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Zusammenfassung



Abstract

In this work we present the tool Java Logical Observer, J-Lo for short, which
enables checking of temporal assertions during runtime of an arbitrary Java

application. Such temporal assertions are defined using a linear temporal logic
(LTL). They can be deployed using standard Java 5 annotations and thus
become part of the public interface of this class. Formulae in this temporal

logic are parsed by an extended version of the abc compiler. From the formula
representation as abstract syntax tree, we produce an alternating automaton
with semantics which are equivalent to the semantics of the original formula.

This alternating automaton is then rendered into an aspect in the
aspect-oriented language AspectJ. Such an aspect implements the runtime

checking of a formula as separate compilation unit. It is then woven into the
original application, resulting in an instumented version of the original

application. All transformations are performed purely on Java bytecode and
thus allow also instrumentation of third party libraries.

As an extension we explain how alternating automata can be modified to bind
state while the execution trace is monitored. This state can then be reasoned
about leading to enhanced expressiveness. To our best knowledge, J-Lo is the

first verification tool to offer such a feature.
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Chapter 1

Motivation

1.1 Semantic Interfaces and Temporal Interdepen-

dencies

The goal of this project was to develop a tool which provides a convenient means
of reasoning about the behaviour of an application at runtime. This raises the
question how runtime behaviour is specified today, without such a tool.

A survey we conducted during this research showed that almost none of the pro-
gramming languages around has rich support for verification builtin. The only
concept Java provides are assertions: An assertion over a Boolean expression
states that this expression has to hold during runtime, whenever the assertion is
reached. It can be used for checking pre- and postconditions as table 1.1 shows.
Line 11 implements the precondition child != null, which is informally stated
in the documentation of the application interface (API) in line 6. If the ap-
plication is started with the command line parameter -enableassertions and
the control flow reaches this assertion statement and child is null, an Asser-
tionError is thrown by the Java runtime. If this command line parameter is
not given, assertions are not taken into account. According to Sun1, disabled
assertions impose no runtime overhead at all.

With respect to software design, from the example from table 1.1 one can learn
two important things: First of all, assertions in Java are restricted to localized
reasoning. Without additional code, a single assertion can only refer to state
which is visible to the currently executing object and available at the time the
assertion itself is evaluated. As a result, temporal reasoning about the control
flow of an application is impossible. Secondly, the assertion implements a check
which is already informally stated in the API documentation just above the
constructor declaration itself. Thus, the check is actually redundant. It could
have been automatically inferred if the condition child != null had been

1http://java.sun.com/j2se/1.5.0/docs/guide/language/assert.html

5
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1 public class InnerNode implements TreeNode {
2

3 private TreeNode ch i l d ;
4

5 /** Constructs a new inner node with child <code>child </code>.

6 * @param child The child node. May not be <code>null</code>. */

7 public InnerNode (TreeNode ch i l d ) {
8 assert ch i l d != null ;
9 this . c h i l d = ch i l d

10 }
11

12 . . .
13 }

Table 1.1: Java assertion checking for non-nullness (available since Java 1.4)

stated in the documentation in a formalized way. The tool we introduce will
overcome both problems: It provides an expressive formalism which enables
the notation of temporal assertions. Those assertions become part of the API
documentation using Java 5 metadata annotations.

1.2 Motivating Examples

Motivating examples can for instance be found in [?], which is an excellent
AlphaWorks article about temporal bug patterns. Bug patterns are patterns of
recurring faults arising through common coding errors. Temporal bug patterns
describe faults arising through misuse of objects or functions with respect to
the time line. This will become clearer as we quote some of those bug patterns
here.

1.2.1 A simple stack

The article [?] states amongst others several requirements that typically have
to be fulfilled when using a stack:

1. Once push(x) occurs, top() will return x until a push or a pop occurs.
Always{push(x) implies {{top() == x} until {push(y) || pop()}}

2. If the stack is empty, there should be no pops until a push occurs.
Always{isEmpty() implies {{! pop()} until {push(x)}}}



1.2. MOTIVATING EXAMPLES 7

3. Given we have a length operation, if the length is n, and a push occurs,
then in the next step, the length will be n+1.
Always{{length == n && push(x)} implies {Next{length == n + 1}}}

The above specification already tells us a lot about the behaviour of a stack. We
want to use this small example as a running example for this thesis. However,
inspecting the specification in detail, we may find the following shortcomings,
which we are seeking to address in our implementation.

1. All free variables are untyped. It is unclear what type n, x or y should
have.
In J-LO, all variables are typed. This is achieved by a list of formal
variable declarations which precedes each formula.

2. The statements are not bound to an object. It is unclear, whether e.g.
push(x) refers to a call of push(x) on a particular stack or on any stack
in the system.
In J-LO, all names provide sufficient qualification to disambiguate such
situations. This is automatically provided by the use of AspectJ pointcuts,
which may use identifiers.

3. All formulae implicitly quantify over free variables. However, it is unclear,
how such quantification should be implemented. This implies that it is
also unclear, when exactly a variable is bound and when it is matched
against.
We provide full declarational and operational semantics for our logic.

4. It is unclear whether an implicit condition x6=y exists or not.
In J-LO, one can explicitly state if this condition should hold.

5. It is unclear whether until means a weak or strong Until. 2

J-LO provides the LTL-like strong Until operator. A weak Until operator
can easily be simulated.

6. Nested events cannot easily be identified using the formalism employed
above. A possible assertion could be that size() is never called from
within the push(..) method. This would require an expression which
can refer to the points on the time line where the execution of push(..)
is entered and left.
The formalism of J-LO is rich enough to provide a way of specifying such
behaviour.

2For a strong until it holds that ϕ until ψ is false if ϕ always holds but ψ never holds.

A weak until would be satisfied on such a path.
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Please note that all of the above specification could very well be stated right in a
formal interface documentation. In J-LO this is exactly the case: Formulae are
part of the public interface of a class. Thus they form documentation and test
both in one piece. Such specification is what we call implementation specific: It
is specific to certain classes and/or interfaces which are part of our particular
implementation. There are also generic specifications, which should be true in
general. For example it is common practice that an application should never
deadlock. In J-LO, such a generic specification needs to be written down only
once and can be checked by the tool without writing any line of code.

In the following section, we provide an overview of the architecture we employ
to implement checking of temporal assertions as stated above.

1.3 An overview of our solution

From the user’s point of view, J-LO works mostly transparent: The user sup-
plies formulae to the system by annotating source code in appropriate places. In
particular we use Java 5 annotations (see section 2.2), which are automatically
compiled into the bytecode by any Java 5 compliant compiler. J-LO works then
at build time as a simple preprocessor: As input it takes the annotated byte-
code. This can in particular be supplied as a third-party library. J-LO then
instruments the bytecode with runtime-checks that check if the stated asser-
tions hold. Thus for the user, J-LO is just another tool in the usual build chain.
The temporal assertions can then afterwards be verified by simply running the
instrumented application.

In the following chapter we provide all the necessary background information
that is required to understand the implementation details of J-LO. This com-
prises formal methods as model checking on the one hand as well as practical
issues such as metadata and aspect-oriented programming on the other hand.



Chapter 2

Background

2.1 Formal verification

First we introduce the notion of model checking, which has similar goals as
runtime verification and uses similar methods, however follows a purely static
approach, which is more powerful in nature but unfortunately may often lead
to performance problems one cannot easily cope with at the current time.

2.1.1 Static verification - Model checking

Clarke et al. define in [?] the term model checking as

Model checking [is a method] by which a desired behavioral prop-
erty of a reactive system is verified over a given system (the model)
through an exhaustive enumeration (explicit or implicit) of all the
states reachable by the system and the behaviors that traverse
through them.

So, as we learned, the input to a model checking process consists of two impor-
tant parts:

1. The model. This shall here be given as a finite state system M .

2. A specification of a behavioral property, which shall here be given in the
form of a finite set of temporal formulae Φ = {ϕ1, . . . , ϕn}.

The output of a model checking process is an answer true or false to the
question Does M satisfy Φ ? or for short:

M
?

|= Φ

9
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Depending on the kind of temporal formalism that is used, different model
checking algorithms are applied. Here we want to focus on model checking for
linear temporal logic(LTL) [?] in detail, since LTL is a formalism we employ for
J-LO as well.

All such logics are typically defined over a transition system or Kripke structure.
Thus we first want to introduce those notions.

2.1.1.1 Transition systems and Kripke structures

A Kripke structure over a set P = {p1, . . . , pn} of propositions is a tuple

M = (S , R, L)

with

• S a finite set of states

• R ⊆ S × S a set of directed edges

• L : S → 2P a labeling function which labels each state with a (possibly
empty) set of propositions.

The unlabeled structure (S,R) is a transition system.

For any vertex si ∈ S with L(si) = {pi1 , . . . , pim} ⊆ P we say for each pij ∈
{pi1 , . . . , pim} that pij holds in si or short:

si |= pij .

A pointed Kripke structure (M, s0) is a Kripke structure M with a starting state
s0 ∈ S . Such a pointed Kripke structure typically builds the model which is to
be verified by a model checking process. In the following when referring to the
term Kripke structure we implicitly mean that this structure is pointed.

2.1.1.2 CTL*, CTL and LTL

Linear temporal logic [?] or LTL for short is a fragment of the richer generalized
computational tree logic CTL* . Thus we first define CTL* and then explain
the borders of LTL and its expressiveness.

CTL* is a propositional mathematical logic over Kripke structures as explained
above. Its atoms are propositions reflecting the current state of a system. CTL*
then combines those propositions using temporal and logical operators as well
as path quantifiers. Our definition follows [?].
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Definition 2.1.1 (Syntax of CTL*)
• For each pi ∈ P , pi is a state formula.

• For state formulae ϕ and ψ, ¬ϕ, ϕ ∧ ψ and ϕ ∨ ψ are state formulae.

• Each state formula is also a path formula.

• For a path formula ϕ, E ϕ and A ϕ are state formulae.

• For path formulae ϕ and ψ, we also have path formulae ¬ϕ, ϕ∧ψ, ϕ∨ψ,
X ϕ, F ϕ, G ϕ, ϕ U ψ and ϕ R ψ.

All state formulae are valid CTL* formulae.

The above definition contains path quantifiers E (Exists) and A (Always), as
well as temporal operators X (neXt), F (Finally), G (Globally), U (Until)
and R (Release). Also we note a distinction between state formulae and path
formulae. The former can be evaluated when focusing on a single state while the
latter require one single path for evaluation. Temporal operators reason about
states on a path. Thus they define the path formulae, whereas path quantifiers
reason about sets of paths starting at a distinct state, and hence define state
formulae. A CTL* formula is always evaluated at the starting state of a Kripke
structure. Hence only state formulae can be valid CTL* formulae.

Semantics of CTL*
The semantics of CTL* refer to the notion of a path. A path is defined as an
infinite sequence of states

π = π[0]π[1] . . . := (π[0], π[1], . . . ).

A path in a transition system M = (S,R,L) adheres to the following condition:

∀i ≥ 0 : (π[i], π[i+ 1]) ∈ R.

For a clarified notation we also define πi as the subsequence of π starting at the
position π[i]:

πi := (π[i], π[i+ 1], ...).

We define the semantics of CTL* inductively as follows:

For state formulae:
(M, s) |= tt (true)
(M, s) 6|= ff (false)
(M, s) |= pi iff pi ∈ L(s)
(M, s) |= ¬pi iff (M, s) 6|= pi
(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ ∧ (M, s) |= ψ

(M, s) |= ϕ ∨ ψ iff (M, s) |= ϕ ∨ (M, s) |= ψ

(M, s) |= E ϕ iff ∃π′ : π′[0] = s ∧ (M,π′) |= ϕ

(M, s) |= A ϕ iff ∀π′ : π′[0] = s→ (M,π′) |= ϕ
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For path formulae:
(M,π) |= ϕ iff (M,π[0]) |= ϕ) (ϕ state formula)
(M,π) |= ¬ϕ iff (M,π) 6|= ϕ

(M,π) |= ϕ ∧ ψ iff (M,π) |= ϕ ∧ (M,π) |= ψ

(M,π) |= ϕ ∨ ψ iff (M,π) |= ϕ ∨ (M,π) |= ψ

(M,π) |= X ϕ iff (M,π1) |= ϕ

(M,π) |= ϕ U ψ iff ∃k s.th. (M,πk) |= ψ ∧ ∀l (l < k) → (M,π[l]) |= ϕ

(M,π) |= ϕ R ψ iff ∀k(M,πk) |= ψ ∨ ∃l (l < k) s.th. (M,π[l]) |= ϕ

(M,π) |= F ϕ iff (M,π) |= tt U ϕ

(M,π) |= G ϕ iff (M,π) |= ff R ϕ

This definition identifies R as the dual operator to U : it always holds that

(M,π) |= ϕ U ψ iff (M,π) 6|= ¬ϕ R ¬ψ.

Example

bla

Figure 2.1: Example Kripke structure

Given be the Kripke structure of figure 2.1. We evaluate the following formulae
at the state s0:

formula result
p1 U p2 no valid CTL* formula because it is a path formula
AX(p1 U p2) not satisfied (e.g. for paths (s0, s1, s0, . . . ))
AX(p1 U p2) not satisfied (e.g. for paths (s0, s1, s0, . . . ))
EF(AX(p1 U p2)) satisfied (e.g. paths (s0, s2, s3, . . . ))

For usual model checking, one identifies two fragments of CTL*, namely CTL
and LTL which are strongly connected to the distinction between path formulae
and state formulae above.

CTL is the computational tree logic. It is build up in the same way as CTL*,
however temporal operators may not be cascaded. For instance AFGpi is a valid
formula in CTL* but not in CTL. As in CTL*, a CTL formulae is evaluated at
the starting state of a Kripke structure.

LTL is the linear temporal logic, a fragment of CTL* gained by removing the
path quantifiers E and A. Thus, a LTL formula always reasons about the
structure of a single path. A Kripke structure (M, s) satisfies a LTL formula
ϕ if ϕ holds on all paths trough M starting at s. We define the set of all LTL
formulae over a set L of propositional labels simply as LTLL.

In the following we want to concentrate on LTL and see how model checking
for an LTL formula can be performed.
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2.1.1.3 LTL model checking

We define the LTL model checking problem as follows:

Given a Kripke structure (M, s) and a LTL formula ϕ, both over propositions
{p1, . . . , pn}, check if (M, s) |= ϕ.

In addition, it is often desired that if (M, s) 6|= ϕ, the model checking process
outputs a violating path through M .

LTL model checking usually employs finite state machines called Büchi au-
tomata. A Büchi automaton is essentially an ordinary finite automaton but
with an acceptance condition suitable for reading words of infinite lengths:

Definition 2.1.2 (Büchi automaton)
A nondeterministic Büchi automaton is a quintupel A = (Q,Σ, q0,∆, F ) with:

Q finite set of states

Σ finite alphabet

q0 ∈ Q initial state

∆ ⊆ Q× Σ×Q transition relation

F ⊆ Q a set of final states.

A run of A on an input word π = (π[0], π[1], . . . ) ∈ Sω of infinite length is an
infinite sequence ρ = (ρ0, ρ1, . . . ) ∈ Qω satisfying the following conditions:

• ρ0 = q0,

• ∀i ≥ 0 : (ρi, π[i], ρi+1) ∈ ∆.

We say that A accepts a word w if there exists a run ρ of A on w that visiting
states in F infinitely often.

Generally for any automaton A, we define LA as:

L(A) := { π | A accepts π } ⊆ Sω

Based on those Büchi automata, the model checking process then can be defined
as follows:

1. Transform the given Kripke structure (M, s) into a Büchi automaton
recognizing the ω-language of all infinite paths through (M, s), A(M,s).

2. Transform the formula ¬ϕ into an equivalent Büchi automaton A¬ϕ.



14 CHAPTER 2. BACKGROUND

3. Construct a product automaton B recognizing the language
L(A(M,s))

⋂
L(A¬ϕ).

4. Check B for nonemptiness. If L(B) 6= ∅ then (M, s) 6|= ϕ and every path
π ∈ L(B) is a violating path for ϕ in (M, s). Otherwise, ϕ is valid in
(M, s).

Step 1 straightforward. The Kripke structure is simply interpreted as a Büchi
automaton. Steps 3 and 4 are problems of basic automata theory. Step 2
however is nontrivial. Thus we will elaborate on the automaton generation a
bit further.

The automaton generation usually happens in three steps: First the formula ϕ
is converted to an alternating automaton. Then this alternating automaton is
transformed into a generalized Büchi automaton, which is then converted to an
ordinary Büchi automaton in a last step.

The implementation of J-LO is entirely based on alternating automata. Thus
we want to explain this step in detail. For the subsequent two conversions we
point the interested reader to [?].

2.1.1.4 From LTL to alternating automata

Our translation works similarly to the one described by Gastin and Oddoux [?].
First we want to define alternating automata in general. Then we define how
we interpret such automata in our special setting.

Definition 2.1.3 (Alternating finite automaton)
An alternating finite automaton (AFA) is a quintuple A = (Q,Σ, q0, δ, F ) with

• Q finite set of states

• Σ finite alphabet

• q0 ∈ Q initial state

• δ : Q× Σ → 22Q
transition function

• F ⊆ Q set of final states.

