x LPAREN formal parameter list opt:a RPAREN

LPAREN pointcut expr:bRPAREN:y
{:

RESULT=
parser.nf.PCLocalVars(parser.pos(x,y), a, b);

:}
| PC CAST:x LPAREN type pattern expr:aRPAREN:y

{:
RESULT=

parser.nf.PCCast(parser.pos(x,y), a);
:}

;

The fragment closely resembles code one would use with the popular CUP parser
generator, apart from theextendkeyword, which signifies that these two productions
are to be added to the rules that already exist for the nonterminal symbolbasic pointcut expr.

The first new production is for private pointcut variables. As will be apparent from
this example, terminal tokens are indicated by capitals. Note that it is possible to bind
the result of parsing each grammar symbol to an identifier, indicated by a colon and a
name. For instance we bind the result of recognising the token PRIVATE tox, and the
result of recognising apointcut exprto b. These named results can then be used in the
parser action associated with a production. This action is delineated with curly braces
and colons. Here we use the results of the first and last symbolin the right-hand side
of the production to compute the position (via the callparser.pos(x,y)) of the whole
private pointcut variable declaration. Positions in Polyglot are always a start location
(source file, line number, column number) together with an end location. Throughout
abc, great care is taken to preserve such position information,so that it is possible to
track the origin of every piece of code, even after optimisations have been applied. The
second grammar production in the above code fragment is for cast pointcuts, and as it
is simpler than the first production, we do not discuss it further.

Apart from extending the alternatives for existing nonterminals (as we did above),
the Polyglot Parser Generator PPG [9] also allows you to dropproductions, transfer pro-
ductions from one non-terminal to another, and override theproductions of a particular
non-terminal.



5.4 Adding new AST nodes

As mentioned above,abc’s frontend is built on the Polyglot extensible compiler frame-
work [37]. In fact, from Polyglot’s point of view,abc is just another extension. This
means thatabc“inherits” all the extensibility mechanisms provided by Polyglot.

In particular, adding new AST nodes is common when writing compiler extensions,
and thus it is important to provide an easy and robust mechanism for doing so.

All four extensions discussed above required new AST nodes.For the sake of
brevity we will only present the node introduced by the global pointcut extension here
— the other cases are handled very similarly.

In order to write a clean Polyglot extension, one has to adhere to the rigorous use of
factories and interfaces to create nodes and invoke their members, respectively. The first
step is therefore to define an interface for the new AST node, declaring any functionality
it wants to present to the outside world:

public interface GlobalPointcutDeclextendsPointcutDecl
{

public void registerGlobalPointcut(GlobalPointcuts visitor,
Context context,
EAJNodeFactory nf);

}

We provide a method to insert the pointcut into a static data structure keeping track
of the global pointcuts defined in the program (cf. Section 5.5). Note that the inter-
face extendsabc’s PointcutDeclinterface, so it provides all the functions relevant to a
pointcut declaration.

The next step is to write the class implementing that interface. Some boilerplate
code is required (a constructor and methods to allow visitors to visit the node), and, of
course, the methodregisterGlobalPointcut() is given a concrete implementation.

In order to make sure we can instantiate this new node type, wesubclassabc’s
default node factory (which, in turn, is derived from Polyglot’s node factory) and create
a method for obtaining an instance ofGlobalPointcutDecl:

public GlobalPointcutDecl
GlobalPointcutDecl (

Position pos,
ClassnamePatternExpr aspectpattern,
Pointcut pc, String name,
TypeNode voidn )

{
return new GlobalPointcutDecl c(pos, aspectpattern,

pc, name, voidn);
}

Now the extended parser can produceGlobalPointcutDeclobjects when it encoun-
ters the appropriate tokens (cf. listing in Section 5.3).

Note that all changes are local to new classes we created (in fact, these classes are
in a completely separate package). The fact thatabc itself didn’t have to be changed at
all makes the extension robust with respect toabcupgrades. Also, since the new AST



node extends an existing node, very little functionality needs to be re-implemented.
The associated interfaces only have to declare the methods specific to the new node’s
particular functionality.

In the same way, interfacesPCLocalVarsand PCCastwere defined, along with
implementing classes, for the private pointcut variables and cast pointcut extensions.
Corresponding factory methods were added to the extended AspectJ node factory.

5.5 Adding new frontend passes

Implementing the “global pointcuts” extension described in Section 4.2 requires two
new passes — first, all global pointcuts need to be collected,and then each pointcut
must be replaced with the conjunction of the original pointcut and all applicable global
pointcuts.

Polyglot’s visitor-based architecture makes implementing this very easy. We add
two new passes. The first stores all global pointcuts in a static variable, and the second
applies that pointcut to the relevant code. For reasons of code brevity, these two passes
are implemented by the same class,GlobalAspects; it uses a member variable called
passto distinguish which of the two functions it is performing.

The traversal of the AST is performed by theContextVisitorPolyglot class. The
new pass extendsContextVisitorwith a method that performs the required action when
it encounters a relevant AST node.

The following code fragment illustrates the behaviour of the new visitor upon en-
tering an AST node:

public NodeVisitor enter(Node parent, Node n) {
if (pass == COLLECT
&& n instanceofGlobalPointcutDecl) {

((GlobalPointcutDecl) n).
registerGlobalPointcut(this, context(), nodeFactory);

}
return super.enter(parent, n);

}

As mentioned above, both new passes are implemented by the same class, and hence
the check thatpass==COLLECTmakes sure that we do the right thing. If the current
node is aGlobalPointcutDecl(one of the new AST nodes defined in section 5.4), we call
its special method so it registers itself with the data structure storing global pointcuts.
Then we delegate the rest of the work (the actual traversal) to the superclass.