22Q
is here as usual the powerset of the powerset of Q. Those sets repre-

sent Boolean combinations in Disjunctive Normal Form (DNF). For instance
{{q1, q2}, {q3}} represents the Boolean combination (q1∧ q2)∨ q3. So a transi-
tion leading from q0 to {{q1, q2}, {q3}} would mean a nondeterministic choice
between moving simultaneously to q1 and q2 on the one hand or just to q3
on the other hand. Using sets instead of Boolean expressions directly leads to
easier semantics. In this representation, each clause (subset of Q) stands for
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one single run of A. Note that although AFA allow for nondeterminism in this
way, they are not actually nondeterministic themselves because δ is a function,
mapping each state to a unique clause set of successor states.

A run on an AFA A is a directed acyclic graph over Q. A accepts an input
word w ∈ Σω if there exists a run on P, such that all branches of the run visit
states of F infinitely often.

In the following, we want to adopt this automaton model to linear temporal
logic. In order to do so, it is crucial to know that any LTL formula can be
brought into negational normal form (NNF). In this form, negations only occur
in front of propositions. We define the function NNF as follows:

NNF : LTLL → LTLNNFL

¬tt 7→ ff

¬ff 7→ tt

¬¬ϕ 7→ NNF (ϕ)

¬(ϕ ∧ ψ) 7→ ¬NNF (ϕ) ∨ ¬NNF (ψ)

¬(ϕ ∨ ψ) 7→ ¬NNF (ϕ) ∧ ¬NNF (ψ)

¬X ϕ 7→ X ¬NNF (ϕ)

¬(ϕ R ψ) 7→ (¬NNF (ϕ) U ¬NNF (ψ))

¬(ϕ U ψ) 7→ (¬NNF (ϕ) R ¬NNF (ψ))

else ϕ 7→ ϕ

Here we assume that the operators F and G have already been reduced accord-
ing to their semantics:

F ϕ ≡ tt U ϕ

G ϕ ≡ ff R ϕ

Given this negational normal form, we can now proceed with the specialization
of our automaton model.

Definition 2.1.4 (AFA for a LTL formula ϕ)
In our interpretation, the AFA are defined over LTL formulae, thus we have
the following identities for an AFA Aϕ for a given LTL formula ϕ ∈ LTLNNFL .
Let the closure of a formula, cl(ϕ), be the set of all sub-formulae of ϕ. Then

• Q := cl(ϕ) ⊆ LTLNNFL

• Σ := 2L
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• q0 := ϕ

• F := {q ∈ Q | q = (ϕ R ψ) for some ϕ,ψ ∈ LTLNNFL } ∪ {tt}.

F is defined this way because a Release formula is always valid on the empty
path whence an Until formula is not.

Note that all states of the AFA are valid LTL formulae. The transition func-
tion δ is derived directly from the definition of the CTL*/LTL semantics and
recursively defined as follows:

Let P ⊆ L, p ∈ L,ϕ, ψ ∈ LTLNNFL . Then

• δ(p,P) = δ(tt,P) resp. δ(ff ,P) if p ∈ P resp. p /∈ P

• δ(¬p,P) = δ(tt,P) resp. δ(ff ,P) if p /∈ P resp. p ∈ P 1

• δ(tt,P) = {{}} and δ(ff ,P) = ∅,

• δ(ϕ ∧ ψ,P) = δ(ϕ,P)
⊗

δ(ψ,P)

• δ(ϕ ∨ ψ,P) = δ(ϕ,P)
⋃

δ(ψ,P)

• δ(X ϕ,P) = {{ϕ}}

• δ(ϕ U ψ,P) = δ(ψ,P) ∨ (δ(ϕ,P) ∧ (ϕ U ψ))

• δ(ϕ R ψ,P) = δ(ψ,P) ∧ (δ(ϕ,P) ∨ (ϕ R ψ))

Here
⊗

is defined as the clause product (derived by the laws of De Morgan):
For two sets s = {s1, . . . , sn} and t = {t1, . . . , tm} of sets, we define

s
⊗
t := { si

⋃
tj | 1 ≤ i ≤ n, 1 ≤ j ≤ m }.

Also it should be noted that the calculation of δ(ϕ,P) is well-founded and all
leaves are labelled with a subformula of ϕ. In particular, any AFA based on
this definition is known to be weak as defined in [?].

A weak a automaton has a partially ordered state set, meaning there exists a
partial order relation � over Q = {q1, . . . , qn} and a permutation i1, . . . , in of
{1, . . . , n} such that {qij � qij+1 | 1 ≤ j < n}.

This weakness property is caused by the fact that each successor state of a state
ϕ of A can only either be ϕ itself or a subformula of ϕ. In particular this means
that there can be no nontrivial cycles during the evaluation of δ.

1Note that negations occur only in front of propositions, since formulae are in NNF.
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2.1.1.5 From alternating automata to Büchi automata

The conversion from an AFA A to a Büchi automaton commences in two steps:

1. Create a generalized Büchi automaton GA equivalent to A.

2. Create a Büchi automaton BA equivalent to GA.

Those conversions are straightforward and out of the scope of this work. We
point the interested reader to [?].

Important is that in combination one has a method to calculate a Büchi au-
tomaton Bϕ for each LTL formula ϕ. As pointed out in section 2.1.1.3, this
procedure is then employed to calculate an automaton for the negated speci-
fication, B¬ϕ, which is then combined with the model using a usual product
construction.

We now take a quick excurse and have a look of what this looks like in terms
of a fully-flavoured model checker.

2.1.1.6 LTL Model Checking in Spin

Spin [?] is probably the most widely used LTL model checker today. Spin uses
a process oriented modelling language, the Process Meta Language. The Spin
website 2 states:

PROMELA is a non-deterministic language, loosely based on Dijkstra’s
guarded command language notation and borrowing the notation for I/O

operations from Hoare’s CSP language.

PROMELA features asynchronous communication via channels, deterministic
and nondeterministic choice, continuous loops, guards and process abstraction.

Table 2.1 gives a small example of a model definition in PROMELA syntax.
Line 5 defines a typed channel of size 1. Lines 8-12 and 14-18 define templates
A and B for two processes which repeatedly write the output a respectively b
to the channel. Lines 20-27 define process a template C for a process which
repeatedly reads incoming input on the channel. When an a is read, C stores
the read element in the variable last seen. This will later be queried with the
proposition seen a. The init statement in line 29 is a special statement used to
fork particular instances of the process templates defined before.

In Spin, propositions are Boolean expressions as e.g. defined by seen a above.
Those can be used in LTL formulae.

2http://spinroot.com/spin/whatispin.html
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1 #define a 1
2 #define b 2
3 #define s een a ( l a s t s e e n == a )
4

5 chan ch = [ 1 ] of { byte } ;
6 byte l a s t s e e n = a ;
7

8 proctype A() {
9 do

10 : : ch ! a
11 od
12 }
13

14 proctype B( ) {
15 do
16 : : ch ! b
17 od
18 }
19

20 proctype C() {
21 do
22 : : i f
23 read a : : : ch?a −> l a s t s e e n = a
24 read b : : : ch?b −> l a s t s e e n = b
25 f i
26 od
27 }
28

29 in i t { atomic { run A( ) ; run B( ) ; run C() }
30 }

Table 2.1: A simple Spin example program

For example calling Spin with spin -f ’[]<> seen_a’ model.prm 3 specifies
that proposition seen a should not4 hold infinitely often, which is equal to the
fact that a is not received infinitely often.

In Spin, state labels such as read a and read b in process C represent proposi-
tions for LTL: At each state s, if s is labelled with {l1, . . . , ln}, this means that
in state s the propositions {l1, . . . , ln} hold. It is also possible to mark states
as accepting: s ∈ F ⇐⇒ ∃ l ∈ {l1, . . . , ln} : l starts with accept. This allows

3Spin follows a syntax where [] represents G and <> represents F.
4Note that Spin already takes the negated formula ¬ϕ as input.
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for general queries of liveness conditions (some accepting state has to be seen
infinitely often) and similar.

As stated in the previous sections, LTL model checking works by translating
LTL to Büchi automata and then performing a product construction with the
model. Spin does exactly this: For the LTL formula []<> seen_a from above,
it generates a so-called never claim as shown in table 2.2.

This never claim directly models a Büchi automaton: It consists of states
T0 init and accept S1. In each of those states, if seen a is valid, the au-
tomaton switches to accept S1. Otherwise ((1) stands for true), it switches
back to the initial state. The state accept S1 is accepting, while T0 init is not,
so in the end this automaton accepts exactly the language of state sequences
where seen a holds again and again. As the name tells, a never claim must
never become true for the specification to be fulfilled. This is consistent with
the fact that Spin takes the negated formula as input.

1 never { /* GFseen_a */

2 T0 in i t : /* init */

3 i f
4 : : ( s e en a ) −> goto accept S1
5 : : ( 1 ) −> goto T0 in i t
6 f i ;
7

8 accept S1 : /* 1 */

9 i f
10 : : ( s e en a ) −> goto accept S1
11 : : ( 1 ) −> goto T0 in i t
12 f i ;
13 }

Table 2.2: Never claim for GF seen a

When executed, Spin then combines all generated or explicitly stated never
claims with the rest of the system specification and performs an exhaustive
search over the state space (the emptiness check mentioned in section 2.1.1.3).
The specification is violated if in any never claim it is possible to reach an
acceptance cycle, which is a cycle holding an accepting state. When such a
cycle is reached, it is clear that an accepting state is visited again and again.
Thus the never claim becomes true. Spin outputs a path to the entry of the
acceptance cycle as well as the cycle itself. This is called a counterexample for
the specification.
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2.1.1.7 From Model Checking to Runtime Verification

After this small digression about LTL in the field of static verification we now
want to turn over to the evolving field of Runtime Verification (RV). What
follows is a motivation of RV in general, followed by some peculiarities induced
by the fact that RV usually is performed in a purely dynamic context.

Apparently, model checking does not actually verify a real application. Rather
it is a method of verifying a finite-state system (model) of such an application.
Hence it is important that the model approximates the behaviour of the actual
implementation as closely as possible. This however is where the usual com-
plexity problems arise: While CTL model checking can be done in polynomial
time, the model checking problems for LTL and CTL* are PSPACE hard [?, ?],
which means that the verification time is exponential in the size of the specifica-
tion. Hence, although verification is usually linear to the size of the model, even
checking relatively small models can take a long time while smaller models can
be checked faster. Of course, the closer the model approximates reality, the less
abstract it is and hence the more states it comprises. As a result, finite-state
systems used in model checking often either model very small systems such as
hardware controllers or they model an application on a very abstract level. The
latter case of course makes the method incomplete: An application can still
contain errors on a fine-grained level, which cannot be detected by verifying an
abstract, coarse-grained model. This is where Runtime Verification comes into
play.

2.1.2 Runtime Verification

Runtime Verification (RV) is a special field of runtime testing where test cases
are generated from a formal specification. Thus RV shares with Model Checking
the properties that both assume a given specification and check something for
compliance with this specification. The major differences are the following:

1. While static approaches usually work on a model of a piece of software,
Runtime Verification requires the actual application, simply because the
specification is checked against a running program (or a trace which was
recorded at an earlier time).

2. As a consequence, paths in the world of Runtime Verification are usually
finite, because the runtime of an application is finite: At some point the
test is finished as the application is shut down.

3. While approaches like Model Checking usually aim to verify the behaviour
of an application on all possible execution paths, in Runtime Verification
one only observes the one and only execution path and checks the speci-
fication against this (finite) path.
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4. As a consequence, Runtime Verification is not actually real verification:
Even when the specification is satisfied on all inspected paths, there might
still be another violating path, which has simply not been tested yet.
Therefore good path coverage is necessary to achieve a high quality of
service. As a consequence, Runtime Verification usually colaborates well
with unit testing [?], which is aimed at good path coverage as well.

Due to those properties, J-LO takes specifications of the form of LTL formula
with finite path semantics. LTL is suitable here, since it talks about one single
path, which is the current execution path in our case. The path is always finite
the semantics are defined accordingly. J-LO instruments the actual application
in such a way, that each given formula is checked during runtime. Formulae
which state liveness conditions5 are evaluated over the whole path and their
final state is reported during application shutdown.

Specification of those formulae takes place using metadata annotations. Those
annotations are being introduced in the following section.

2.2 Java 5 Metadata

The metadata facility was introduced to Java in version 5, which corresponds
to version 3 of the Java Language Specification [?]. Its specification took place
in the Java Community Process (JCP) with the Java Specification Request 175
[?]. This document states:

This facility allows developers to define custom annotation types and to
annotate fields, methods, classes, and other program elements with

annotations corresponding to these types. These annotations do not directly
affect the semantics of a program. Development and deployment tools can,
however, read these annotations and process them in some fashion, perhaps

producing additional Java programming language source files, XML
documents, or other artifacts to be used in conjunction with the program

containing the annotations.

Every annotation has an annotation type associated with it. In order to create
an annotation type, you must declare it with an annotation type declaration.
In addition to enabling a family of annotations, declaring an annotation type
creates an interface that can be used to read those annotations. Annotation

types can also be used in the definition of other annotation types, giving rise to
annotation types with deep structure, and allowing substructures to be reused.
Annotation types share the same namespace as ordinary class and interface

types.

In J-LO we use the annotation type shown in table 2.3.
5such as something happens again and again
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1 @Retention (CLASS)
2 @Target ({CONSTRUCTOR,METHOD,TYPE,FIELD})
3 public @inte r f a c e LTL {
4 St r ing value ( ) ;
5 }

Table 2.3: LTL annotation type in J-LO

The annotation type itself contains annotations which alter its applicability:
Line 1 defines that the Retention Policy for annotations of this type shall be
CLASS. This means that such annotations are persistently stored in the bytecode
however are not to be made available to the reflection framework at runtime.
Since J-LO instruments the application statically, this is fully sufficient. There
are other Retention Types SOURCE and RUNTIME. The former advises the com-
piler to not even compile annotations into bytecode, while the latter leads to
annotations which are still available in the bytecode and during the runtime of
the application. The application can use reflection to retrieve annotations over
a generated interface and alter its behaviour accorings to the semantics of the
annotation.

Line 2 states the possible Element types which annotations of this type can be
attached to. In J-LO, annotations can be attached to constructors, methods,
types and fields. Other available Element Types are PARAMETER, LOCAL VARIABLE,
ANNOTATION TYPE and PACKAGE, all of which seem not to be very suitable loca-
tions for the purpose of specifying formulae. We will further elaborate on our
choice of allowed Element Types in section ??. It should be noted that anno-
tations on local variables can only have SOURCE retention, since Java bytecode
is stack based and thus there are no local variables to annotate.

Lines 3 to 5 define the actual annotation type. Its name is LTL and its only
parameter is a String of name value.

The annotation type can then be used as shown in table 2.4.

In line 2, the field is annotated with a value of "<someFormula>". This could
generally be any constant string. In order to be correctly parsed by J-LO, it
will in our case adhere to the LTL syntax we define. value is actually a special
label for a annotation parameter: If an annotation has only one parameter and
its name is value, then this name not needs to be given when instantiating an
annotation. An example of this is shown in line 5.

So in our scenario, the user annotates constructors, methods, types and fields
with formulae, which are then being compiled to bytecode using a standard
compiler. J-LO then extracts those annotations and applies the appropriate
verification semantics to the application.
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1 class Foo {
2 @LTL( value=”<someFormula>” )
3 int f i e l d = 23 ;
4

5 @LTL( ”<someOtherFormula>” )
6 void bar ( ) {
7 . . .
8 }
9 . . .

10 }

Table 2.4: Example LTL annotation in J-LO

In order to do so, J-LO needs to employ some intrumentation techniques. We
use the aspect-oriented language AspectJ for this purpose, which we explain in
the next section.

2.3 Aspect-oriented programming

The purpose of Aspect-oriented programming (AOP) is to separate crosscutting
concerns. Such concerns are typically technical features that scatter throughout
a given program and whose implementation is usually not part of the application
core.

Such concerns typically include tracing/logging, authentication, caching, trans-
actioning and so forth [?, ?]. Figure 2.2 [?] shows how the implementation of
logging is originally implemented in the Apache Tomcat [?] servlet container.
The code is scattered through about half of the classes. Using an aspect, all
code concerned with logging could be separated into one single unit of code.

Figure 2.2: Logging as croscutting concern in Tomcat

Aspect-oriented programming is performed using an AOP language, which is
usually built as a language extension on top of one of the traditional functional,
imparative or object-oriented programming languages.

Functional languages like LISP and SCHEME [?] tend to have support for AOP
virtually built-in [?], and indeed the idea of AOP, as one of the pioneers of AOP,
Gregor Kiczales, mentions [?], originates from experiences with MacLisp.

However, the most widely used aspect-oriented programming language today is
AspectJ , which is built on top of Java. It was originally developed by Xerox
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PARC6 in the late 90’s. further on various companies and researchers con-
tributed to its development. Especially IBM keeps pushing forward AspectJ
till this date and provides powerful tool integration for several IDEs such as
Eclipse7, which originated from IBM and is now an independent open source
project. At IBM, AOP is today in wide use in a production environment for
application middleware products.

In the following we want to introduce the basic concepts of aspect-oriented
programming by giving some examples in AspectJ. Afterwards we explain the
basic semantics of AspectJ as they are necessary to understand the internal
workings of J-LO.

2.3.1 The anatomy of an aspect

In AspectJ, an aspect is an implementation of a crosscutting concern. Each
aspect can be understood as a reactive unit: It consists of pointcuts, which tell
when to react and pieces of advice which tell how to react. Aspects interact
with a base application during runtime at well-defined interaction points.

2.3.1.1 Joinpoints

Those points are called joinpoints. As we will see later on, a joinpoint is not
actually a point but rather a region in the dynamic control flow of an applica-
tion. Examples are the execution of a method, the initialization of a class or
write access to a field.

Sets of joinpoints can be described by pointcuts.

2.3.1.2 Pointcuts

A pointcut is a predicate over joinpoints. In AspectJ one can distinguish be-
tween the following classes of pointcuts:

• Context bindings pointcuts
Those are used to expose context (objects) to the aspect for internal use.

• Kinded pointcuts
They are the primitive pointcuts. They pick out join points of a certain
kind (e.g. method calls, field accesses).

• Lexical pointcuts
When conjoined with other pointcuts, those pointcuts can restrict the set
of matched joinpoints by lexical scopes.

6Palo Alto Research Center
7http://www.eclipse.org/
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• Control flow-based pointcuts
Those restrict matching to joinpoints inside a certain control flow.

• Expression-based pointcuts
Those pointcuts can evaluate Boolean expressions and match based on
the evaluation result.

• Boolean combinations
For each two pointcuts pc1 and pc2, !pc1, pc1 || pc2 and pc1 && pc2

are valid pointcuts as well. Their semantics correspond to finite set in-
version, union and intersection respectively.

Each pointcut consists of a keyword depicting its kind, such as call, execution
etc., and a set of brackets holding a body. This body can be of different kinds,
depending on the kind of the pointcut:

• TypePattern This stands for a pattern over an arbitrary Java type sig-
natures. Such patterns can contain the wildcart ’*’, which stands for
an arbitrary sequence of characters allowed inside an identifier. Also
they can use boolean combinations of simple TypePatterns or the mod-
ifier ’+’ which matches all subclasses of a type. For instance (Foo* &&

!foo.Bar+) matches all types whose name starts with Foo and which are
not a subtype of foo.Bar.

• IDPattern This describes a pattern over Java identifiers. This can contain
wildcarts as noted above.

• FieldPattern A field pattern describes a set of fields. Hence it has the form
ModifiersPattern TypePattern IDPattern. For instance public !static

Number+ num* would mean the set of all fields which are public but not
static, of a subtype of Number and whose name starts with num.

• MethodPattern A method pattern methods a set of methods accordingly.
It is of the form ModifiersPattern TypePattern TypePattern ’.’ IDPattern
’(’ TypePattern ’,’ ... ’)’ [’throws’ TypePattern]. For instance the pat-
tern public boolean *.equals(Object) matches all public methods
returning a boolean defined in any (*) class ans taking a single argument
of type Object.

• ConstructorPattern Such a pattern is meant to match a set of construc-
tors. It is similar to the MethodPattern: The only differences are that
there is no TypePattern for the return type and that the method iden-
tifier is fixed to new. So the pattern protected Cloneable+.new(..)

matches all protected constructors of implementors of the Cloneable

interface which take an arbitrary set of arguments. (’..’ stands for a list
of ’*’ of arbitraty length.)
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1 class Stack extends ArrayList {
2

3 f ina l stat ic int INITIALSIZE = 1 ;
4

5 stat ic int i n i t i a l S i z e ( ) {
6 return INITIALSIZE ;
7 }
8

9 Stack ( int i n i t i a l S i z e ) {
10 super ( i n i t i a l S i z e >=0? i n i t i a l S i z e : i n i t i a l S i z e ( ) ) ;
11 }
12

13 Object pop ( ) {
14 return this . remove ( this . s i z e ()−1) ;
15 }
16

17 . . .
18 }
19

20 class Main {
21

22 public stat ic void main ( St r ing [ ] a rgs ) {
23 Stack s = new Stack (−1);
24 try {
25 s . pop ( ) ;
26 } catch ( Exception ex ) {
27 System . e r r . p r i n t l n ( ex ) ;
28 }
29 }
30 }

Table 2.5: Example implementation of a stack

The full list of available pointcuts in AspectJ is given in the appendix on page
92. We will refer to those pointcuts in the rest of this work.

2.3.1.3 Example

Assume we have an implementation of the aforementioned stack, of which an
excerpt is given by table 2.5.

In line 23, the main method constructs a new Stack with an initial capacity
of -1, which is immediately overriden by the value of INITIALSIZE inside the
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constructor at line 10. In line 25, main invokes pop, which raises an exception
at line 14 due to the fact that the Stack is still empty. This exception is then
handled in line 27 by dumping it to System.err.

Figure 2.3 shows a sequence diagram of the full execution of the main method.
Classes (static context) are drawn as curved boxes while normal objects have
sharp edges. The numbers are used to label points or regions in the control
flow. The next paragraph describes them in detail.

We assume that we use AspectJ to intrument the two classes classes Main and
Stack only. Then. . .

• A pointcut staticinitialization(*) would match regions 1 and 3.

• Region 2 is for instance matched by execution(* *.main(String[])).

• The pointcut cflow(execution(* *.main(String[]))) matches every-
thing in the control flow of region 2, which includes any region shown here
except region 1.

• The pointcut cflowbelow(execution(* *.main(String[]))) matches
the same as the last pointcut except region 2 itself.

• preinitialization(Stack.new(*)) matches region 4.

• initialization(Stack.new(*)) matches regions 5 and 6, while pointcut
execution(Stack.new(*)) matches 6 only.

• At region 5, args(a) would bind a to the value 1, while at region 6, it
would be bound to -1, because this is the argument value of the construc-
tor of Stack.

• Since regions 5 and 6 both lie inside the context of s, here both, this(t)
and target(t) would bind t to the object s.

• Point number 7 is e.g. matched by call(Object Stack.pop()). Here
target(t) would bind t to the Stack instance s. this(m) would not
match, since point 7 lies in a static context and hence there is no executing
object.

• Region 9 is e.g. matched by handler(Throwable+), since Exception is
a subtype of Throwable. At this region, args(e) would bind e to the
thrown exception ex.

• The pointcut get(PrintStream *) would match region 10.
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Figure 2.3: Example sequence diagram
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Boolean combinations and invalid pointcuts

Boolean combinations of pointcuts are used to quantify over joinpoints even
further. For example, conjoining a pointcut pc1 with a pointcut pc2 narrows
the set of matched joinpoints to the intersection of both:

pointcut pc(Foo f): call(* *.foo(..)) && target(f);

This pointcut would match all calls to methods foo on types which are an
instance of Foo. The call target would be bound to f. Not all combinations,
however, are valid. The following pointcut is invalid because it tries to bind
f under negation. Since the semantics are equivalent to all joinpoints where
either not foo is called or the call target is no instance of Foo, so there are
joinpoints where f cannot be bound to an instance of Foo.

pointcut notpc(Foo f): !(call(* *.foo(..)) && target(f));

The AspectJ semantics demand that all parameters must always be bound.
Thus, this pointcut would not be valid and an error would be given at compile
time. The reader should keep this in mind, since it is also a crucial point of the
semantics of J-LO.

2.3.1.4 Advice

As mentioned above, an advice is the functional unit of an aspect. An advice
tells, what to do at a particular joinpoint. Hence, each advice consists of a
pointcut, specifying, when the advice should apply, and an advice body that
executes code at each joinpoint matched by the pointcut. In AspectJ there are
five different kinds of advice:

Before advice This advice executes before each matched joinpoint. If the
before advice throws an exception this can prevent the actual joinpoint
from executing.

After advice This advice executes after each matched joinpoint, regardless
the fact whether the joinpoint returned normally or an exception was
thrown.

After returning advice This advice executes after each matched joinpoint
in the case where no exception was thrown. If there is a return value
available, this can be exposed to the advice.

After returning advice This advice executes after each matched joinpoint
in the case where an exception was thrown. The thrown exception can be
exposed to the advice.
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1 Object around( Stack s ) :
2 ca l l (∗ Stack . pop ( ) ) && target ( s ) {
3 try {
4 return proceed ( s ) ;
5 } catch ( ArrayIndexOutOfBoundsException e ) {
6 i f ( s . s i z e ()==0) {
7 throw new I l l e g a l S t a t eEx c ep t i o n (
8 ”Don ’ t use pop ( ) when Stack i s empty ! ”
9 ) ;

10 } else {
11 throw e ;
12 }
13 }
14 }

Table 2.6: Advanced exception handling by the means of an around advice

Around advice This advice can execute code before any matched joinpoint,
then may optionally proceed with the original joinpoint and execute code
after the original joinpoint executed.

Example 2.3.1 (Advice)
Coming back to our example of a stack, one may find that it would be desirable
to have a somewhat more precise exception message for the case where pop is
invoked on an empty stack. The old code would just issue an inappropriate
ArrayIndexOutOfBoundsException. The advice shown in table 2.6 shows how
a semantically more precise error message could be provided.

Line 1 declares an around advice returning an Object. This around advice
captures joinpoints matched by call(* Stack.pop()) && target(s), where
s is bound to the call target.

In line 4, the advice invokes proceed(..). This either calls the next advice
matching the same joinpoint or the joinpoint itself if there is no further advice,
which is the case in our example. proceed(..) here gets the parameter s,
which leaves the original call unchanged. One could have rerouted the call to
another Stack by exchanging the parameter for another Stack object.

If this call returns without throwing an exception, the advice simply propagates
the return value as stated in line 4.

However, if an ArrayIndexOutOfBoundsException is thrown, this is caught in
line 5. The stack, which has been bound to s is inspected further: If the size
is 0, it throws an appropriate semantic exception (lines 7-9). Otherwise, the
original exception is thrown (line 11).
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In that way, an aspect can handle the concern of exception handling as a sepa-
rate, modular unit.

As mentioned in the description of proceed(..), sometimes multiple pieces of
advice can apply to the same joinpoint and in that case it may be important,
which advice is executed first respectively last. The solution to this problem
is a defined advice precedence. Understanding advice precedence is crucial to
understanding J-LO. Thus we explain this mechanism in the following section.

2.3.1.5 Advice precedence

Advice precedence in AspectJ is defined in two layers:

The first layer defines what aspect precedes what other aspects. This is defined
by a declare precedence statement. Such a statement takes a sequence of
type patterns (see page 25) as arguments.

The following statement shows a declare precedence statement that would
give any aspect matching the type pattern *CachingAspect higher precedence
than any subclass of LoggingAspect.

declare precedence : ∗CachingAspect , LoggingAspect+;

The second layer defines precedence of pieces of advice inside one and the same
aspect. Here precedence is based on the order in which pieces of advice are
written down inside the aspect. The applied rules are indeed far from straight-
forward. Details can be found in the AspectJ documentation [?].

In the case of J-LO, we only employ before and after advice. If one limits pieces
of advice to those and makes sure that all before advice precede all after advice
in the textual ordering of each aspect, then those are executed in exactly this
order at each joinpoint.

Apart from declaring precedence, in AspectJ one can also declare other things:
For instance AspectJ supports open classes in a way that an aspect can declare
members (fields or methods) on other classes. In the upcoming AspectJ 5, one
can even declare Java 5 annotations on members or types. This is an interesting
feature for J-LO and thus a feature we briefly want to explain.

2.4 AspectJ and metadata

Ramnivas Laddad’s tutorial at JavaOne 2004 [?] was titled AOP and metadata:
It takes two to tango. This sentence is not just an empty shell as he explains:
Aspects may well be used to both supply and consume metadata in a modular
way.
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2.4.1 Supplying metadata

In AspectJ 5 any aspect can supply metadata to any class by using the declare
annotation statement. The following statement for example marks any method
inside a class Account as Authenticated:

declare annotation : ∗ Account . ∗ ( . . )
: @Authenticated ( permis s ion=”banking” ) ;

For J-LO this means that in the future, specifications could be supplied from
an arbitrary aspect, declaring appropriate formulae to arbitrary classes.

2.4.2 Consuming metadata

On the other hand, aspects can only consume metadata: The pointcutlanguage
was enhanced to allow matching on entities carrying a specific annotation. The
following pointcut for example matches the execution of any method annotated
with an Authenticated annotation.

pointcut authent icatedOps ( ) :
execution ( @Authenticated ∗ ∗ . ∗ ( . . ) ) ;

Futher details can be found in Laddad’s DeveloperWorks article at [?]. This
article was published within the series AOP@Work which is surely an enjoyable
reading for everyone who wants to get a practical insight into AspectJ and
similar AOP languages.

This shall conclude our excursion to Metadata and aspect-oriented program-
ming. Based on this background knowledge, we are now going to proceed with
a detailed description of the syntax and semantics of our formalism.



Chapter 3

The syntax and semantics of

DLTL

This chapter is organized as follows:

First we introduce the syntax that J-LO provides to define LTL formulae. Here
we introduce free variables, which can be bound to objects during runtime.

In the next section, we introduce general finite path semantics for LTL. This is
necessary, since formulae in Runtime Verification reason about a finite execu-
tion path. Our definition follows [?] and has been frequently used in Runtime
Verification literature.

In section 3.2.3 we explain in detail, why those semantics are insufficient in the
case of J-LO where free variables may occur in propositions. We give reasons
for why in J-LO, free variables are bound over time.

This leads to the necessity to partition an LTL formula ϕ into two parts ϕnow
and ϕnext, where the former has to hold at the current state and the latter on
the subsequent path. This transformation is explained in detail in section 3.2.4.

Based on this notion of now and next, in section 3.3 we then define our full
declarative semantics including a full description of how free variables are han-
dled.

The aforementioned definition of now and next assumes that in a given formula
no variable is used before it is defined. Hence, section 3.4 presents a static
analysis that allows to decide whether or not a formula fulfills this assumption.

Eventually, section 3.5 introduces the operational semantics we employ and
proove them equivalent with the declarative semantics that have been described
before.

So let us begin with the definition of the syntax. Given that we have a distinct
semantics for our LTL formalism which is quite different compared to earlier
approaches, we are going to refer to this special kind of LTL by Dynamic LTL
(DLTL).

33
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3.1 Syntax of DLTL

DLTL is a linear temporal logic over AspectJ pointcuts featuring dynamic bind-
ings. AspectJ pointcuts are, as explained in section 2.3.1.2, predicates over join-
points, those being regions in the dynamic control flow of a running application
(cf. section 2.3.1.1).

Temporal logic usually does not reason about regions. The atomic unit of most
temporal logics, including LTL, is a state. Hence we would like to be able
to identify points in the dynamic control flow and interpret those as states.
Fortunately, AspectJ gives us the opportunity to execute code both before and
after each joinpoint (cf. section 2.3.1.4).

Therefore, we do not define joinpoints as atoms of our logic but rather the
entry and exit events of joinpoints. Distinguishing, as AspectJ does, between a
normal return and a return by exception, this leads to the following syntax for
propositions:

〈proposition〉 −→ entry( 〈pointcut〉 ) |
exit( 〈pointcut〉 ) |
exit( 〈pointcut〉 ) returning 〈identifier〉 |
exit( 〈pointcut〉 ) throwing 〈identifier〉

The term constructors for formulae are defined as in usual LTL. Normally for
LTL the operators U ,X,¬,∨, and ∧ suffice for full expressiveness. For conve-
nience we allow the full set of LTL operators plus the operators → (implies)
and ↔ (equivalent).

〈argument〉 −→ 〈proposition〉 | 〈formula body〉
〈formula body〉 −→ F( 〈argument〉 ) | G( 〈argument〉 ) |

X( 〈argument〉 ) | !( 〈argument〉 ) |
( 〈argument〉 U 〈argument〉 ) | ( 〈argument〉 R 〈argument〉 |
( 〈argument〉 || 〈argument〉 ) | ( 〈argument〉 && 〈argument〉 |
( 〈argument〉 -> 〈argument〉 ) | ( 〈argument〉 <-> 〈argument〉

Here ! means negation, || the nonexclusive or, and && means and.

In J-LO propositions may define and access free variables that bind objects
at runtime. Those variables have to be typed in order to allow for static type
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checking and to adhere to the fully typed AspectJ semantics. Thus, free vari-
ables need to be declared with a type in front of the formula:

〈formula〉 −→ [〈formal parameter list〉 :] 〈formula body〉

Table 3.1 gives a short example of what such a formula could look like.

1 Stack s :
2 G(
3 (
4 exit ( ca l l ( Stack . new ( . . ) ) ) returning s
5 ) −> (
6 X(
7 F(
8 entry ( ca l l (∗ Stack . push ( Object ) ) && target ( s ) )
9 )

10 )
11 )
12 )

Table 3.1: Stack example in DLTL

Line 4 specifies a proposition which holds at the exit event of a constructor call.
Further, it binds1 the free variable s (declared in Line 1). Line 8 specifies the
entry event of a call to push with call target s.

The formula states that globally whenever a new Stack s is constructed, then
finally push is invoked on s, which certainly is a sensible assumption.

Having this first initial picture of what properties could be specified with J-LO,
let us now move to the semantics of such a specification and let us define what
it actually means for a LTL formula to hold on a finite path. The basic idea
is that all safety requirements (”something bad never happens”) are restricted
to the given finite path and all eventualities (lifeness conditions - ”something
good eventually happens”) have to be fulfilled before the path ends.

3.2 Towards a declarative semantics

3.2.1 Notation

For propositions in general we write p, q, . . .
1We will explain in the semantics section what this exactly means.