The implementation of theleave() method, which is called when the visitor leaves
an AST node and has the option of rewriting the node if necessary, is very similar. If
pass==CONJOINand we are at an appropriate node, we return the conjunction of the
node and the global pointcut.

The sequence of passes that the compiler goes through is specified in the special
singletonExtensionInfoclass. By subclassing it and inserting our new passes in an
overridden method which then calls the original method, we make sure the original
sequence of passes is undisturbed. Note that this mechanismmakes the extension robust
with respect to changes in the baseabc passes — we can add and rearrange passes
without breaking the extension.



5.6 Adding new join points

To implement the cast and throw pointcuts, we first need to extend the list of join point
types. This is done by adding to a list of factory objects which the pointcut matcher
iterates over to find all join point shadows. ThelistShadowTypesmethod is defined in
theAbcExtensionclass and is overridden foreaj: (here and elsewhere, the element type
of a collection is indicated by a comment of the form/*<ShadowType>*/ )

protectedList /*<ShadowType>*/ listShadowTypes()
{

List /*<ShadowType>*/ shadowTypes=
super.listShadowTypes();

shadowTypes.add(CastShadowMatch.shadowType());
shadowTypes.add(ThrowShadowMatch.shadowType());
return shadowTypes;

}

The definitions ofCastShadowMatchandThrowShadowMatchare very similar and
we therefore limit ourselves to discussing the former.

The CastShadowMatch.shadowType() method just returns an anonymous factory
object which delegates the work of finding a join point to a static method in theCast-
ShadowMatchclass. This method,matchesAt(...), takes a structure describing a position
in the program being woven into and returns either a new object representing a join point
shadow ornull; the code for it is given in Figure 5.

public static CastShadowMatch
matchesAt(MethodPosition pos)

{
if (!(posinstanceofStmtMethodPosition))

return null;

Stmt stmt= ((StmtMethodPosition) pos).getStmt();

if (!(stmtinstanceofAssignStmt))
return null;

Value rhs= ((AssignStmt) stmt).getRightOp();

if (!(rhs instanceofCastExpr))
return null;

Type cast to = ((CastExpr) rhs).getCastType();

return new CastShadowMatch(
pos.getContainer(), stmt, cast to);

}

Fig. 5. The CastShadowMatch.matchesAt(...) method

The purpose of theMethodPositionparameter is to allowabc to iterate through all
the parts of a method where a join point shadow can occur, and ask each factory object
whether one actually does. There are four types ofMethodPositionfor normal AspectJ
shadows:



– Whole body shadows: execution, initialization, preinitialization
– Single statement shadows: method call, field set, field get
– Statement pair shadows: constructor call
– Exception handler shadows: handler

Most shadows either fall into the category of “whole body” or“single statement”. Two
are special, namely constructor call join points and handler joinpoints. In both cases,
the special nature derives from the representation of theirshadows in Java bytecode,
and consequently their representation in Jimple. In Java bytecode, a constructor call is
not a single instruction, but instead it consists of two separate instructions:newcreates
a new instance, whereasinvokespecialinitialises it. A constructor call join point there-
fore encompasses both of these instructions. Handler join points can only be found by
looking at the exception handler table for a method, rather than its statements.

If a new join point requires an entirely new kind of method position, then the code
that iterates over them can be overridden.

The first job of thematchesAt(...) method is to check that we are at the appropriate
position for acastpointcut, namely one with a single statement. Next, we need to check
whether there is actually acast taking place at this position; the grammar of Jimple
makes this straightforward, as acast operation can only take place on the right-hand
side of an assigment statement. If no such operation is found, we returnnull; otherwise
we construct an appropriate object.

Defining theCastShadowMatchclass also requires a few other methods, connected
with defining the correct values to be bound by an associatedargs pointcut, report-
ing the information required to construct aJoinPoint.StaticPartobject at runtime, and
recording the information that a pointcut matches at this shadow in an appropriate place
for the weaver itself to use. The details are straightforward, and we omit them for rea-
sons of space.

5.7 Extending the pointcut matcher

Again, we describe the implementation of thecastpointcut and omit discussion of the
almost identicalthrow pointcut. Once the corresponding join point shadow has been
defined, writing the appropriate backend class is straightforward. The pointcut matcher
tries every pointcut at every join point shadow found, so allthecastpointcut has to do
is to check whether the current shadow is aCastShadowMatch, and if so verify that the
type being cast to matches theTypePatterngiven as argument to thecastpointcut:

protectedResidue matchesAt(ShadowMatch sm)
{

if (!(sminstanceofCastShadowMatch))
return null;

Type cast to = ((CastShadowMatch) sm).getCastType();

if (!getPattern().matchesType(cast to))
return null;

return AlwaysMatch.v();
}



The AlwaysMatch.v() value is adynamic residuethat indicates that the pointcut
matches unconditionally at this join point. For those pointcuts where matching cannot
be statically determined, this is replaced by one which inserts some code at the shadow
to check the condition at runtime.

5.8 Extending the runtime library

AspectJ provides dynamic and static information about the current join point through
thisJoinPointand associated special variables.

For thecast pointcut extension, this runtime interface was extended toreveal the
signature of the matching cast. For example, the following aspect picks out all casts
(except for the one in the body of the advice) and uses runtimereflection to display the
type that is being cast to at each join point:

import org.aspectbench.eaj.lang.reflect.CastSignature;

aspectFindCasts
{

before():
cast(*) && ! within (FindCasts)

{
CastSignature s= (CastSignature)

thisJoinPointStaticPart.getSignature();

System.out.println(“Cast to: ” +
s.getCastType().getName());

}
}

Implementing this requires changes both in the backend of the compiler (where the
static join point information is encoded for the runtime library to read later), and the
addition of new runtime classes and an interface.