36 CHAPTER 3. THE SYNTAX AND SEMANTICS OF DLTL

Such propositions may define valuations for free variables. For instance a
proposition exit(* call(A.foo()) && target(x)) defines a value for a vari-
able x. We write p(~x), q(~y), . . . for propositions p and q defining variables
~x := {x1, . . . , xn} respectively ~y := {y1, . . . , ym}.
Also, proposition may refer to variables, which have been defined earlier on
a path. For instance a proposition exit(* call(A.foo()) && target(x) &&

if(x!=y)) refers to a variable y, which is not at the same time defined by the
proposition. We say that the proposition uses y. We underline used variables
and so write p(~x, ~x′), q(~y, ~y′), . . . for propositions p and q defining variables
~x := {x1, . . . , xn} and using ~x′ := {x′1, . . . , x′n} respectively defining variables

~y := {y1, . . . , yn} and using ~y′ := {y′1, . . . , y′n}.2

A state shall in our semantics be identified with the propositions that hold at
this state. Hence, we define S := 2P .

3.2.2 General finite path semantics

Let P be a set of atomic propositions and π = π[0]...π[n − 1] ∈ Sn a finite
path with n > 0. For each path position π[i] (0 ≤ i < n) and proposition
p ∈ {p1, ..., pm} and formulae ϕ and ψ:
π[i] |= tt, π[i] 6|= ff ,
π[i] |= p iff p ∈ π[i]

|= X ϕ iff i < n and π[i+ 1] |= ϕ

|= F ϕ iff ∃k (i ≤ k ≤ n) s.th. π[k] |= ϕ

|= G ϕ iff ∀k (i ≤ k ≤ n) → π[k] |= ϕ

|= ϕ U ψ iff ∃k (i ≤ k ≤ n) s.th. π[k] |= ψ

∧ ∀l (i ≤ l < k) → π[l] |= ϕ

|= ϕ R ψ iff ∀k (i ≤ k ≤ n) → π[k] |= ψ

∨ ∃l (i ≤ l < k) s.th. π[l] |= ϕ

Here, still the following equations hold:

F ϕ ≡ tt U ϕ

G ϕ ≡ ff R ϕ

ϕ U ψ ≡ ψ ∨ (ϕ ∧X(ϕ U ψ))

ϕ R ψ ≡ ψ ∧ (ϕ ∨X(ϕ R ψ))

Also, still for each LTL formula with finite path semantics there exists an equiv-
alent formula in negational normal form with solely ¬,X,U,R operators, just
as over infinite paths (cf. section 2.1).

2It shall be noted that this disctinction between variable definitions and uses is only neces-

sary for the declarative and operational semantics. Opposed to implementations as [?], J-LO

automatically infers whether a variable is used or defined by a given proposition. This is done

by the means of a static analysis explained in section 3.4.
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Remark 3.2.1 (General assumption)
In the following, we want to assume that ϕ is in negational normal form. This
enables us to restrict definitions to the above operators. It is straightforward to
extend any of the definitions to further operators a F and G or the weak until
operator W, which is defined as ϕ W ψ := (ϕ U ψ) ∨G ϕ.

We leave this as an exercise to the reader.

The above definition of finite path semantics has been used in various publica-
tions in the field of Runtime Verification during the past years. Initial experi-
ments during the development of J-LO used the very same semantics without
any changes. However, when introducing the possibility of free variables in
propositions, we found that those semantics raise to prolems. The question to
be answered turns out to be the following:

For a proposition p(~x) with free variables ~x, what does it mean to hold at a
state π[i] ∈ 2P ?

The next section explains this problem in detail.

3.2.3 Why usual quantification semantics are insufficient

Usually, when dealing with free variables in mathematical logics of any kind,
the idea is to bind those variables by implicit or explicit quantifications so that
they are not free any more:

Given a variable x with possible valuations over a finite domain DOM and a
formula ϕ(x) where x occurs free in the usual meaning. Then the semantics of
ϕ(x) can simply be defined through quantification.

For universal quantification: Jϕ(x)K := J∀x.ϕ(x)K =
∧

a∈DOM
Jϕ(a)K

For existential quantification: Jϕ(x)K := J∃x.ϕ(x)K =
∨

a∈DOM
Jϕ(a)K

The reader should note the following:

1. ϕ(a) is a formula without any free variables. Thus its semantics are clear.

2. For the above approach, it is essential that |DOM | < ∞, because other-
wise the equations do not hold.

The second point is the essential reason for why this approach is not feasible
in the case where propositions contain free variables: The question is: What is
DOM?

One first idea would be to define DOM as the set of all objects on the heap
of a Java application. This however imposes several problems: First of all,
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this set can be of arbitrary size. Theoretically, there is no limit of how many
objects can be instantiated. This size only depends on the available amount of
memory. Of course one could still argue that the available amount of memory
is always limited and thus we yet have a finite domain. However, even then it
would not be possible for any Java application to conduct any proof over that
domain, since no Java program has direct access to the heap 3 and hence it
cannot enumerate the domain.

A second approach, which is feasible and indeed was taken in our Haskell pro-
totype [?], would be to define DOM as the set of all valuations of free variables,
which occur during the execution of the path, and then quantify over this do-
main.

For example given the formula p(x) ∨X (q(y, x)) and the path π = {q(1, x)}
we could say that possible valuations are (x, y) ∈ dom(x)× dom(y) = ∅ × {1}.

The Haskell prototype uses universal quantification, so we get:

π |= p(x) ∨X(q(y, x)) ⇐⇒
π |=

∧
x′∈dom(x)

∧
y′∈dom(y)

p(x) ∨X(q(y, x)) ⇐⇒

π |=
∧
x′∈∅

∧
y′∈{1}

p(x) ∨X(q(y, x)) ⇐⇒

true

Notice that in the one and only state q(1, x) holds. Actually it would be open
to debate, if a proposition q(y, x) matches q(1, x) or not, due to the use of the
undefined value of x. Is this constraint fulfilled or not? Quantification takes
away this complexity: Since in the example the domain of x is empty, there is
nothing to check.

In Haskell this behavior is natural because formula are modeled by lambda
functions, which are lazily evaluated: A formula ϕ(x, y) is actually a function
λxλy.ϕ(x, y). Such a function cannot be evaluated before x and y have a defined
value.

The approach however, suffers from two problems in practice:

1. We are bound to universal quantification. This could naturally be solved
by making quantification explicit, penalizing simplicity of the syntax.

3There is a chance of getting a handle to all objects by instrumenting the constructor exe-

cution of java.lang.Object. However, this means instrumenting the Java Runtime Library,

which is not always desirable, nor would it be compliant with the Sun License [?]. Also it

would doubtfully be efficient to do so.
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2. Since the domain of any variable is determined by the valuations of this
variable over the whole path, this whole path must be known in order to
fully evaluate a formula. This is a major restriction, given that one of the
design goals of J-LO is early error detection.

The second problem was the reason for defining the semantics of J-LO in a very
special, dynamic way. The semantics of a DLTL formula are not defined over a
finite domain, which is to be known in advance. Rather, the domain establishes
itself as one walks along the path, binding valuations as we go. In order to be
able to do so, we show that each LTL formula ϕ can be split into two parts,
ϕnow and ϕnext, with respect to a state, so that at this state, ϕ holds iff both
ϕnow and ϕnext hold.

However, this approach forbids formulae as the one above, where propositions
use variables which are still unbound at the time they are to be evaluated.
Hence, in chapter 3.4 we present a static analysis that is able to detect such
formulae.

3.2.4 Transformation to now and next

The declarative semantics of DLTL are based on the idea that valuations are
collected over time and in this way form the domain over which we check.

Essential to the idea is the notion of time slices. Each LTL formula can be
thought of a partition of subformulae, each talking about either the current
state or the rest of the path, starting with the next state.

3.2.4.1 The notion of now and next

An important observation is that any LTL formula ϕ can be partitioned, with
respect to the current state π[i] into two formulae now(ϕ) and next(ϕ) in such
a way that πi |= ϕ iff πi |= now(ϕ) and πi |= next(ϕ).

In the following we assume a path π = π[0], . . . , π[n− 1].
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Definition 3.2.2 (Function now)
The function now : LTL → LTL is recursively defined as:

now(p) := p

now(¬p) := ¬now(p)

now(X ϕ) := true

now(ϕ ∧ ψ) := now(ϕ) ∧ now(ψ)

now(ϕ ∨ ψ) := now(ϕ) ∨ now(ψ)

now(ϕ U ψ) := now(ψ ∨ (ϕ ∧X(ϕ U ψ)))

= now(ψ) ∨ now(ϕ)

now(ϕ R ψ) := now(ψ ∧ (ϕ ∨X(ϕ R ψ)))

= ( now(ψ) ∧ now(ϕ) ) ∨ now(ψ)

= now(ψ)

Note that for any ϕ and π[i] always now(p) is a Boolean combination of propo-
sitions. The function now(ϕ) reflects that part of ϕ that can be fully evaluated
in state π[i], assuming that next(ϕ) holds on the subsequent path.

Definition 3.2.3 (Function next)
For 0 ≤ i < n, the function next : LTL → LTL is recursively defined by
next(ϕ) := X next′(ϕ) with next′(ϕ) defined as:
If i < n then:

next′(p) :=

{
true if p ∈ L(π[i]),

false otherwise

next′(¬p) := ¬ next′(p)

next′(X ϕ) := ϕ

next′(ϕ ∧ ψ) := next′(ϕ) ∧ next′(ψ)

next′(ϕ ∨ ψ) := next′(ϕ) ∨ next′(ψ)

next′(ϕ U ψ) := next′(ψ ∨ (ϕ ∧X(ϕ U ψ)))

= next′(ψ) ∨ ( next′(ϕ) ∧ (ϕ U ψ) )

next′(ϕ R ψ) := next′(ψ ∧ (ϕ ∨X(ϕ R ψ)))

= ( next′(ψ) ∧ next′(ϕ) ) ∨ ( next′(ψ) ∧ (ϕ R ψ) )

Else (i = n):

next′(ϕ)π[n] := false

Also note that whenever next(p) ∈ {true, false}, then we have the opportunity
to apply early fault detection: The formula is fully determined. One can report
satisfaction respectively failure at once.
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Example 3.2.4 (Functions now and next)
Given the formula ϕ = p U q and the path π = {p}{q}. Obviously it holds that
π |= ϕ.

The calculation of now leads to:
now(ϕ)
= now(p U q)
= now(q ∨ (p ∧X(p U q))
= now(q) ∨ now(p ∧X(p U q))
= q ∨ (now(p) ∧ now(X(p U q)))
= q ∨ (p ∧ true)
= q ∨ p

The calculation of next leads to:
next(ϕ)
= X next′(ϕ)
= . . .

= X( false ∨ (next(p){p} ∧ next(X(p U q)){p}) )
= X( false ∨ (true ∧ (p U q)) )
= X( p U q )
Now it holds that π = {p}{q} |= now(ϕ) = q ∨ p and π = {p}{q} |= next(ϕ) =
X( p U q ).

Theorem 3.2.5 (Correctness of now and next)
For all ϕ ∈ LTL and all π ∈ S+ it holds that:

π |= ϕ ⇐⇒ π |= now(ϕ) ∧ π |= next(ϕ)

Proof 3.2.6 (Correctness of now and next)
Completeness (⇒):

Assume a formula ϕ ∈ DLTL and a path π ∈ S+ and assume that π |= ϕ.

Then in particular it holds that π[0] |= ϕ. Also we know that all parts of ϕ which
are (implicitly4 or explicitly) guarded by an X operator do not contribute to
the truth value of π[0] |= ϕ. Hence it directly follows that π[0] |= now(ϕ). Since
now(phi) does not contain any temporal operators, it follows that π |= now(ϕ).

According to the general finite path semantics of LTL (cf. section 3.2.2) we can
easily see that starting from the evaluation of π[1] the formulae ϕ and next(phi)
are equivalent, because the definition of next follows the semantics in every case
but the handling of the X operator: The function next pushes the X operator

4By implicitly we mean cases where a X appears in the semantic evaluation of U or R.
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to the outermost level. Since X is distributive over all LTL operators, this is an
equivalent transformation. Hence π1 |= next(ϕ). Since next(ϕ) is of the form
X next′(ϕ), it also holds that π |= next(ϕ).

Soundness (⇐):

The proof of soundness is similar and is left as an exercise to the reader.

In order to be able to proceed it is important to note the following.

Observation 3.2.7
The evaluation of now(ϕ) depends only on those propositions in cl(ϕ), which
are not (implicitly or explicitly) guarded by an X operator. Evaluation of the
latter may be deferred at least until the next state.

Using now and next, we are now able to define our declarative semantics.

3.3 Declarative semantics of DLTL

In order to do so, we define in an introductry subsection a formal notion of
joinpoints, states, pointcuts, and propositions with free variables. In particular
a pointcut must be able to provide a valuation at a given joinpoint so that we
can use this valuation to bind objects within the formula.

The section is then concluded by the definition of the declarative semantics for
a DLTL formula holding such propositions.

For this section we assume the following notation.

1. V is a finite set of variable names.

2. We sometimes write functions in λ-notation: A term λxλy . x < y rep-
resents an anonymous function which takes two arguments x and y and
returns the Boolean value of x < y.

3. For some function we use a set based notation: {x 7→ 1} stands for the
partial function which returns 1 if x and y are the same variables. (In all
other cases the function is undefined.) For such a function ϕ we define
the update operation ϕ[x 7→ 2] as ϕ \ {x 7→ o ∈ ϕ} ∪ {x 7→ 2}. We also
allow concurrent updates such as ϕ[x 7→ 2, y 7→ 3] and so forth (for cases
where x is not the same variable as y).

4. Some functions ϕ are defined over propositions, pointcuts or bindings.
Sometimes we apply those functions to whole formulae ψ. In this context
we mean that the function is applied to all propositions/pointcuts/bind-
ings in cl(ψ) and the resulting formula is returned. Also such functions



3.3. DECLARATIVE SEMANTICS OF DLTL 43

may be overloaded for sets of propositions, which mean that the function
is applied to all elements and the appropriate set is returned. In any case,
the function ϕ̃ shall denote the appropriately overloaded version of ϕ for
its context.

3.3.1 Basic definitions

Definition 3.3.1 (Joinpoint)
Let O be a (possibly infinite) set of objects. A joinpoint in DLTL is a tuple
ι = (thisι, targetι,argsι, retι, exι) with:

thisι ∈ O ∪ {⊥} the currently executing object at ι,

targetι ∈ O ∪ {⊥} the call target object at ι,

argsι ∈ 2O ∪ {⊥} the argument vector of a method call or execution at ι,

retι ∈ O ∪ {⊥} the object returned by a method call or execution at ι,

exι ∈ O ∪ {⊥} the exception thrown at a method call or execution at ι.

Any of this/target/args/ret/ex may be undefined (e.g. when executing in a
static context, see figure 2.3). This is reflected by a value of ⊥.

We denote the set of all joinpoints by JP .

Further we define the set of all objects provided by ι, Oι as:
Oι := ( {thisι, targetι, retι, exι} ∪ argsι ) \ {�}.

Definition 3.3.2 (Control flow)
Joinpoints can be cascaded at runtime: Since joinpoints are regions in the
control flow, one joinpoint can occur within another.

Hence for a joinpoint ι ∈ JP we define its control flow as the sequence cflow(ι) :=
ι0, . . . , ιn−1 ∈ JPn where ιn−1 = ι and for all 0 ≤ i < n − 1 it holds that ιi+1

occurs within ι.

We define the set of all available objects in the control flow of ι as:
Ocflowι :=

⋃
ι′∈cflow(ι)

Oι′

Definition 3.3.3 (Entry/exit kinds)
We define the set K of all entry/exit kinds of propositions as

K := {entry, exit, exit returning, exit throwing}.

Also we define a partial order E ⊂ K ×K as:

E := { (k, k) | k ∈ K } ∪ { (exit, exit returning), (exit, exit throwing) }.
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This shall reflect the fact that exit is not only matched by exit but also by
exit returning and exit throwing.

Definition 3.3.4 (State)
A state s is a tuple s = (ιs, ks) ∈ JP × (K\{exit}). We denote the set of all
states as S := JP × (K\{exit}).

Definition 3.3.5 (Pointcut)
A Poincut (or Crosscutt, X-Cut) χ is a tuple χ = (µχ, ~vχ, σχ) with:

µχ : JP → B the matching function of χ,

~vχ = {l1, . . . , ln} ∈ 2V the set of variables defined by χ,

σχ : JP → (~vχ → O) the valuation function of χ.5

We denote the set of all poincuts by PC .

Here for all χ ∈ PC , ι ∈ JP , σχ(ι) is defined if and only if µχ(ι) = true. This is
due to the fact that a poincut which does not match a joinpoint cannot expose
any values at this joinpoint. Hence, for cases where µχ(ι) = false, we write
σχ(ι) = ⊥. Further, the range of σχ(ι) shall be restricted to values of Ocflowι .

Note that for the sake of an easy notation we denote matching functions by the
appropriate pointcut expressions with their natural semantics.

Example 3.3.6 (Pointcut)
Assume the following AspectJ poincut definition:
pointcut pc(Stack s): call(Object Stack.pop()) && target(s);

In our notation this would define a pointcut χ = (µχ, ~vχ, σχ) with:

µχ = call(Object Stack.pop()) && target(s),

~vχ = { s },

σχ = λι.{ s 7→ targetι }.

Definition 3.3.7 (Binding)
A binding is a partial function β : V 99K (O ∪ {�}). We denote the set of all
possible bindings as B := {β : V 99K (O ∪ {�})}.
A binding function β may define certain variables as unbound6. We denote the
fact that a variable x is unbound by { x 7→ � }.
For each V ′ ⊆ V, we define the set B|V ′ of all bindings over V ′ as B|V ′ := {β :
V ′ 99K (O ∪ {�})}.

5Note that here we use the set ~vχ as type. This shall denote that the functions returned

by σχ are partial functions over 2V but fully defined nonpartial functions over ~vχ.
6One could raise the questions why one does not just drop unbound mappings from the

function definition. The reason for this design decision is that our operational semantics uses

such unbound mappings to replace them by appropriate bindings to objects.
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Definition 3.3.8 (Proposition)
Let L be a finite set of labels. Then a proposition is a tuple p = (lp, χp, kp, βp) ∈
L× PC ×K ×B.

We call lp the label of p, χp is the pointcut associated with p. kp denotes the
entry/exit kind of p. Finally we call βp the current binding of p.

The binding function βp is dynamic over time. It is initialized as:

βp := { x 7→ � | x is a variable in χp }.

This includes also used variables, variables contained in χp but not in ~vχp .

We denote the set of all propositions by P.

In the following, we define what it means for a proposition p to hold at a given
state (we say, that p matches the state). This definition if based on the current
binding of p, which as we will see in later sections, is dynamic over time. The
way in which those bindings propagate is the key point of the semantics of J-LO
and also the point where we will use the splitting into now and next.

Definition 3.3.9 (Matching)
For a state s = (ιs, ks) ∈ S and a proposition p = (l, χ, k, β) ∈ P, we say that
p matches s or holds in s, s |= p for short, if with µ′χ := (σ̃µ ◦ β̃) (µχ), the
following conditions hold:

1. µ′χ(ιs) = true,

2. k E ks and

The first requirement states that the pointcut of p must match the given join-
point, where in the matching function free variables have been replaced by first
bindings and then the valuations of the contained pointcut. The second one
requires that the entry/exit kinds are compatible. If a proposition p matches a
state under a certain binding β, we say that β is a satisfying binding for p.

In order to be able to evaluate µ′χ(ιs), one must make sure that µ′χ does not
contain any free variables. For most free variables this is no problem, they are
also contained in the valuation function of the contained pointcut. if pointcuts,
however, may refer to bound values not exposed by the current joinpoint. Here
one must make sure that the binding function β is rich enough to bind all free
variables. The static analysis we introduce in section 3.4 allows to ensure this.

Example 3.3.10 (Proposition)
Assume the following proposition:

e x i t ( ca l l ( Object Stack . pop ( ) ) && i f ( o1 !=o2 ) ) returning o1



46 CHAPTER 3. THE SYNTAX AND SEMANTICS OF DLTL

In our semantics this yields a proposition p = (lp, χp, kp, βp) with:

• lp = "exit( call(Object Stack.pop()) && if(o1!=o2) ) returning

o1"

• χp = (µχp , ~vχp , σχp) with

– µχp = call(Object Stack.pop()) && if(o1!=o2)

– ~vχp = { o1 }
– σχp = λι. { o1 7→ retι }

• kp = exit returning

• βp = { o1 7→ �, o2 7→ �}

Note that in particular, the matching function call(Object Stack.pop()) &&

if(o1!=o2) uses variables o1 and o2. The valuation function of the associated
pointcut, σχp , is however only rich enough to define a value for o1. As a
consequence, one must make sure that the binding βp provides a value 6= � for
o2, when this proposition is to be evaluated.

While the static analysis we define in section 3.4 will ensure this, for now assume
the following:

For any formula ϕ, at any given state π[i], all propositions contained in
now(ϕ) are sufficiently bound, so that any variable used in now(ϕ) has a

defined value.

As we mentioned earlier, the key point of the dynamic semantics of DLTL is
to understand how, when and where free variables should be bound and most
importantly why one should do it the way we define it.
In the following subsection we hence want to motivate this mechanism by an
example.
In this example as well as all the following sections of this chapter we want to
assume that the functions next and now as well as the satisfaction relation |=
are equally defined for DLTL formulae as they are for LTL formulae. Indeed
the semantics are fully equivalent except the different semantics of s |= p for a
state s and a proposition p.

3.3.2 Bindings by example

In this section we use the following notations for propositions with bindings:
The term p(x) stands for a proposition p with ~vχp = {x} and βp = {x 7→ �} (x
is a variable in p, which is currently unbound).
A term p(1) should informally denote the proposition where x has been bound
to 1, so that now βp = {x 7→ 1}.
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Example 3.3.11 (Propagation of bindings)
Let ϕ(x) := G(p(x) → F q(x)) and π = {p(1), p(2)}{q(1)}.

We want the semantics of this formula to imply that for each possible valuation
x′ of x on the occurrence of p(x), we finally see the proposition q(x′) on the
path. The given path π would violate ϕ, because p(2) gives a valuation x = 2
so that there is no matching q(2) to follow.

In order to see how the desired effect can be achieved let’s have a look at now
and next. It holds that:

now(ϕ(x)) = true and next(ϕ(x)) = X( ϕ(x) ∧ F q(x) )

Of particular interest here is the result of next. This formula imposes the
obligation on the subsequent path that has to be fulfilled in order to satisfy
ϕ. Here this obligation says that finally q(x) has to hold as well as again ϕ(x)
(this is due to the G operator). What we would actually like is that on the
subsequent path q(1) and q(2) should hold at some point. Also, ϕ(x) should
hold for all possible valuations that are yet unknown.

Hence, the desired obligation would be ϕ(x) ∧ F q(1) ∧ F q(2). In the final
state π[1] this would evaluate to ϕ(x)∧F q(2), expressing that the requirement
F q(2) was not yet fulfilled7.

Informally the semantics are as follows.

Observation 3.3.12 (Declarative semantics, informally)
For a formula ϕ(~x) and a state π[i] it holds that π[i] |= ϕ(~x) if and only if for
all possible valuations ~x′ at π[i] both, now(ϕ(~x′)) and next(ϕ(~x′)) hold, where
next leaves variables in the original ϕ(~x) unbound.

The last property might seem as an unusual exception at a first glance. How-
ever, when looking at the equivalent AFA, it becomes clear that the original
formula occurs as subformula of next(ϕ(~x)) in exactly those cases where further
evaluation of the formula is deferred to the next state. Taking into account that
the AFA is partially ordered (see page 2.1.1.4), one can say that variables are
bound if and only if one moves further down in this order, so if one moves from
a state ϕ1 to ϕ2 with ϕ1 � ϕ2.

This observation is already a good start however there is still one uncertainty
that need disambiguation: What are ”all possible valuations ~x′ at π[i]” ?

This shall be clarified by the next subsection.
7Note that ϕ(x) ∧ F q(2) is a nonfinal state in an AFA, while ϕ(x) is final.
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3.3.3 Possible valuations

Again, we want to approach this problem by an example.

Example 3.3.13 (Possible valuations)
Assume the formula ϕ(x, y) := p(x, y) → XG p(y, x) and the path π :=
{p(1, 2)}{p(2, 1)}. Intuitively, the path should clearly satisfy ϕ, since p(x, y)
matches π[0] = {p(1, 2)} with x = 1, y = 2 and the formula states that in
this case, p(y, x), which is p(2, 1) under those bindings, should hold on the
subsequent path, which is obviously satisfied by the only subsequent state
π[1] = {p(2, 1)}.
Important to this example is that p(x, y) and p(y, x) are essentially the same
propositions, not taking bindings into account. Being unbound, they share the
same matching semantics . This means that each state s on π matches p(x, y)
if and only if it matches p(y, x) or, in other words, p(x, y) holds if and only if
p(y, x) holds.

Hence, in state π[0] we can identify two matching propositions: p(x, y) with
x = 1, y = 2 and p(y, x) with y = 1, x = 2, leading to possible valuations as
x ∈ {1, 2}, y ∈ {1, 2} as a first try.

If we took this as defined ”set of possible valuations” as referred to in ob-
servation 3.3.12, this would mean, that in state π[1] one would have the fol-
lowing obligations to fulfill: G p(2, 1) and G p(1, 2). This is violated by
π[1] = {p(2, 1)}, since p(1, 2) does not hold.

So apparently the valuation y = 1, x = 2 is not a ”possible valuation” in the
above sense, but why not? The solution becomes clear through inspection of
the given formula. Here, we can see that now(ϕ) = ¬p(x, y) does not contain
p(y, x). Hence, the binding y = 1, x = 2 should not contribute to the truth
value of now(ϕ), nor should it be a binding to persist for the evaluation of
future states.

This observation yields the following definitions.

Definition 3.3.14 (Active propositions)
Let ϕ ∈ DLTL. Then Pactϕ ⊆ P, the set of active propositions of ϕ is defined as
the set of propositions contained in now(ϕ): Pactϕ := cl(now(ϕ)) ∩ P.

Definition 3.3.15 (Active variables)
Let ϕ ∈ DLTL with Pactϕ = {p1( ~x1), . . . , pn( ~xn)}. Then Vactϕ , the set of ac-
tive variables of ϕ is defined as the set of all unbound variables within active
propositions of ϕ:

Vactϕ := VactPact
ϕ

where
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Vact{p1( ~x1),...,pn( ~xn)} :=
⋃

1≤i≤n Vactpi(~xi)

where

Vactp(x1,...,xn) := {x ∈ {x1, . . . , xn} | βp(x) = �}

Definition 3.3.16 (Active propositions at a state)
Pactϕ (s) ⊆ P, the set of active propositions in ϕ matching s is defined as:

Pactϕ (s) := { p ∈ Pactϕ | µχp(ιs) ∧ ks E kp}.

Definition 3.3.17 (Active Bindings)
Let s = (ιs, ks) ∈ S and ϕ ∈ DLTL.

Define allϕ(s) as:

allϕ(s) := {(x, o) ∈ V ×O | ∃p ∈ Pactϕ (s) : {x 7→ o} ∈ σχp(ιs)}

Then Bact
ϕ (s) ∈ 2B, the set of active bindings at s under ϕ is defined as:

Bact
ϕ (s) := {β ∈ B | ∀x with (x, o) ∈ allϕ(s) :
∃1{x 7→ o′} ∈ β s.th. (x, o′) ∈ allϕ(s)}

Here ∃1 means: ”exists exactly one”.

Those active bindings are the ”possible valuations” we referred to in observation
3.3.12.

In this observation we also postulated that next should not bind any free vari-
ables ”in the original formula”. Hence, in the following subsection we redefine
next accordingly: The function remains unchanged for all subformulae ϕ′ of
a formula ϕ except cases where ϕ′ has the form Xϕ′′: Here we we only bind
values in the case where ϕ′′ 6= ϕ, because only in those cases we move ”further
down” in the alternating automata, we make a ”real step” according to the
partial order �.

3.3.4 Redefinition of next for DLTL

Definition 3.3.18 (Function next for DLTL)
Let π ∈ Sn. Let ϕ(~x) ∈ DLTL.

For ϕ′ ∈ cl(ϕ), we define next(ϕ(~x)) := nextϕ(~x)(ϕ(~x)) with nextϕ(~x) : DLTL →
DLTL being recursively defined as:

If ~x′′ ⊆ ~x′ ⊆ ~x and ϕ′(~x′) = X ϕ′′( ~x′′) then:

nextϕ(~x)(ϕ′(~x′)) = nextϕ(~x)(X ϕ′′( ~x′′)) :=

{
ϕ′′(~x) if ϕ′′ = ϕ, (remain unbound)

ϕ′′( ~x′′) otherwise, (take bound version)
Else:

nextϕ(~x)(ϕ′(~x′)) := next(ϕ′(~x′))
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Now we are ready to define the general declarative semantics. Here we postulate
a function valid : DLTL → B with valid(ϕ) = true if and only if in ϕ any
variable is defined before it is used. In section 3.4 we will explain this function
in detail and introduce a static analysis which decides if valid(ϕ) holds for a
given formula ϕ.

3.3.5 Declarative semantics of a DLTL formula

Definition 3.3.19 (Declarative semantics of a DLTL formula)
Let ϕ(~x) ∈ DLTL with valid(ϕ) = true and π ∈ S+.

π |= ϕ(~x)

: ⇐⇒

∀β ∈ Bact
ϕ (π[0]) :

π |= now(β̃(ϕ(~x))) ∧ π |= nextϕ(~x)(β̃(ϕ(~x)))

For the case of the empty path where |π| = 0, we define:

π |= ϕ

: ⇐⇒

ϕ = (ϕ′ R ψ′) for some ϕ′, ψ′ ∈ cl(ϕ)

Example 3.3.20 (Declarative semantics of a DLTL formula)
Let ϕ(x, y) := G( p(x) → XF q(y, x) ) and π := {p(1)}{q(2, x)}.

Further assume that for µχq , the matching function of q has such a structure
that q(2, 1) is a satisfying binding (cf. definition 3.3.9).

Then we have:

π |= ϕ(x, y)

⇐⇒

∀β ∈ Bact
ϕ (π[0]) :

π |= now(β̃(ϕ(x, y))) ∧ π |= nextϕ(x,y)(β̃(ϕ(x, y)))

⇐⇒

π |= now((λx.x 7→ 1) (ϕ(x, y))︸ ︷︷ ︸
ϕ(1,y)

) ∧ π |= nextϕ(x,y)((λx.x 7→ 1) (ϕ(x, y))︸ ︷︷ ︸
ϕ(1,y)

)

⇐⇒

π |= now(ϕ(1, y))︸ ︷︷ ︸
true

∧ π |= nextϕ(x,y)(ϕ(1, y))︸ ︷︷ ︸
X( ϕ(x,y) ∧ F q(y,1) )

⇐⇒
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π |= true︸ ︷︷ ︸
true

∧ π |= X( ϕ(x, y) ∧ F q(y, 1) )

⇐⇒

π1 |= ϕ(x, y) ∧ F q(y, 1)︸ ︷︷ ︸
=:ϕ1(x,y)

⇐⇒

∀β ∈ Bact
ϕ1(x,y)(π[1]) :

π1 |= now(β̃(ϕ1(x, y))) ∧ π1 |= nextϕ1(x,y)(β̃(ϕ1(x, y)))

⇐⇒

π1 |= now((λy.y 7→ 2) (ϕ1(x, y))) ∧ π1 |= nextϕ1(x,y)((λy.y 7→ 2) (ϕ1(x, y)))

⇐⇒

π1 |= now(ϕ(x, 2) ∧ F q(2, 1))︸ ︷︷ ︸
true

∧ π1 |= nextϕ1(x,y)(ϕ(x, 2) ∧ F q(2, 1))︸ ︷︷ ︸
X ϕ(x,y)

⇐⇒

π1 |= true ∧ π1 |= X ϕ(x, y)

⇐⇒

π1 |= true ∧ π2 |= ϕ(x, y)︸ ︷︷ ︸
true

⇐⇒

true

Note that in the last step |π2| = 0 and ϕ(x, y) is a Release formula.

This example shall conclude our definition of the declarative semantics of DLTL.
We now proceed with the definition and correctness proof of the static analysis
which detects invalid formulae.

3.4 Static analysis

The analysis is based on the idea of use-definition chains (UD chains) as they
are known from compiler construction theory. Opposed to usual UD chains,
which calculate the set of definitions which potentially reach a variable, our
analysis in conservative, meaning that for a used variable we calculate the set
of definitions which certainly reach this variable8. If this is empty, we report
the formula as invalid.

Again, we want to derive the details of this analysis by looking at an example.
8Note that it is no error, if a variable has more than one such definition. In this case,

the variable is bound by the first occuring definition. The latter definitions are automatically

turned into uses of this variable.
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Example 3.4.1 (Static Analysis - propagation over ”∧”)
Take for example the following formula:

ϕ(x, y) := p(x) ∧X F q(y, x)

This formula has an obvious splitting in the subformulae now(ϕ(x, y)) = p(x),
and nextϕ(x,y)(s), which depends on the state s.

Here, two cases can occur:

1. s |= p(x), say with a binding x = 1. This binding is available for the rest
of the path and in particular for the evaluation of nextϕ(x,y)(ϕ(1, y))s =
F q(y, 1) on subsequent states.

2. p(x) 6|= p(x). In this case, we have no binding for x at the current state.
However, this binding would not be needed anyway, since the formula
now(ϕ(x, y)) evaluates to false already.

So informally one can say that bindings defined by propositions progagate over
the ∧-operator.

A case which is harder to solve is the following.

Example 3.4.2 (Static Analysis - propagation over ”∨”)

ϕ(x, y) := p(x) → X F q(y, x)

which is in NNF:

¬p(x) ∨X ( true U q(y, x) )

At a first glance it seems unclear how a binding should be available for the
evaluation of F q(y, x), given that p(x) occurs in negated form.

However, again it helps to look at the possible cases:

1. p(x) does not hold at the current state s. In this case, we have no binding
for x at the current state. However, again this does not hurt, since both
formulae now(ϕ(x, y)) = ¬p(x) and nextϕ(x,y)(ϕ(x, y))s evaluate to true.

2. p(x) holds at the current state s, say with a binding x = 1. Again,
this binding is available for the rest of the path and in particular for the
evaluation of nextϕ(x,y)(ϕ(1, y))s = F q(y, 1) on subsequent states.

Again, informally one can conclude that bindings defined by negated propositions
progagate over the ∨-operator.

This should tell us that the following formula should be considered as invalid.
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Example 3.4.3 (Static Analysis - invalid formula)

p(x) ∨ q(y, x)

Here, p(x) is not negated and is a direct subformula of a ∨-formula.

Here the possible cases are:

1. p(x) holds at the current state, thus providing a binding for x. Then now
and next both evaluate to true.

2. p(x) does not hold at the current state, hence we have no binding for x
available. This is interesting with respect to the evaluation of q:

(a) q(y, x) does not hold. This is the easy case. Since neither of the
propositions hold, we should evaluate to false.