Static join point information is encoded in a string which isparsed at runtime by a
factory class to construct the objects accessible fromthisJoinPointStaticPart. This hap-
pens just once, namely in the static initialiser of the classwhere the join point shadow
is located. The alternative, which is to directly generate code to construct these objects,
would be expensive in terms of the size of the bytecode produced; using strings provides
a compact representation without too much runtime overhead.

The static information for acastpointcut is encoded as follows. To allow us to eas-
ily reuse the existing parser for such strings, a fair amountof dummy information is
generated, corresponding to properties that cast join points do not have. For example,
modifiers such aspublic are important for join points that have a method or field signa-
ture associated with them, but make no sense for the cast joinpoint. The string for the
castpointcut is constructed from four parts:

– Modifiers (encoded as an integer — 0 for a cast)
– Name (usually a method or field name, but for a cast it is just “cast”)
– Declaring type — class in which the join point occurs



– Type of the cast

For example, a cast join point within a method in the classIntHashTablewhich casts
the value retrieved from aHashMapto anIntegerwould produce the following encoded
string:

"0-cast-IntHashTable-Integer"
The runtime factory is subclassed to add a method that creates an object implement-

ing the newCastSignatureinterface for appropriate join points. The aforementioned
AbcExtensionclass has a method which specifies which runtime class shouldbe used
as a factory forthisJoinPointStaticPart objects, which is overriden so that runtime
objects are created with the new factory:

public String runtimeSJPFactoryClass()
{

return
“org.aspectbench.eaj.runtime.reflect.EajFactory”;

}

5.9 Code measurements

To enable the reader to assess the amount of effort involved in implementing each of
these new features, we have summarised some statistics in Figure 6. The table shows the
size of the whole parser, and of the boilerplate for factories in the top and penultimate
row, respectively. The most interesting part is the breakdown by construct in the middle.
For private pointcut variables, all the work goes into defining new AST nodes, and
there is no need to define new passes or to touch the weaver in any way. By contrast,
global pointcuts require the introduction of new Polyglot passes, which reduce the new
construct to existing AspectJ constructs. Finally, for cast and throw pointcuts, there is
substantial work in the weaver, because these introduce a new type of join point.

It is pleasing to us that the distinction between the examples is so sharp, as it gives
good evidence that the aim of modularity has been achieved. This claim is also backed
up by the fact that none of the extensions required any changeto the code of the
base compiler: the extensions are clearly separated pluginmodules. We believe that
the amount of code that needs to be written also meets the criterion of proportionality
that was introduced at the beginning of this paper. The criterion of simplicity is more
difficult to measure, but we hope that the sample code in this section suffices to con-
vince the reader that we have succeeded in this respect as well. The examples presented
here do not demonstrate analysis capability: in Section 7 wedo however discuss some
more substantial case studies done by others which make essential use of the analysis
framework inabc.

6 Detailed comparison toajc

Thede factostandard workbench for research into variations and extensions of AspectJ
is theajc compiler. It has served this purpose admirably well, and forexample [31,39]
report on the successful integration of substantial new features intoajc.



eaj measurements Files Lines of code

Parsing 1 74
Private AST nodes 2 130
pointcut Passes 0 0
variables Weaver 0 0

Runtime 0 0
Global AST nodes 4 64
pointcut Passes 1 77
declarationsWeaver 0 0

Runtime 0 0
Cast AST nodes 2 46
poincuts Passes 0 0

Weaver 2 94
Runtime 2 27

Throw AST nodes 2 46
pointcuts Passes 0 0

Weaver 2 91
Runtime 2 16

Extension information
and shared classes

7 205

Total 27 870

Fig. 6. Code measurements foreaj

Throw-pointcut statistics ajc abc
Core compiler/runtime files modified 8 0
throw -specific files created 2 6
Factory subclasses created - 5
Total files touched 10 11
Lines of code written1 103 187

Fig. 7.The throw pointcut inajc andabc.

We believe that, in view of the explosion of research into newfeatures and analyses,
the time has now come to disentangle the code of the base compiler from that of the
extensions. The benefits are illustrated by the table in Figure 7. It compares the imple-
mentation of thethrow pointcut inabcandajc. In the case ofajc, we have to modify
a large number of existing files, thus tangling the new extension with the existing com-
piler base. At the cost of some subclassed factories (and thus some more lines of code),
abc disentangles the two completely: there is no need to modify any part of the base
code, andabcextensions are clearly separated plugin modules.

These differences follow directly from the design goals ofajc, which are quite dif-
ferent from those ofabc: it aims to be a production compiler, with very short compile
times and full integration with the Eclipse IDE. More information aboutajc, including
a detailed description of its weaver, can be found in [27]. Bycontrast,abc’s overrid-

1 Note that the numbers in Figure 7 forabctake into account the relevant lines of files which are
listed under “Extension information and shared classes” inFigure 6.



ing design goals are extensibility and optimisation, as well as a complete separation
from the components it builds on. In the remainder of this section, we make a detailed
comparison between the architecture ofajc andabc, in particular examining where the
different design goals led to different design decisions.