(b) q(y, x) holds, providing a binding for y. However, q(y, x) uses x,
whose value is undefined. Those are exactly the cases we want to
exclude.

In order to check if a given formula ϕ ∈ DLTL is valid informally, we do the
follwing.

1. For each time slice defined by ϕ, produce a set def (ϕ) of variables which
are defined on this time slice.

2. For each time slice defined by ϕ check for each variable if this variable is
defined on this or one of the previous (outer) time slices.

The set def ⊆ 2V of defined variables is calculated according to the above
observations:

Definition 3.4.4 (Function def )
Assume that ϕ ∈ DLTLNNF is in negation normal form (cf. section 2.1). Let
p ∈ P. Then we define def : DLTLNNF → 2V as:
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def (ϕ) := def +(ϕ) ∪ def −(ϕ)

where

def +(p) := ~vχp

def +(¬p) := ∅

def +(X ϕ) := ∅
def +(ϕ ∧ ψ) := def +(ϕ) ∪ def +(ψ)

def +(ϕ ∨ ψ) := def +(ϕ) ∩ def +(ψ)

def +(ϕ U ψ) := def +(ψ ∨ (ϕ ∧X(ϕ U ψ)))

= def +(ϕ) ∩ def +(ψ)

def +(ϕ R ψ) := def +(ψ ∧ (ϕ ∨X(ϕ R ψ)))

= def +(ψ)

and

def −(p) := ∅
def −(¬p) := ~vχp

def −(X ϕ) := ∅
def −(ϕ ∧ ψ) := def −(ϕ) ∩ def −(ψ)

def −(ϕ ∨ ψ) := def −(ϕ) ∪ def −(ψ)

def −(ϕ U ψ) := def −(ψ ∨ (ϕ ∧X(ϕ U ψ)))

= def −(ψ)

def −(ϕ R ψ) := def −(ψ ∧ (ϕ ∨X(ϕ R ψ)))

= def −(ϕ) ∩ def −(ψ)

Here def +(ϕ) provides the variables which are bound by propositions contained
in nonnegated form on the current time slice, while def −(ϕ) provides those for
propositions which occur under negation.

Next, we define the logical counterpart, the function use which represents the
used variables of the current timeslice.

Definition 3.4.5 (Function use)
Assume that ϕ ∈ DLTLNNF is in negation normal form. Let p ∈ P. Let
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�2 ∈ {∧,∨,U,R}. Then we define use : DLTLNNF → 2V as:

use(p) := {x ∈ V | (x, o) ∈ βp ∧ x 6∈ ~vχp}
= {x ∈ V | (x, o) ∈ βp ∧ x 6∈ def (p)}

use(¬p) := use(p)

use(X ϕ) := ∅
use(ϕ�2 ψ) := use(ϕ) ∪ use(ψ)

It is remarkable that according to this definition for any p ∈ Prop it holds that
def (p) = def (¬p) and use(p) = use(¬p).

Using those definition sets it is now straightforward to define the function
valid(ϕ), which is true if and only if ϕ defines any free variable before it is
used.

Definition 3.4.6 (Function valid)
Assume that ϕ ∈ DLTLNNF is in negation normal form. Let p ∈ P. Let
�1 ∈ {¬,X},�2 ∈ {∧,∨,U,R}. Then we define valid : DLTLNNF → B as:

valid(ϕ) := validdef (ϕ)(ϕ)

where for D ⊆ V :

validD(p) := use(p) ⊆ D

validD(�1ϕ) := validD∪def (�1ϕ)(ϕ)

validD(ϕ�2 ψ) := validD∪def (ϕ�2ψ)(ϕ) ∧ validD∪def (ϕ�2ψ)(ψ)

Example 3.4.7 (Static analysis - invalid formula (formally))
Assume again the following formula:

p(x) ∨ q(y, x)

Then we have:

valid(p(x)∨q(y, x)) = validdef (p(x)∨q(y,x))(p(x)∨q(y, x)) = valid∅(p(x)∨q(y, x)) = use(p(x)∨q(y, x)) ⊆ ∅ ∧ valid∅∪def (p(x)∨q(y,x)))(p(x)) ∧ valid∅∪def (p(x)∨q(y,x))(q(y, x)) = {x} ⊆ ∅ ∧ valid∅(p(x)) ∧ valid∅(q(y, x)) = false

Theorem 3.4.8 (Correctness of function valid)
For any formula ϕ ∈ DLTLNNF it holds that:

valid(ϕ) ⇐⇒ any variable in ϕ is defined before it is used



56 CHAPTER 3. THE SYNTAX AND SEMANTICS OF DLTL

Proof 3.4.9 (Correctness of function valid)
Soundness (⇒):

Let ϕ ∈ DLTLNNF . Assume valid(ϕ) = true. We distinguish the following
cases:

ϕ = p for some p ∈ P. Since valid(p) = true, we know that use(p) :=
{x ∈ V | (x, o) ∈ βp ∧ ¬x ∈ def (p)} ⊆ D. Also we know that D holds only
variables which are defined on this or previous temporal layers, because later
temporal layers guarded (which are explicitly or implicitly guarded by X) do
not contribute to the function def. Hence, any variable in p is defined before it
is used.

ϕ = �1ϕ
′ for some ϕ′ ∈ DLTLNNF . Since valid(ϕ) = true, it must also

hold that validD∪def (ϕ)(ϕ′) = true. So by induction hypothesis ϕ′ defines all
variables before they are used. Since the move form ϕ′ to ϕ introduces no new
variables, the same holds for ϕ.

ϕ = ϕ′ �2 ψ
′ for some ϕ′, ψ′ ∈ DLTLNNF . As above.

Completeness (⇐):

Let ϕ ∈ DLTLNNF . Assume any variable in ϕ is defined before it is used. We
distinguish the following cases:

ϕ = p for some p ∈ P. Since in p any variable which is used is defined by the
context, we have that ¬∀x : ((x, o) ∈ βp ∧ ¬x ∈ def (p)) → x ∈ D. Hence,
use(p) ⊆ D and so valid(p) = true.

ϕ = �1ϕ
′ for some ϕ′ ∈ DLTLNNF . Assume, that in ϕ all variables are defined

before they are used. Then by induction hypothesis, valid(ϕ′) = true. Hence
also valid(ϕ) = true.

ϕ = ϕ′ �2 ψ
′ for some ϕ′, ψ′ ∈ DLTLNNF . As above.

It should be noted that this analysis is conservative: It assures that if a formula
ϕ is valid, then there is no path π so that there is a variable x in ϕ which
could be used before it is defined when evaluating ϕ over π. Obviously it could
be that those cases do not occur for a given formula and some given set of
possible runtime paths. Hence one could argue that invalid formula should be
treated with a warning rather than a fast-failing error message. However, when
bypassing the static analysis in that way, we cannot guarantee any more the
soundness of the matching semantics for a proposition: At the moment, where
we know that a formula is valid and we come to decide if a proposition p over



3.5. OPERATIONAL SEMANTICS OF DLTL 57

variables ~x matches, then we know that it is sound to define that p does not
match if any of the values of those variables in undefined. When bypassing
the analysis, this guarantee cannot longer be given: Hence, one would have no
means of determining an invalid path/formula combination at runtime, which
would give away soundness.

3.5 Operational semantics of DLTL

Our operational semantics follow the declarative semantics very closely. The
two major differences lies in a necessary special treatment on if pointcuts in
order to evaluate them in the right context.

So the operational semantics are based on the following ideas.

1. We use a automaton based approach to propagate formulae over time.
We employ alternating automata (cf. section 2.1.1.4) as they are used in
model checking.

2. For each DLTL formula we generate an aspect which, at startup, registers
the initial configuration of an automaton, equivalent to this formula, with
an evaluation engine. Then, as the application runs, the aspect reports
at each joinpoint of interest the currently active set of propositions to the
engine, which then calculates the successor state under those propositions.

3. In most cases, the evaluation of a matching function pµχ for a given propo-
sition can entirely be handled by the AspectJ backend. Difficulties only
arise when pointcuts use if pointcuts, because in those cases the seman-
tics of DLTL and AspectJ differ: While if pointcuts in AspectJ can only
access values exposed at the current joinpoint, DLTL allows to also ac-
cess values which were defined by the formula on previous timeslices. The
solution is to extract if pointcuts (say if(expr())) from a proposition,
replacing them by if(true) within the matching function while at the
same time putting a constraint expr() on the proposition.

For easier reading, we make some general assumptions which should hold through-
out this chapter.

3.5.1 General assumptions

3.5.1.1 Alternating automata

In the following, for each ϕ ∈ DLTL we denote by Aϕ the alternating automaton
for ϕ as it was first mentioned in defintion 2.1.4. The construction can naturally
be extended for formulae over DLTL.
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3.5.1.2 Valid formulae

In this section we assume that for each given ϕ ∈ DLTL it holds that valid(ϕ) =
true.

3.5.1.3 Valid if pointcuts

For each if pointcut if(expr()) contained in any proposition of any given
DLTL formula ϕ, we assume that expr() is valid in the sense that for any
possible valuation it does not throw an exception 9 and so provides a Boolean
value as result. This allows us to interpret expr() as a function over bindings
into B. Please note that whenever expr() is evaluated, one can assume that
either all variables in expr() are bound or expr() can safely be evaluated to
false, as ϕ is assumed to be valid.

3.5.1.4 No garbage collection

For each object o being bound within a DLTL formula ϕ, we assume for this
section that by binding o, that this prevents o from being garbage collected
10 . In particular, o is available for subsequent matching and evaluation of if
pointcuts.

3.5.1.5 No side effects

We assume that for a given specification Φ ⊆ DLTL it holds that the evaluation
of any ϕ1 ∈ Φ has no impact whatsoever on the evaluation of any ϕ2 ∈ Φ (ϕ2 6=
ϕ1). Also we assume that the evaluation of any such ϕ ∈ Φ has no impact on
the behaviour of the underlying application and hence, the verified path π is
independent on the specification Φ. The implementation of J-LO makes sure
that the application can be oblivious of the inserted instrumentation.

3.5.2 Basic Definitions

As done for the declarative semantics, we would first like to introduce some
basic definitions. Most of them are necessary to provide a framework for the
special treatment of if pointcuts.

Definition 3.5.1 (Propositions of a formula)
Let ϕ ∈ DLTL. We denote the set of propositions in ϕ with Pϕ := cl(ϕ) ∩ P.

Definition 3.5.2 (Constraints)
For each V ′ ⊆ V, we define the set CV ′ of all constraints over labels from V ′ as:

9J-LO does properly handle those cases as we explain in chapter 4.
10This issue is also gracefully handled by J-LO and explained, as well, in chapter 4.
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CV ′ = B|V ′ → B.

Those constraints are used to represent if pointcuts in the right context.

Definition 3.5.3 (Operational proposition)
Let p ∈ P as P was defined in definition 3.3.8 with p = (lp, χp, kp, βp) ∈
V × PC ×K ×B.

We define the operational proposition p̂ as: p̂ := (lp, χ′p, kp, βp, ~γp) ∈ V × PC ×
K ×B × 2Cdom(βp) where:

χ′p := (µ′χp
, ~vχp , σχp)

with:

µ′χp
:= µχp where all if pointcuts in µχp have been replaced by if(true)

and:

~γp := {expr | if(expr) is an if pointcut in µχp}

We define P̂ as the set of all such operational propositions: P̂ := {p̂ | p ∈ P}.

Example 3.5.4 (Operational proposition)
As in example 3.3.10 we assume the following proposition p:

e x i t ( ca l l ( Object Stack . pop ( ) ) && i f ( o1 !=o2 ) ) returning o1

Then p̂ is defined as p̂ := (lp, χ′p, kp, βp, ~γp) with:

• µ′χp
= call(Object Stack.pop()) && if(true)

• ~γp = {λ( {o17→ o1, o2 7→ o2} ) . o1 6= o2}

• lp, kp, βp as before

Definition 3.5.5 (Matching of operational propositions)
For a state s = (ιs, ks) ∈ S and operational proposition p̂ ∈ P̂ with p̂ =
(lp, χp, kp, βp, ~γp) we say that p̂ matches s or holds in s, s |= p̂ for short, if the
following holds:

1. µχ′p(ιs) = true,

2. ks E kp and

3. ∀γ ∈ ~γp : γ(βp) = true

So the definition is essentially equivalent to defintion 3.3.9, however addition-
ally states that all constraints have to be fulfilled. Please note that the static
analysis (cf. section 3.4) makes sure that the binding function is rich enough
to allow evaluation of all constraints.
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Definition 3.5.6 (Operational formula)
For each Formula ϕ ∈ DLTL we denote by ϕ̂ the copy of ϕ where each propo-
sition p ∈ Pϕ is being replaced by p̂.

Definition 3.5.7 (Alternating automaton for a formula ϕ ∈ DLTL)
We define the AFA Aϕ essentially as it was done for the purpose of model
checking (cf. section 2.1.4).

The only small problem that arises with this definition is the fact that the
transition function δ is a function from Q into 22Q

. However, it is quite easy
to overload δ in such a way that it is defined for whole clause sets over 22Q

as
well. We are going to do so in section 3.5.2.1.

We call auch a clause set a configuration of Aϕ. That way one can start with
an initial configuration of {{ϕ̂}} and then simply change to the successor con-
figuration by applying δ.

We call a configuration q accepting if the following holds:

∃c ∈ q ∀ψ ∈ c : ( ψ = tt ∨ ∃ϕ1, ψ1 : ψ = (ϕ1 R ψ1) )

We define the language of Aϕ as:
L(Aϕ) := {π ∈ S+ | after reading π, Aϕ is in an accepting configuration }

Remark 3.5.8 (Transition function)
The transition function δ is the essence of our implementation. Hence we wish
to describe it in detail.

When taking a transition from one configuration to another, this transforms one
set of clauses to another. Each clause holds subformulae of ϕ̂. All the transition
function has to do is, to make sure that for each π[i] the appropriate sucessor
states are generated for all possible valuations at π[i], as it was described in
section 3.3.13.

Example 3.5.9 (Operational semantics by example)
Take for example the following formula

ϕ(x, y) := G(p(x) → XF q(y)y 6=x)

and the trace π := {p(1), p(2)}{q(2)}{q(3)}, which satisfies ϕ.

The alternating automaton would start in configuration q0 := {{ϕ(x, y)}}. At
the first state π[0] = {p(1), p(2)} we would get possible valuations of x ∈ {1, 2}.
It holds that π[0] |= now(ϕ). For valuations x ∈ {1, 2} we get nextϕ(x,y)(ϕ(1, y)){p(1), p(2)} =
ϕ(x, y)∧F q(y)y 6=1 respectively nextϕ(x,y)(ϕ(2, y)){p(1), p(2)} = ϕ(x, y)∧F q(y)y 6=2.
In the terms of alternating automata operating on clause sets, this yields a
sucessor configuration of:

q1 := { {ϕ(x, y),F q(y)y 6=1}, {ϕ(x, y),F q(y)y 6=2} }
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Note that q1 6∈ F .

This is now the next current configuration for the evaluation of π[1].

At π[1] = {q(2)} we only have one valuation: y ∈ 2. Under this valuation,
the subformulae ϕ(x, y) and F q(y)y 6=2 remain unchanged, because the former
only ”reacts” on p and in case of the latter the constraint y 6= 2 evaluates
to false under the valuation y = 2. Hence, π[1] 6|=y=2 q(y)y 6=2. In the case
of the subformula F q(y)y 6=1 it holds that π[1] |=y=2 q(y)y 6=1 and so F q(y)y 6=1

evaluates to tt, which is {{}} in the terms of alternating automata. This makes
the subformula simply disappear and yields the successor state:

q2 := { {ϕ(x, y)}, {ϕ(x, y),F q(y)y 6=2} }

In the last state π[2] = {q(3)} it holds that π[2] |=y=3 q(y)y 6=2 and so we gain:

q3 := { {ϕ(x, y)} } = q0

Note that q3 ∈ F , since q3 is a Release formula. Hence, π ∈ L(Aϕ).

When looking at state q2 we can make the following observation.

Observation 3.5.10 (Minimal specification)
The configuration q2 specifies that the formula ϕ(x, y)∨(ϕ(x, y)∧F q(y)y 6=2) has
to hold on the subsequent path. It holds that ϕ(x, y)∨ (ϕ(x, y)∧F q(y)y 6=2) =
ϕ(x, y) ∧F q(y)y 6=2. This yields the state q′2 := { {ϕ(x, y),F q(y)y 6=2} }, which
is equivalent to q2 and leads to what we call the subset reduction.

Definition 3.5.11 (Subset reduction)
Let ϕ ∈ DLTL, ϕ′ := NNF (ϕ̂) and q = {c1, . . . , cn} ∈ 22cl(ϕ′)

. Then we define
the subset reduction of q, ssr(q) as:

ssr(q) :=

{
q if n < 2⋃
i6=j{ci ∩ cj} otherwise

Theorem 3.5.12 (Correctness of subset reduction)
Let ϕ ∈ DLTL, ϕ′ := NNF (ϕ̂) and q ∈ 22cl(ϕ′)

. Let s ∈ S . Let Aϕ,q the copy of
Aϕ where q0 has been replaced by q. Then it holds that:

s ∈ L(Aϕ,q) ⇐⇒ ∈ L(Aϕ,ssr(q))

The easy proof is left as an exercise to the interested reader.
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3.5.2.1 Definition of δ

Let s ∈ S and ϕ ∈ DLTL. Further let P ′ := Pactϕ (s) ⊆ P and B′ := Bact
ϕ (s).

Then, according to definition 3.5.7, the AFA Aϕ equivalent to ϕ is defined as:
Aϕ := Aϕ′ = (Q,Σ, q0, δ, F ), where we define δ : Q× Σ → Q by:

δ(q, s) := δ(q,Pactϕ (s)︸ ︷︷ ︸
=:P ′

, Bact
ϕ (s)︸ ︷︷ ︸
=:B′

) (3.1)

where δ({c1, . . . , cn},P ′, B′) :=
⋃

1≤i≤n
δ({ci1 , . . . , cini

},P ′, B′), (3.2)

where δ({ϕ1, . . . , ϕm},P ′, B′) :=
⊗

1≤i≤m
δ(ϕi,P ′, B′), (3.3)

where δ(ϕ,P ′, B′) :=
⊗
β∈B′

δ(ϕ,P ′, β), (3.4)

where δ(ϕ,P ′, β) := δ(ϕ,P ′, β, def (ϕ)). (3.5)

Here equation 3.1 reduces δ of a configuration and a state to δ of a configuration,
the active propositions holding at this state and the set of active bindings at
this state. Equation 3.2 then reduces δ of a configuration to the join of δ of
all clauses. Then equation 3.3 reduces δ of a clause to the clause product of
the results for all single formulae. Equation 3.4 reduces δ of a formula and a
set of valuations to the clause product of all results for a single valuation and
this formula. This reflects the fact that a formula should hold for all possible
valuations at a given state. Eventually 3.5 defines the start of a recursion
decent, initializing a context D to set set of variables defined by ϕ, def (ϕ). The
recursion then continues as follows.

Definition 3.5.13 (Filtered bindings)
For any set of defined variables D ⊂ V we define the binding filtered for defined
variables as: β|D := {x 7→ o ∈ β | x ∈ D}

Remark 3.5.14 (Specialization of bindings)
The operational semantics include a specialization step, where unbound bind-
ings are replaced by bindings to objects. Hence for any β ∈ V → O, we overload
β with β : P → P such that for each p = (lp, χp, kp, βp) ∈ P:

β(p) := (lp, χp, kp, β′p)

where

β′p := {{x 7→ o} | o 6= � ∧ {x 7→ o} ∈ βp}
∪{{x 7→ o} | {x 7→ �} ∈ βp ∧ {x 7→ o} ∈ β}
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For whole sets of propositions P ′ ⊆ P we define respectively β : 2P → 2P as:

β(P ′) := {β(p) | p ∈ P ′}

Using those definitions, we can define the recursive decent of δ over ϕ as follows:

δ(p,P ′, β,D) :=

{
{{}} if β|D(p) ∈ β|D(P ′)
∅ otherwise

δ(¬p,P ′, β,D) :=

{
{{}} δD(p,P ′, β) = ∅
∅ otherwise

δ(X ϕ,P ′, β,D) := β|D(ϕ)

δ(ϕ ∧ ψ,P ′, β,D) := δ(ϕ,P ′, β, D ∪ def (ϕ ∧ ψ) )⊗ δ(ψ,P ′, β, D ∪ def (ϕ ∧ ψ) )

δ(ϕ ∨ ψ,P ′, β,D) := δ(ϕ,P ′, β, D ∪ def (ϕ ∨ ψ) ) ∪ δ(ψ,P ′, β, D ∪ def (ϕ ∨ ψ) )

δ(ϕ U ψ,P ′, β,D) := δ( ψ ∨ (ϕ ∧X(ϕ U ψ)) ,P ′, β, D ∪ def (ϕ U ψ) )

δ(ϕ R ψ,P ′, β,D) := δ( ψ ∧ (ϕ ∨X(ϕ R ψ)) ,P ′, β, D ∪ def (ϕ R ψ) )

Based on this defintion on the AFA Aϕ, we now define the operational seman-
tics.

3.5.3 Operational semantics of a DLTL formula

Definition 3.5.15 (Operational semantics of a DLTL formula)
Let ϕ ∈ DLTL, π ∈ S+. We say that π is a valid path for ϕ, if and only if:

π ∈ L(Aϕ).

It is certainly no suprise that in the following we want to proof that the declar-
ative and operational semantics coincide.

Theorem 3.5.16 (Equivalence of declarative and operational semantics)
Let ϕ ∈ DLTL, π ∈ S+. Then:

π |= ϕ ⇐⇒ π ∈ L(Aϕ)

The proof of this theorem is somewhat long so we want to conduct it in the
following subsection.
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3.5.4 Proof of equivalence of declarative and operational se-

mantics

The proof is structured as follows.

First we briefly give reasons for why an approach based on alternating automata
[?] is correct in general. We do not want to give a full formal proof here, since
it was already conducted by Vardi [?] who introduced such automata for the
purpose of LTL model checking.

What follows is the proof of equivalence on the level of a single valuation and
a single proposition. Based on the assumption that the semantics coincide on
this level, it is then easy to proof equivalence of the whole semantics.

3.5.4.1 Correctness of alternating automata

Vardi gave a formal correctness proof for alternating automata over infinite
paths in [?], chapter 3. The idea is a simple induction. Based on the definition
of δ it is obvious that the sucessor configuration of a configuration c equivalent
to a formula ϕ holds exactly those states, which represent next(ϕ). The defin-
ition of the acceptance set F in our case is consistent with the fact that each
configuration represents a disjunct of conjuncts. A run of an AFA is accepting
in this model, if there exists at least one clause in the final configuration such
that all states in this clause are Release formulae. This makes sense, given that
obligations (eventualities) which are put on a path are represented by Until
formulae. So when there exists a clause without such obligations, this means
that there exists a run such that all obligations have been fulfilled. In the other
case where no such clause exists, this means that in all clauses at least one
Until formula exists and hence on each run there is at least one obligation not
fulfilled.

3.5.4.2 Correctness on the propositional level

Let s = (ιs, ks) ∈ S and p = (l, χ, k, β) ∈ P. We need to show that:

s |= p ⇐⇒ δ(p,P(s), β) = {{}}

Completeness (⇒):

Assume s |= p. Then according to section 3.3.9 the following holds:

• µ′χ(ιs) = true,

• ks = k and
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for µ′χ := (σµ ◦ β) (µχ).

On the operational side it holds that:

δ(p,P(s), β) = δ(p,P ′, β,D) :=

{
{{}} if β|D(p) ∈ β|D(P ′)
∅ otherwise

So we need to show that:

s |= p⇒ β|D(p) ∈ β|D(P ′).

Due to our static analysis we know that β|D is rich enough so that there are no
free variables in β|D(p). Since s |= p we know that there is a p′ ∈ P ′ such that
µχ′

p̂′
(ιs) = true. Since β|D is also rich enough to bind all free variables in p′,

and obviously ks = k, it holds that p′ = p. Hence β|D(p) ∈ β|D(P ′) holds as
well.

Soundness (⇐):

The argument here is actually the very same. Since δ(p,P(s), β) = {{}} holds,
we know that β|D(p) ∈ β|D(P ′). Hence it also holds that µ′χ(ιs) = true and
thus also s |= p.

3.5.4.3 Correctness in general

Case π[0] 6|= now(ϕ(β(~x))):

What we need to show is that in this case, δ(ϕ, π[0], β) = ∅. Since π[0] 6|=
now(ϕ(β(~x))) holds, we know that even under the assumption that the subse-
quent path fulfills all obligation guarded by the X operator, the path violates
ϕ. Hence, it suffices to show that δ(ϕnow, π[0], β) = ∅, where ϕnow is the copy
of ϕ where all subformulae guarded by X operators have been replaced by tt.
We want to prrof the claim indirectly:

Assume that δ({{ϕnow}}, π[0], β) = {c1, . . . , cn} with n > 0 and ∃i(1 ≤ i ≤
n) : |ci| > 0. Let ϕ′ ∈ ci for one such i. By definition, the calculation of
δ({{ϕnow}}, π[0], β) is fully reduced to δ of Boolean combinations of ff and tt
(resp. its equivalent {{}}). Hence it suffices to concentrate on the Boolean
connectives. For the clause product ⊗ and any clause sets s1, s2 it holds that
|s1⊗ s2| > 0 ⇐⇒ |s1| > 0 ∧ |s2| > 0. For the join operation ∪ and any clause
sets s1, s2 it holds that |s1 ∪ s2| > 0 ⇐⇒ |s1| > 0 ∨ |s2| > 0. So due to
our assumtion, it has to hold that ϕnow consists of a Boolean combination such
that if each join term the evaluation of at least one of the two branches results
in {{}} and for each ⊗ term, the evaluation of both branches results in {{}}.
If this was the case, however, this would also mean that π[0] |= now(ϕ(β(~x)))
which violates the assumption.
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Case π[0] |= now(ϕ(β(~x))):

In this case wee need to show that if δ(ϕ, π[0], β) = c it holds that δ∗(c, π1) ∈
F ⇐⇒ π1 |= ϕ.

When looking at δ, one can easily see that the only case where formulae are ”pro-
duced” for the sucessor configuration is the one of ϕ = X ϕ′: Here the inner for-
mula ϕ′ is added - as a copy with specialized bindings. So all formulae contained
in c are subformulae of ϕ. Also, only those ϕ′ with ϕ′ 6= ϕ are specialized. Hence
it should be clear that c is equivalent to nextϕ(~x)(ϕ(β(~x)))π[0]. Since the subset
reduction is sound and complete, it follows that δ∗(c, π1) ∈ F ⇐⇒ π1 |= ϕ.



Chapter 4

Implementation

The implementation follows almost completely the operational semantics. First
we extract formulae from the annotations of Java bytecode. This is explained in
section 4.1. For each formula ϕ ∈ DLTL we generate an aspect in the AspectJ
language. This code generation is performed using an extended version of the
AspectBench Compiler (abc). This compiler is introduced in the first section of
this chapter. Further details about how we extended abc in order to accomplish
this code generation can be found in our seminar paper [?]. In this work we only
want to give an overview of the employed tools. The details of the generated
code are given in section 4.3. Here we describe the generated aspects and their
members and set them into relation to the operational semantics. Section 4.4
explains the treatment of special runtime behaviour such as exceptions, garbage
collection and application shutdown.

4.1 Annotation extraction

On May 15th, 2005, a development version of Soot was published, which sup-
ports extraction of annotations on the bytecode level. Soot is a bytecode analy-
sis framework and integral part of the abc compiler (see section 4.2.3). At the
beginning of 2005, when we started development of J-LO however, there was
no such support available yet. Hence we had to employ other tool support to
accomplish this task.

We used the bytecode engineering toolkit BAT2 [?] which is being developed at
the Darmstadt Software Technology Group and is an offspring of the Magellan
[?] framework for cross-artefact information retrieval. Specifically, we used
BAT2XML, an extension of BAT2, which allows for transformation of classes in
the Java bytecode format into an XML representation. J-LO uses BAT2XML to
generate an XML representation for each given class. This XML representation
is then parsed in order to extract the LTL formula annotations in String format,
using standard techniques.

67
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BAT2XML allows to preserve line number information contained in the Java
bytecode as well as debug information such as the .java source file which
generated the corresponding bytecode file. Though not yet implemented, future
versions of J-LO could make use of this information in order to point the user
to the location1 of a formula for the purpose of debugging.

As a result of this process, for a given set of class files, J-LO holds a list of LTL
formulae specified in those classes. The formulae are available in String format,
which means that they have to be parsed to be processed any further. This
parsing is accomplished with an extended version of the AspectBench compiler.

4.2 The AspectBench compiler

Unfortunately in the past, many proposed AspectJ language extensions have
gone into different builds of various compilers - mostly into the ajc [?] compiler
(the original implementation by PARC) but also into others like JAsCo [?],
AspectWerkz [?] or in the form of hand coded preprocessors. The AspectBench
Compiler (abc) which was developed by the McGill and Oxford universities
now facilitates such extensions by providing an extensible, optimizing compiler
for the AspectJ programming language. This will enable researchers henceforth
to implement and/or port such extensions into one common framework and so
reuse their implementations at once, as we described in [?].

Now first we give a brief overview of the structure of abc.

4.2.1 Structure of abc

The major Java based compilers for AOP languages that are around today, are
all so-called weaving compilers: They have two major passes, one compilation
pass, where the aspects are translated into Java bytecode using a special com-
piler for that language, and one weaving pass, where calls to the appropriate
pieces of advice are woven into the actual core application at all the places
where pointcuts apply. Runtime checks are inserted at all the necessary places.

As such a compiler, abc is based on two major frameworks: As compiler fron-
tend the Polyglot [?] compiler toolkit is used. Polyglot is a compiler framework
built as front-end to PPG, an extensible LALR parser generator based on the
CUP LALR parser generator for Java. In PPG, existing grammars can op-
tionally be extended by extending or dropping productions of a base grammar.
Also, Polyglot uses object association in favor over class inheritance employing

1Unfortunately this information may not be 100% exact since annotations themselves have

no line numbers attached in the bytecode - only executable code has. Hence one would have

to approximate the location of the annotation e.g. by assigning the line number of the next

executable line of code.
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a sophisticated delegation model. This allows extenders to add or replace func-
tionality piece by piece to distinct node types of the abstract syntax tree which
do not need to share common super types.

As the weaving backend, the bytecode analysis and optimization framework
Soot is being employed. Soot is able to load Polyglot ASTs and/or Java byte-
code and transform those into an internal three address code representation
called Jimple. This representation is stackless and as such allows for relatively
easy code transformations and analyses. The weaving process, that implements
the translation from AspectJ into plain Java, makes use of this representation.
Since Soot is also an optimization framework, many intra- and interprocedural
analyses are already builtin and can easily be extended. They can be applied
to the readily woven code at once, thus generating more efficient code than ajc
does, in certain situations. With respect to compile time performance, however
abc tends to be slower than ajc due to it’s heavily object-oriented structure.
Whereas ajc is optimized for compile time performance, abc is optimized for
extensibility and run time performance of the resulting bytecode.

4.2.2 Polyglot

Polyglot as the abc compiler frontend, facilitates easy extendability in several
dimensions. This is an enormous benefit over earlier approaches in compiler
technologies, which usually only allowed extendability by the means of class in-
heritance, which is truly one-dimensional: Each AST node inherits functionality
from its parent nodes and from nowhere else. During the last years however,
many authors like Gamma et al. have suggested to use object composition in
favor over class inheritance, because it tends to lead to more flexible system
designs (see [?], pp. 18-20). Polyglot makes consequent use of the delegation
pattern, that allows for such object composition:

Each AST node, whenever visited, dispatches this message first to its delegate
object, which by default is the visited object itself.

Figure 4.1: Polyglot delegation model (with call back to original receiver)

Using this mechanism, one can easily replace or extend functionality that is
spread over various node types, which do not need to share common super
types.

In addition to delegates, nodes also support a chain of extension objects. An
extension is meant to add members to a set of node types.

Polyglot also supports type checking and other semantic passes for the Java
language. However since we are doing a source to source transformation, we
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are not going to extend those facilities. We only make use of them implicitly
through the final transformation processes to Java bytecode.

4.2.3 Soot

Soot is a bytecode analysis and optimization framework, which provides com-
mon templates for inter- and intraprocedural analyses. Several such analyses
are already builtin. They comprise even complex points-to and flow analyses,
which can be used to reason about control flow, possible method dispatches
at runtime and so forth. Obviously, by making use of information produced
by such static analyses, an AspectJ compiler can generate much more efficient
code under certain circumstances. For instance, the evaluation of cflow could
be dramatically accelerated by replacing stacks with counters, which is possible
in most common situations [?].

Nevertheless, Soot is, in the first place, used within abc because of the Jimple
representation it provides. A Jimple program consists of a stackless, three-
address code2 representation of Java bytecode. In Jimple, all implicit method
invocations (e.g. String concatenation) and implicit references to the current
object (this) have been resolved. As a result, all objects that contribute to the
implementation of a method body are explicitly available in a local variable and
each statement consists only of at most one method call and one assignment.
This makes Jimple easy to process and an ideal base for modifications as they
have to be performed by the advice weaving process.

Table 4.1 gives an example of this representation. Lines 1-7 define a class in
normal Java syntax while lines 9-30 show the corresponding Jimple code.

In abc, weaving is implemented by generating a so-called AspectInfo data struc-
ture, which describes transformations on the level of Jimple code. This code
can then, using Soot, be transformed to bytecode or source code again. The
latter is particularly useful for educational purposes, since one can see at once,
how advice weaving affects given classes.

This shall conclude our brief overview of the abc framework. Further details
about how we extend it to achive the desired code generation can be found in
[?]. The next section will explain what the generated code looks like and why
it fulfills the necessary requirements for the operational semantics.

4.3 Code generation

Generally, for each specified formula, we generate one single aspect. Each such
aspect defines implicitly a singleton object (see [?] for a description of the

2executing object, arguments and result
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1 public class Foo {
2 int a ;
3

4 public int f ( int x , int y , int z ) {
5 return a+x∗y+z ;
6 }
7 }
8

9 public class Foo extends java . lang . Object {
10

11 int a ;
12

13 public int f ( int , int , int ) {
14

15 Foo this ;
16 int x , y , z , $ i0 , $i1 , $i2 , $ i 3 ;
17

18 this := @this : Foo ;
19 x := @parameter0 : int ;
20 y := @parameter1 : int ;
21 z := @parameter2 : int ;
22 $ i0 = this .<Foo : int a>;
23 $ i1 = x ∗ y ;
24 $ i2 = $ i0 + $ i1 ;
25 $ i3 = $ i2 + z ;
26 return $ i3 ;
27 }
28

29 //Implicit constructor omitted

30 }

Table 4.1: Java class and corresponding Jimple code

Singleton Design Pattern). This object is automatically instantiated at the
first time a piece of advice of this aspect is to be executed. All fields we declare
on such an aspect are of private scope and hence only visible to the declaring
aspect. This ensures the desired property that evaluation of a single formula
should not interfere with the evaluation of other formulae - at least for the case
of singlethreaded applications. For the case of multithreaded applications we
need to handle some synchronization issues. This is described in section 4.3.6.