6.1 Separation from components

To examine the wayajc andabcuse their respective building blocks, we first measured
their size in lines of code, making a distinction between thefrontend and backend.
The overall size ofajc andabcare comparable, as shown in the following table. These
numbers were obtained in consultation with the authors ofajc, using the SLOCcount
tool:

ajc abc

frontend 10,19716,444
backend23,93817,397
total 34,13533,841

At first glance it appears thatajc’s frontend is much smaller than that ofabc. As we
shall see shortly, this is achieved at the cost of making numerous changes in the source
of the Java compiler it builds on — and these changes are not listed here. Furthermore,
abc uses Polyglot, which encourages the use of many tiny classesand requires a fair
amount of boilerplate for visitors and factories. Another notable point in the above
table is the small size of the backend ofabc, which performs the most complex part of
the compilation process (weaving). This is explained by theuse of a clean intermediate
representation, Jimple (which we present in more detail below in Section 6.3), as well
as the rich set of analyses available in the Soot framework. We now examine in some
detail how wellajc andabcare separated from the components that they build on.

Separation from base compiler: ajc. ajcbuilds on the Eclipse Java compiler. This com-
piler has been written for speed: for example, it eschews theuse of Java’s collection
classes completely, in favour of lower-level data structures. It also uses dispatch on
integer constants in favour of inheritance whenever appropriate.

Unfortunately, the architecture of the Eclipse compiler implies thatajc needs its
own copy of the source tree of that compiler, to which local changes have been applied.
These changes are by no means trivial: 44 Java files are changed, and there are at least
119 source locations where explicit changes are made. Furthermore, the grammar from
which the Eclipse parser is generated has been modified. For pointcuts, the new parser
simply reads in a string of “pseudo-tokens” that are then parsed by hand (using a top-
down parser) in the relevant semantic actions.

The 119 changes have complex dependencies. For example, theclass that imple-
ments Java’s scope rules needs to be changed in 8 places. It isbecause of such changes
to the Eclipse source tree that it can be fairly painful to mergeajc with the latest version
of the Eclipse compiler.



Separation from base compiler: abc.By contrast,abc does not require any changes
to the source of its base compiler, which is Polyglot. Polyglot has been carefully engi-
neered to be extensible, and indeedabcis just another Polyglot extension. The changes
to the scope rules are handled by introducing a new type for environments and a new
type system. These are implemented as simple extensions of the corresponding classes
in Polyglot. It is thus very easy to upgrade to new versions ofPolyglot, even when
substantial changes are made to the base compiler.

There are 14 types of AST nodes in Polyglot where it is necessary to override some
small part of the behaviour. This is necessary, for example,becausethis has a different
semantics in AspectJ when it occurs inside an intertype declaration. However, since
Polyglot has been designed to allow changes of this nature tobe made by subclassing,
rather than by changing the source of Polyglot itself, no extra work is required when
updating to a new version of Polyglot.

Finally, as we have described earlier,abcprovides a clean LALR(1) grammar, pre-
sented in a modular fashion thanks to Polyglot’s parser generator, which allows a neat
separation between the Java grammar and that of an extensionsuch as AspectJ.

Separation from bytecode manipulation: ajc. ajcuses BCEL, a library for directly ma-
nipulating bytecode, in order to perform weaving and code generation. As in the case of
the base compiler, however, a special version of this library is maintained as part of the
ajc source tree. Originally this was regularly synchronised with the BCEL distribution,
using a patch file of about 300 lines. The specialised versionis now developed as part of
ajc, as BCEL is no longer actively maintained. The modified BCEL consists of 23,259
lines of code.

Separation from bytecode manipulation: abc. abcis completely separate from the Soot
transformation and code generation framework; no changes to Soot are required what-
soever.

We conclude thatabcis the first AspectJ compiler to achieve a clean-cut separation
between the components it builds on. It seems likely that it will be possible to port the
ideas that helped achieve this to extending other programming languages with aspect-
oriented features.

6.2 Compile time

It is natural to inquire what the impact of using aspects is onthe time taken to compile
a program: an AspectJ compiler does a lot more work than a pureJava compiler. To
assess this issue, we decided to compare four different AspectJ compilers: normalajc,
ajc plus an optimisation pass of Soot over its output (ajc + soot), abcwith all optimisa-
tions turned off (abc -O0), andabcwith its default intraprocedural optimisations (abc).
We measured compile times for six benchmarks from [16], as shown in Table 8. Our
experiments were done on a dual 3.2GHz Xeon with 4GB RAM running Linux with
a 2.6.8 kernel. We compiled using abc 1.0.1, soot 2.2.0, ajc 1.2.1 and javac 1.4.2. The
first column shows the benchmark name. We then give the size ofthe source in lines
(as counted withsloccount) and the number of times advice needs to be woven into a



benchmarkSLOC APPS ajc ajc + sootabc-O0 abc javac

bean 124 4 1.77 4.00 3.30 3.59 -
bean-java 104 0 1.43 3.21 3.05 3.03 0.54

sim-nullptr 1474 138 2.96 12.00 10.3810.69 -
sim-nullptr-java 1547 0 1.75 6.52 7.45 8.64 0.76

figure 94 12 1.62 3.43 2.95 3.07 -
figure-java 98 0 1.25 2.83 2.63 2.65 0.51

LoD-sim 1586 13324.10 29.87 36.4746.14 -

dcm 1668 359 3.37 17.07 14.7417.43 -

tetris 1043 29 2.88 8.42 8.40 8.93 -

Fig. 8.Compile times usingajc, abcandjavac(seconds)

shadow. The remainder of the columns show the four differentcompilers, plusjavac
where applicable.

The first three AspectJ benchmarks (bean,figure,sim-nullptr) have Java equivalents,
where the weaving has been performed by hand (bean-java,figure-java,sim-nullptr-java).
As expected, aspect weaving has a significant impact on compile times. The main rea-
son is that an AspectJ compiler needs to make a pass over all generated code to identify
shadows and possibly weave in advice. It may be possible to curtail such a pass, for ex-
ample by determining from information in the constant pool that no pointcut can match
inside a given class. We plan to investigate such ways of reducing the extra cost of
aspect weaving in future work.

The last three benchmarks (LoD-cflow, dcm, tetris) make heavy use of aspects so
there are no hand-woven Java equivalents.

Overall, the compile times indicate thatabc is significantly slower thanajc. This is
no surprise, asabc’s code has not been tuned in any way for compile time performance,
whereas short compile times are an explicit design goal forajc. The sim-nullptr bench-
mark is typical: the difference betweenabcandajc for programs of a few thousand lines
is usually a factor of about 4. For examples whereabcdoes a lot of optimisation, such
as LoD-sim, the gap can be slightly larger. For very large inputs, such asabccompiling
itself, the difference can be a factor of 14.

The compile times ofabc reflect the cost of its powerful optimisation framework.
In particular, an appropriate comparison is not withajc (which lacks such optimisation
capabilities), but withajc + soot. This comparison shows that the compile times ofabc
andajc + soot are quite similar, which is encouraging.

It is furthermore pleasing that a research compiler such asabccan cope with very
sizeable examples (such as compiling itself); we believe that one natural use ofabc
would be for optimised builds of programs whose day-to-day development is carried
out withajc.

6.3 Weaving into Jimple (abc) versus weaving into bytecode (ajc)

We illustrate the advantage of weaving into the three-address Jimple representation (as
abcdoes) compared to weaving directly into bytecode (asajc does) with a simple ex-
ample of weaving a piece of advice before the call to methodbar in the Java code



shown in Figure 9(a). The results of weaving into this code both directly on bytecode
and through Jimple are shown in Figure 9(b)-(d). In all cases, the instructions inserted
in weaving are shown in boldface.

public int f(int x,int y,int z)
{

return bar(x, y, z);
}

(a) base Java code

public int f(int x,int y,int z)
0: aload_0
1: iload_1
2: iload_2
3: iload_3
4: istore %4
6: istore %5
8: istore %6
10: astore %7
12: invokestatic

A.aspectOf ()LA;
15: aload %7
17: invokevirtual

A.ajc$before$A$124 (LFoo;)V
20: aload %7
22: iload %6
24: iload %5
26: iload %4
28: invokevirtual Foo.bar (III)I
31: ireturn

(b) direct weaving into bytecode (ajc)

public int f(int,int,int)
{ Foo this;

int x, y, z, $i0;
A theAspect;

this := @this;
x := @parameter0;
y := @parameter1;
z := @parameter2;
theAspect = A.aspectOf();
theAspect.before$0(this);
$i0 = this.bar(x, y, z);
return $i0;

}
(c) weaving into Jimple (abc)

public int f(int x,int y,int z)
0: invokestatic A.aspectOf ()LA;
3: aload_0
4: invokevirtual

A.before$0 (LFoo;)V
7: aload_0
8: iload_1
9: iload_2
10: iload_3
11: invokevirtual Foo.bar (III)I
14: ireturn

(d) bytecode generated from Jimple (abc)

Fig. 9. Weaving into bytecode versus weaving into Jimple

Figure 9(b) shows the bytecode for the method after the call to the before advice has
been woven byajc. Note that of the inserted bytecodes, only those at offsets 12 through
17 implement the lookup of the appropriate aspect and the call to the advice body. All
of the remaining bytecodes are stack fix-up code that must be generated to fix up the
implicit bytecode computation stack.

Figure 9(c) shows the Jimple code for the same method after the call to the before
advice has been woven byabc. The key difference is that Jimple does not use an im-
plicit computation stack. Instead, all values are denoted using explicit variables. Prior
to weaving, the Jimple code is as in Figure 9(c), but without the three lines in boldface.
To weave,abcneeds only declare a Jimple variable, then insert the two lines to lookup
the aspect and call the before advice. No additional code to fix up any implicit stack is
needed.

Figure 9(d) shows the bytecode that Soot generates from the Jimple code from Fig-
ure 9(c). This bytecode has the same effect as theajc-generated code in Figure 9(b), but
it is significantly smaller because of Soot’s standard backend optimisations. In addition,
it uses only three local variables, compared to seven required by theajc-generated code.
We have observed that, even with modern JITs which perform register allocation, the



excessive number of local variables required when weaving directly into bytecode has
a significant negative impact on the performance of the wovencode.

6.4 Using Soot Optimisations in Weaving

The use of Soot as a backend forabcenables it to leverage Soot’s existing optimisation
passes to improve the generated code. This simplifies the design of the weaver, but
also enables aspect-specific optimisations that would be difficult or impossible to apply
directly during weaving. In these cases, the Java optimisations are typically augmented
with AspectJ-specific information.

For example, AspectJ makes a special variable namedthisJoinPointavailable in
advice bodies. This variable contains various reflective information about the join point
that must be gathered at runtime and is relatively expensiveto construct, so bothabc
andajc implement “lazy” initialisation for this variable, so thatit is only constructed
when it will really be needed by an advice body, but that it is never constructed more
than once even if more than one piece of advice applies at a join point. This is done
by first setting the variable tonull, then initialising it with the proper value just before
advice is called, but only if it still containsnull.

In ajc, the implementation does not work if there is any around advice at the join
point (for technical reasons), and it is special-cased to avoid the unnecessary laziness if
there is only one piece of advice at the join point. Inabc, the lazy initialisation is used
in all cases, and a subsequent nullness analysis is used to eliminate the overhead of
the laziness in most cases (including the one where there is only one piece of advice).
The analysis is a standard Java one, which has been given the extra information that
the AspectJ runtime library method which constructs thethisJoinPointobject can never
returnnull. Thus, the implementation is simpler and more robust than theajc version.

6.5 Performance of object code

It is beyond the scope of the present paper to do a detailed comparison of the efficiency
of code generated byajc andabc. In earlier work, in preparation for the construction of
abc itself, we conducted a detailed study of the dynamic behaviour of aspect-oriented
programs [16]. Through a specially constructed set of measurement tools, we were able
to confirm the common belief that in many AspectJ programs theoverhead introduced
by aspects is negligible. However, we were also able to identify common cases where
the overheads are surprisingly high. Motivated by these results, we made it an explicit
goal ofabcto be able to experiment with new aspect-specific optimisations.

Because optimisations are an explicit design goal ofabc, it is important that such
experiments are thorough and realistic. In a companion paper [7], we provide a detailed
account of the most important optimisations inabc, and of their effect on run times. The
reader is referred to that paper for a detailed technical account aimed at compiler writ-
ers; below we review the most salient points that are relevant to the present comparison
with ajc.

The first kind of optimisation is an improved implementationof around advice,
giving a 6-fold speedup of on some benchmarks. In certain cases,ajc reverts to gener-
ating closures in order to implementproceed. When this happens, a lot of heap space is



used, leading to very significant overheads. By contrast, inabcwe are able to avoid the
construction of closures in all but very rare pathological cases. In cases whereajc does
not generate closures, it performs a great deal of inlining. This can result in significant
code bloat, especially where the advice is woven at many different joinpoint shadows.
Again, the compilation strategy employed byabcstrikes a careful balance between code
size and speed. This is illustrated in Figure 10. Further details of the benchmarks can
be found in [7,16].

Time (s) Size (instr.)
Benchmark abc ajc abc ajc

sim-nullptr 21.9 21.4 7893 10186
sim-nullptr-rec 23.6 124.0 8216 10724
weka-nullptr 19.0 16.0103018 134290
weka-nullptr-rec18.9 45.5103401 130483
ants-delayed 17.5 18.2 3688 3785
ants-profiler 22.5 21.2 7202 13401

Fig. 10.Execution Times and Code Size

The second kind of optimisation is a set of intraprocedural improvements tocflow.
In ajc 1.2, the implementation ofcflow used expensive manipulations of a stack, where
a simple counter would have sufficed. Also it retrieved the same thread-local state mul-
tiple times in a single procedure body, and it did not share work between multiple
occurrences of the samecflow pointcut. All these problems were eliminated inabc, and
compared to version 1.2 ofajc, these small optimisations yield improvements of 182×
(the LoD-sim benchmark). The simplest of these optimisations (counters and sharing)
were incorporated intoajc 1.2.1.

In earlier work, prior to the start of theabcproject, we showed how an interproce-
dural analysis can be used to completely eliminate the cost of cflow [40]. This is a good
example where the full analysis capabilities ofabccome into play. The essential idea is
to construct a static approximation of the dynamic call graph, so that for each shadow,
we can determine at compile time whether it will be in thecflow of a given pointcut.
Such call graph construction is notoriously hard [21], and thus it is important that we
do not need to construct a new analysis from scratch for AspectJ, or indeed for every
extension of AspectJ.

We would therefore like to leverage existing analyses for pure Java. To that end,abc
provides the technique ofre-weaving, which we briefly touched upon in Section 2, in
particular Figure 2. The compiler does a first pass over the program, weaving advice
naively. The result of this process is a representation of the complete program as pure
Jimple code, without any aspect-oriented features. This isthen analysed in the usual
manner. The results of the analysis are fed back into an optimiser of theadvice-lists,
which can be viewed as little meta-programs that contain instructions to the weaver.
The optimisations usually consist of turning a piece of dynamic residue (like updates of
thecflow stack) into a no-op.

The effectiveness of our optimisations ofcflow is shown in Figure 11. The message
for researchers that wish to implement their own advanced extensions to AspectJ is that
abc provides the necessary infrastructure to overcome the challenge of implementing



these new features efficiently. It is our belief that new proposals for robust semantic
pointcuts (e.g.[15,45]) necessitate the same type of optimisations and analyses that we
have used to makecflow efficient.

abc ajc
Benchmark no-optsharing sharing+ sharing++inter-proc 1.2 1.2.1

counters counters+ (no-opt) (sharing+
reuse counters)

figure 1072.2 238.3 90.3 20.3 1.96 450.5 167.7
quicksort 122.3 75.1 27.9 27.4 27.3 123.5 28.9
sablecc 29.0 29.1 22.8 22.5 20.4 29.7 24.2
ants 18.7 18.8 18.7 17.9 13.1 33.0 32.9
LoD-sim 1723.9 46.6 32.8 26.2 23.7 4776.2 35.3
LoD-weka 1348.7 142.5 91.9 75.2 66.3 2349.2 113.5
Cona-stack 592.8 80.1 41.2 27.4 23.1 1107.4 56.0
Cona-sim 75.8 75.3 73.8 72.0 73.6 76.8 69.0

Fig. 11.Optimisations ofcflow

7 Related work

The related work falls into two parts. First of all, others have made an independent
assesment of the extensibility ofabc, by implementing extensions of their own. We first
discuss some of these. Second, we review a number of alternative proposals for building
an AOP language workbench, and we contrast them with the approach taken inabc.

7.1 Users ofabc

Harbulot and Gurdapply aspect-oriented techniques to parallelise scientific code [25].
For these applications, it is imperative to be able to define joinpoints for loop iteration
— the alternative is to refactor the code to expose such join points via spurious method
calls. It is, however, not an easy task to define a robust notion of loop join points, which
does not depend on the syntactic presentation of the code. This problem is addressed
in [26], and solved by a language extension that is implemented inabc.

To illustrate, suppose that we wish to advise loop iterations over a given array. Say
we want to intercept the loop

for (int i = 0; i < array.length; i + = 1) {
Object item= array[i];
. . .

}

In the proposed extension of Harbulot and Gurd, this can be achieved with the pointcut

pointcut arrit (Object[] array, int min, int max, int stride) :
loop() && args(min, max, stride, array);



Note, however, that it is highly non-trivial to detect the relevant patterns in bytecode;
their implementation first recovers loop structure by computing dominators, and then it
does a flow analysis of the loop body to determine the loop variable, its lower and upper
bound (0 andarray.lengthabove), as well as the stride (1 in the above example). The
joinpoint shadow matching depends on the precision of theseanalyses: there may be
loop iterations for which the correctmin, maxandstridecannot be statically determined.
The implementation described by [26] does however work independent of whether the
user employedwhile or for to express a computation.

This case study thus provides a good example of the need for strong analysis capa-
bilities in an extensible compiler for AspectJ. Similar examples abound in the literature,
such as Kiczales’predicted cflow. The analysis capabilities ofabcare also indispens-
able to efficiently implement advanced pointcuts such as thedataflow pointcutof [31].

Stolz and Boddenpropose to use aspect-orientation for the runtime verification of tem-
poral properties. They define an extension of AspectJ where the user can specify prop-
erties as LTL formulae [42]. The implementation is an extension of abc.

The atoms of the LTL formulae are pointcuts; and a formula as awhole is translated
into an alternating automaton, coded as a regular AspectJ aspect. The translation is thus
done entirely using Polyglot, and no changes to the backend are needed. This illustrates
one of the advantages of our architecture: it has a gentle learning curve, and there is no
need to enter into the complications of generating Jimple ifthat is not desired.

Experience seems to suggest that many beginning users ofabcstart by implement-
ing an extension as a source-to-source transformation veryearly on in the compiler,
even prior to name disambiguation. Then, when more sophisticated error checking is
required, the transformation is moved later, and delayed until all checking is complete.
Indeed, such is the intended use of the Polyglot framework.

In the case of these novel features for runtime verification,however, there would
be a clear benefit to delaying at least part of the code generation even further, so that
it is possible to take advantage of the analysis framework inthe backend to examine
control flow. Again,abcprovides all support necessary for making such a step from the
implementation described in [42].

Aotani and MasuharaIt is natural to seek language-level mechanisms to enhance the
expressive power of pointcuts. A particularly promising approach is put forward by
Aotani and Masuhara [3], and they have implemented it withabc. Here the idea is to
useif -pointcuts and joinpoint reflection to conveniently express pointcuts such as “all
calls where the declared type of the receiver is an interface”:

pointcut interfaceCall() :
call(∗ ∗(..)) && if (isInterface(thisJoinPoint));

static boolean isInterface(JoinPoint tjp) {
return tjp.getSignature().getDeclaringType().isInterface();

}

When used directly in AspectJ, this would lead to quite inefficient code.
Instead, Aotani and Masuhara adopt the perspective ofpartial evaluation, evalu-

ating if pointcuts at compile time. Strictly speaking this is therefore not an extension



of the AspectJ language, but rather a change in compilation strategy. Again both the
Polyglot-based frontend and the Soot-based backend lend themselves very well to im-
plementing such transformations.

Other extensions of abcThe overview above is not exhaustive, and many other re-
searchers are actively developing extensions ofabc. Examples include DJCutter (a dis-
tributed AOP language) [36]; Cona (a tool for checking contracts) [41]; trace-based
aspects [15, 45]; a model checker for aspects [30]; and toolsto perform tasks such as
slicing [46]. We are very encouraged by all these developments, and we believe it pro-
vides fairly strong independent evidence of the claims forabc’s extensibility made in
this paper.

7.2 Other workbenches for AOP language research

Of course we are not the first to realise the need for a workbench to conduct aspect-
oriented programming language research, and below we review some earlier approaches
put forward by others.

JavassistJavassist is a reflection-based toolkit for developing Javabytecode translators
[11]. Compared to other libraries such as BCEL, it has the distinguishing feature that
transformations can be described using a source-level vocabulary. Compared toabc, it
provides some of the combined functionality of the Java-to-Jimple translator plus the
advice weaver, but its intended applications are different: in particular, it is intended for
use at load-time. Consequently, Javassist does not providean analysis framework like
Soot does inabc. In principle, such a framework could be added, but it would require
the design of a suitable intermediate representation akin to Jimple.

Josh Josh is an open implementation of an AspectJ-like language based on Javassist
[10], and as such it is much closer in spirit toabc. Indeed, the primary purpose of Josh
is to experiment with new pointcut designators, although itcan also be used for features
such as parametric introductions. Because of the implementation technology, there is no
special support for the usual static checks in the frontend,which is provided inabcby
the infrastructure of Polyglot. Josh does not cover the whole of AspectJ, which limits
its utility in realistic experiments.

Logic meta-programmingA more radical departure from traditional compiler tech-
nology is presented bylogic meta-programming, as proposed by [13, 22]. Here, pro-
gram statements where extra code should be woven in are selected by means of full-
fledged Prolog programs. This adds significant expressive power, and like Josh, the
design makes it easy to experiment with new kinds of pointcuts. The system operates
on abstract syntax trees, which are not a convenient representation for transformation
and analysis — many years of research in the compilers community have amply demon-
strated the merits of a good intermediate representation. Afurther disadvantage, in our
view, is the lack of static checks due to the increased expressive power. The success of
AspectJ can partly be explained by the fact that it provides ahighly disciplinedform
of meta-programming; some of that discipline is lost in logic meta-programming, be-
cause the full power of Prolog precludes certain static checks. Nevertheless, a system



based on these ideas is publicly available [44], and it is used as a common platform by
a number of researchers.

Pointcuts as functional queriesEichberg, Mezini and Ostermann have very recently
suggested an open implementation of pointcuts, to enable easy experimentation with
new forms of pointcuts [18]. Their idea is closely related tothat of logic meta-program-
ming, namely to use a declarative query language to identifyjoin point shadows of
interest. A difference is that they opt for the use of the XML query language XQuery
instead of a logic language. Furthermore, [18] only deals with static join points. As
argued in the introduction, several recent proposals for new pointcut primitives require
data flow analyses. We believe that it is not convenient to express such analyses via
queries on syntax trees. It is however quite easy to transfersome of the ideas of [18]
to abc, by letting the queries range over Polyglot ASTs. A challenge, then, is to define
appropriate type rules to implement as part of the frontend.

8 Conclusions and Future Work

We have presentedabc, and its use as a workbench for experimentation with extensions
of AspectJ. Our primary design goal was to completely disentangle new features from
the existing codebase, and this goal has been met. In particular, extensions need not
make any changes to the code of the base compiler: they are truly separated plugin
modules. We hope that such disentangling will enable yet more rapid developments in
the design of aspect-oriented programming languages, and the integration of ideas from
multiple research teams into a single system, where the basecan evolve independently
of the extensions.

This project has also been an evaluation of the extensibility of Polyglot and Soot,
from the perspective of aspect-oriented software development. We now summarise their
role in the extensibility of our design, and identify possible improvements.

Polyglot Polyglot turned out to be highly suited to our purposes. Its extension mecha-
nisms are exactly what is needed to implement AspectJ itselfas an extension of Java,
with only minimal code duplication. This in turn makes the development ofabc rela-
tively independent of further improvements to Polyglot.

As we have remarked earlier, the Polyglot mechanism ofdelegatesmimicks that of
ordinary intertype declarations, whereasextension nodesroughly correspond to what
an AspectJ programmer would naturally do viadeclare parentsand interface inter-
type declarations. Polyglot achieves this effect by cunningly creating a replica of the
inheritance hierarchy in code, which then provides the hooks for appropriate changes.
Arguably that mechanism is somewhat brittle, and it is certainly verbose, replicating the
same information in multiple places of the code.

We thus face the question whether it would be possible to extendabcusing AspectJ,
or indeed any other dialect of Java that features open classes. The answer is in the
positive, asabcis written in pure Java. Todd Millstein has used Relaxed MultiJava [35]
in precisely this way, using open classes in lieu of Polyglot’s delegate and extension
nodes, to implement his recent work on predicate dispatch [34]. It follows that users
who prefer to use AspectJ to extendabccan do so without further ado.



Would the result be more compact and understandable code? Unfortunately, a sig-
nificant proportion of Polyglot’s extensions is taken up by boilerplate code for generic
visitors in each new AST node. To generate that automatically, one would need reflec-
tion or a feature akin to parametric introductions [23]. Thereflection route has been
used with much success, in a framework by Hanson and Proebsting [24] that is very
similar to Polyglot.

On the whole we feel our choice of Polyglot has been justified.To further assess its
merits, we are now engaged in a comparative study of Polyglot’s extension mechanism
and more advanced technologies such as aspect-oriented reference attribute grammars
[19]. In particular, we would like to investigate how multiple, independent extensions
can be composed.

Soot The choice of Soot as the basis for our code generation and weaver has had a
fundamental impact not only on the quality of the code that isgenerated, but also on the
ease by which the transformations are implemented. The Jimple intermediate represen-
tation of Soot has been honed on a great variety of optimisations and analyses before
we applied it toabc, and we reap the benefits of this large body of previous work.

Equally important has been the use of the Dava decompiler that is part of the Soot
framework. This makes it much easier to pinpoint potential problems, and to commu-
nicate the ideas about code generation to others. It also opens the way to exciting new
visualisations, for example to indicate at source level exactly what dynamic residue was
inserted at a join point shadow.

In the comparison withajc we demonstrated the importance of the analysis frame-
work in Soot: it is indispensable to eliminate the overheadsof advanced language fea-
tures such ascflow. The need for such optimisation is likely to increase with new pro-
posed extensions such as predicted control flow [29], data flow pointcuts [31] and trace
cuts [14, 45]. Apart from optimisation, Soot’s analysis capabilities are also crucial in
the robust implementation of new pointcuts, for instance those for loop iteration [26].

In summary, we have demonstrated (both through experimentsof our own and by
reviewing work of others) thatabcprovides an extensible framework for experiments
in the design of aspect-oriented programming languages, meeting the criteria ofsim-
plicity, modularity, proportionalityandanalysis capabilityset out in the introduction.
The next step in its development, namely the upgrade to Java 1.5, will provide a further
opportunity to hone these characteristics. Soot is ready for this transition, but Polyglot
still needs to be updated to Java 1.5.
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