The following subsections explain the components which are generated for each
formula/aspect. We assume that a formula ϕ ∈ DLTL is given.
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4.3.1 Propositions

For each proposition in Pϕ, we generate a constant of type IProposition using
the following factory method of the class IFormulaFactory:

IP ropo s i t i on Propos i t i on (
S t r ing propLabel ,
S t r ing [ ] boundFormals ,
I I fC l o s u r e [ ] i f C l o s u r e s

)

The parameters have the following semantics:

• propLabel - The textual representation of this proposition.

• boundFormals - An array holding all names of variable which are bound
by this proposition.

• ifClosures - An array of if-closures (constraints) that have to be fulfilled
by this proposition.

4.3.1.1 If-closures

An if-closure is a simple closure that encapsulates the evaluation of a constraint.
Each such closure adheres to the interface shown in table 4.2.

public interface I I fC l o s u r e {

public boolean s a t i s f i edUnde rB ind ing s (
WeakValuesMap<Str ing , Object> currentBinding

) throws UserCausedException ;

public St r ing [ ] variableNames ( ) ;

public St r ing toS t r i ng ( ) ;

}

Table 4.2: Interface for if-closures

The method satisfiedUnderBindings returns for a given binding if the expres-
sion represented by thid closure is satisfied under the given bindings. The para-
meter currentBinding represents the function β, which maps variable names
(type String) to objects (tyoe Object). In cases where the evaluation of the



4.3. CODE GENERATION 73

represented expression leads to an exception, this exception is wrapped in a
UserCausedException. This mechanism allows J-LO to gracefully report such
exceptions to the user instead of just shutting down.

The method variableNames returns an array of names of all variables that
are used in the expression this closure represents. This is used within the
proposition to enable binding of those variables.

The method toString returns a String representation of the associated expres-
sion for debugging purposes.

Example 4.3.1 (If-closure)
For a pointcut if(s!=t) we generate the closure shown in table 4.3.

In lines 5-8, the values for s and t are retrieved from the map. In the case
where those values have wrong types, a ClassCastException is thrown and
false is returned.

Line 10 then evaluates the actual expression. In the case where s or t are null,
a NullPointerException is thrown and false is returned 3.

If everything goes fine, the Boolean value of the expression is returned. If the
evaluation of line 10 causes an exception this is known to be due to invalid
input. Hence, we wrap the exception to be recognized as caused by the user
(lines 12-15).

Each such proposition is assigned to a private variable prop<i> where <i> is a
natural number ≥ 0.

Those propositions are then combined with temporal operators to form the
actual formula.

4.3.2 Initial formula

A private final field formula is generated and initialized with a term represen-
tation of the formula, using the previously defined propositions as atoms. For
instance the formula of example 3.5.9 would induce the representation shown
in table 4.4.

4.3.3 Initialization/bootstrapping code

Initialization is performed within the constructor of the aspect. The constructor
registers the initial formula (see section 4.3.2) with the VerificationRuntime.
This induces a small problem: Aspects are instantiated lazily. The pointcuts
generated for an aspect are defined by the propositions contained in the for-
mula. An aspect is instantiated immediately before the first timem, a piece of

3Actually the runtime library ensures type safety and non-nullness of s and t so this check

is really pedantic.



74 CHAPTER 4. IMPLEMENTATION

1 new I I fC l o s u r e ( ) {
2 public boolean s a t i s f i edUnde rB ind ing s (
3 WeakValuesMap currentBind ings ) {
4 try {
5 f ina l S ing l e ton s =
6 ( S ing l e ton ) currentBind ings . get ( ” s ” ) ;
7 f ina l S ing l e ton t =
8 ( S ing l e ton ) currentBind ings . get ( ” t ” ) ;
9 try {

10 return s != t ;
11 } catch ( java . lang . Exception ex ) {
12 throw new I I fC l o s u r e . UserCausedException (
13 ex ,
14 ” s != t ”
15 ) ;
16 }
17 } catch ( java . lang . Nul lPo interExcept ion ex ) {
18 return fa l se ;
19 } catch ( java . lang . ClassCastExcept ion ex ) {
20 return fa l se ;
21 }
22 }
23

24 public java . lang . S t r ing [ ] variableNames ( ) {
25 return new java . lang . S t r ing [ ] { ” s ” , ” t ” } ;
26 }
27

28 public java . lang . S t r ing toS t r i ng ( ) {
29 return ” s != t ” ;
30 }
31 }

Table 4.3: Example if-closure

advice of this aspect is to be executed. Liveness conditions such as F p would
imply that whenever p does not occur on a path, the aspect would not even be
instantiated, because µχp never matches and hence no advice is executed. This
would mean that the formula would never be installed and hencenot be verified.
Therefore we generate an additional empty advice in each such aspect, which
just bootstraps the aspect at startup4 :

4We are aware of the fact that Java applications can be run without actually having a main

method by bootstrapping the application within a static block. However we believe that this
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private f ina l IFormula formula =
fa c t o ry .G(

f a c t o ry . Impl (
prop0 ,
f a c t o ry .X(

f a c t o r y .F( prop1 )
)

)
) ;

Table 4.4: Example formula instantiation

before ( ) :
execution ( public stat ic void ∗ . main ( St r ing [ ] ) ) {}

Apart from those members, which define and register a formula, a verification
aspect also contains a mechanism for collecting propositions at joinpoints of
interests and for triggering transitions of the associated AFA.

4.3.4 Mechanism for collecting propositions

Propositions are collected using the set currentProps, which is private to each
aspect. Each time when the matching function pointcut µχp of a pointcut χp of
a proposition p matches a joinpoint ι, an appropriate proposition is instantiated
and added to currentProps. In the case where mutiple such propositions match
the same joinpoint, all those propositions are added in the same way. Here it is
importand to make use of a well defined advice precedence (cf. section 2.3.1.5).
We recall that if all before advice precede after advice, all matching pieces
of advice are executed in lexicographical order. So at the end of each aspect
we generate a transition advice, which reports the set currentProps to the
VerificationRuntime and so demands a transition of the related AFA under
those propositions.

Table 4.5 shows the advice that are generated for the following formula (speci-
fying the semantics of the Singleton design pattern).

S ing l e ton s , S ing l e ton t :
G(

(
exit ( ca l l ( S ing l e ton +.new ( . . ) ) ) returning s

) −> (
X(

is not actually made use of in any Java application.
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! (
F(

exit ( ca l l ( S ing l e ton +.new ( . . ) ) && i f ( s != t ) )
returning t

)
)

)
)

)

Lines 1-7 of the excerpt in table 4.5 define the advice responsible for collecting
the proposition p := exit( call(Singleton+.new(..)) ) returning s.
Line 1 defines that the advice is to be executed after the joinpoint. This is due
to the fact that we have an exit proposition. Also, line 1 binds the variable s

to the return value. Line 2 is a generic pointcut that constraints this advice to
not match any joinpoints which lie within control flow of joinpoints within the
Runtime Verification package. This assures that the instrumented application is
oblivious to the instrumentation as much as possible. Line 3 holds the pointcut
µ′χp

. Line 4 generates a new hash map with weak values (this is explained
further in section 4.4.2). This map represents the binding function βp. Line
5 builds up this binding by associating the variable name "s" with the object
s. Lines 6-8 then add a copy of prop0 to currentProps, which is specialized
under βp. This is the proposition p̂, which we referred to earlier.

Lines 11-19 behave equally with respect to the second contained proposition
q := exit( call(Singleton+.new(..)) && if(s!=t)) returning t. The
only notable difference is that this proposition contains an if pointcut if(s!=t).
As explained in the operational semantics, this leads on the one hand to an if-
closure generated on prop1 (c.f. table 4.3) and on the other hand to a substition
of if(s!=t) by if(true) in µ′χq

, as one can see in line 13. As a result, the
associated piece of advice will execute also if s!=t does not hold. However,
in this case the if-closure will evaluate to false and hence the proposition as a
whole will not hold in this case.

Note that there is no way to directly decide s!=t from within the piece of advice
(lines 11-19) because one has no access to s. (s is used by q but not defined
by q.)

4.3.5 Triggering a transition

Lines 21-32 of table 4.5 show the transition advice. As mentioned before, this
advice is executed at each matching joinpoint after all other pieces of advice
matching the same joinpoint. To assure as well as possible that the transi-
tion advice is only triggered when necessary, lines 23-26 hold a disjunct of all
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after ( ) returning ( S ing l e ton s ) :
! cflow (within ( rwth . i 2 . l t l r v . . ∗ ) ) &&
ca l l ( ( S ing l e ton +).new ( . . ) ) {

f ina l WeakValuesMap bind ings = new WeakValuesHashMap ( ) ;
b ind ings . put ( ” s ” , s ) ;
currentProps . add (

prop0 . s p e c i a l i z eB i nd i n g s ( b ind ings )
) ;

}

after ( ) returning ( S ing l e ton t ) :
! cflow (within ( rwth . i 2 . l t l r v . . ∗ ) ) &&
( ca l l ( ( S ing l e ton +).new ( . . ) ) && i f ( true ) ) {

f ina l WeakValuesMap bind ings = new WeakValuesHashMap ( ) ;
b ind ings . put ( ” t ” , t ) ;
currentProps . add (

prop1 . s p e c i a l i z eB i nd i n g s ( b ind ings )
) ;

}

after ( ) :
! cflow (within ( rwth . i 2 . l t l r v . . ∗ ) ) &&
(

ca l l ( ( S ing l e ton +).new ( . . ) ) | |
ca l l ( ( S ing l e ton +).new ( . . ) ) && i f ( true )

) {
Ver i f i ca t ionRunt ime . g e t In s tance ( ) . updateFormula (

”Formula1” ,
currentProps

) ;
currentProps . c l e a r ( ) ;

}

Table 4.5: Generated pieces of advice

matching functions of all contained propositions. Hence, the advice is executed
whenever at least one proposition holds at the current joinpoint. Lines 27-30
trigger the transition of the associated AFA under the given propositions. Line
31 eventually clears the set currentProps for later reuse.
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4.3.6 Multithreading issues

Nowadays a lot of Java applications tend to be multithreaded and hence this
was an issue we needed to address.

All functions implementing the transition relation δ are performing nondestruc-
tive updates only stateless. Also all those functions except some inside the class
Proposition are stateless. Hence, making them thread safe was not a difficult
task.

The only problem we came across when testing our lock order reversal example
(see section ??), was about ”collecting the set of propositions holding at a
state”: As noted above, propositions for each formula ϕ are collected by a
unique aspect instance associated with ϕ. In a multithreaded environment it
may happen that multiple joinpoints on multiple threads occur at the same
time. Without precaution propositions of both threads could be merged in the
set currentProps of this aspect before finally the transition advice is executed
by one of the threads.

Theoretically there are at least two ways to solve this problem. The first is to
lock the aspect whenever the first advice executes and unlock it after a transition
is taken. This would be safe however, could very much slow down the system.
Also is would forbid concurrent calculation of δ for multiple formulae.

The other option is to make the field currentProps a ThreadLocal. This
means that any thread in the virtual machine gets its own copy of the field.
Hence the sets cannot be accidently again. J-LO follows this implementation.

This concludes our summary of the code generation part of J-LO. The next
section gives some details about special cases of exceptional runtime behaviour
such garbage collection, shutdown and exceptions caused by invalid input.

4.4 Dealing with exceptional runtime behaviour

4.4.1 Notification of shutdown

One crucial point of the DLTL semantics is that they are defined over paths
of finite lenght. As a consequence, J-LO needs to be notified somehow about
the end of the execution path in order to report about the final configuration
of each AFA.

This is accomplished by adding the additional aspect ShutdownHook as shown
in table 4.6.

Line 3 declares that this aspect should have precedence over all others. With
other words no other aspect can intercept the execution of ShutdownHook.

The empty advice at lines 5-8 causes this aspect to be instantiated the first time
when a class is instantiated which resides not within the runtime verification
package.
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1 public aspect ShutdownHook {
2

3 declare precedence : ShutdownHook , ∗ ;
4

5 before ( ) :
6 s tat i c in i t i a l i za t ion (∗ ) &&
7 ! within ( rwth . i 2 . l t l r v . . ∗ ) {
8 }
9

10 public ShutdownHook ( ){
11 Runtime . getRuntime ( ) . addShutdownHook (
12 new Thread ( ) {
13 public void run ( ) {
14 Ver i f i ca t ionRunt ime
15 . g e t In s tance ( ) . tearDown ( ) ;
16 }
17 }
18 ) ;
19 }
20

21 }

Table 4.6: Shutdown hook aspect in J-LO

When this happens, this causes the constructor defined by the lines 8-16 to
execute. The costructor then installs a Shutdown Hook5, a nonactive thread,
with the virtual machine. When shutting down, all installed shutdown hooks
are concurrently executed. The shutdown hook invokes tearDown() on the
verification runtime (line 15). This causes that the current configuration of
all attached AFAs is reported to all registered observers (see section 4.4.3). A
configuration can then be queried if it is final. Any AFA which is in a nonfinal
configuration at this state directly relates to a formula which was violated by
that path.

Note that shutdown hooks may not be executed in the case where the virtual
machine really dies (e.g. when invoking kill -9 under Linux).

4.4.2 Behaviour under presence of garbage collection

An important feature of managed code environments such as the Java Runtime
Environment is garbage collection. Garbage collection (GC) assures that no

5see http://java.sun.com/j2se/1.5.0/docs/guide/lang/hook-design.html
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memory is being held by the virtual machine for objects which are no longer ac-
cessible. Today there are various efficient garbage collection algorithms around
(see [?] for an overview). In the case of J-LO however, we wanted to make sure
that the runtime verification does not interfere with GC: Objects should not be
prevented from being garbage collected because this could lead into scalability
problems. On the other hand we needed to ensure sound semantics for the
case of GC. Although we could not make any assumptions about the actual
implementation of GC it turned out that there was no need for this because
the following invariant always holds:

A proposition which references an object which is unreachable from the rest of
the program, this proposition can never match again.

The reason for this invariant is that the propositions on an execution path
can only expose objects which are available on the control flow of the current
joinpoint (cf. definition 3.3.9), Ocflowι . If an object o is unreachable, it can
never occur in this set again6. Hence, no state on the subsequent path can
define a variable with value o any more. As a result no proposition using a
variable which is bound to o can match a state on this rest of the path.

For this reason, the implementation of J-LO uses a hash map with weak values
as representation of the binding βp for any proposition p. Whenever such a weak
values map is accessed, all objects which are not accessible any more are pruned
from the map. (This can easily be implemented by using a ReferenceQueue.)

Additionally, J-LO stores for each proposition p the initial size b of βp. When-
ever a proposition is tried to match against a state, we first check if |βp| < b.
If this is the case, p changes its internal state in such a way that it will never
match again. Then it is semantically equivalent to ff .

It should be noted that during calculation of the successor of a configuration
using δ, those references are temporarily made strong in order to avoid cases
where objects are available during the evaluation of one branch of a formulae
but not on another.

4.4.3 Observering configuration changes

After having explained how we assure that the J-LO implementation complies
with the general assumptions of the operational semantics, we now explain how
changes of the configuration of an AFA can be intercepted.

The key component here is the interface VerificationRuntime.Listener as
shown in table 4.7.

6Note that all objects which are on the current call stack are reachable per definition.
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1 public interface L i s t en e r {
2

3 public void no t i f yReg i s t e r ed (
4 St r ing formulaId ,
5 Thread assoc iatedThread ,
6 Conf igurat ion i n i t i a l C o n f i g
7 ) ;
8

9 public void not i fyUpdate (
10 St r ing formulaId ,
11 Thread assoc iatedThread ,
12 Conf igurat ion newConfig
13 ) ;
14

15 public void notifyTearDown (
16 St r ing formulaId ,
17 Conf igurat ion c on f i g
18 ) ;
19

20 public void notifyOnUserCauseException (
21 St r ing formulaId ,
22 Thread assoc iatedThread ,
23 St r ing i fExpre s s i on ,
24 Throwable except ion ,
25 Conf igurat ion c on f i g
26 ) ;
27

28 }

Table 4.7: Listener interface in J-LO

Lines 3-7 define the method notifyRegistered, which notifies the observer
that a new formula was registered with the verification runtime. It propa-
gates a unique formula ID, the thread which registered the formula and a
Configuration object which represents the initial configuration of the formula.
This configuration can be rendered into String format and can also be queried
if it is (non)final or (non)accepting.

Lines 9-13 define the method notifyUpdate which is called whenever a transi-
tion was taken for the given formula. The parameters are equal to the ones of
notifyRegistered. The configuration is here the new configuration result-
ing from the transition.

The method notifyTearDown is defined by the lines 15-18. It is called when
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the virtual machine shuts down and hence the end of the execution path is
reached. When this happens, this method is called for any currently installed
formula with the formula ID and the final configuration as a parameter. By
inspecting if this configuration is (non)final it can easily be determined whether
the associated formula is satisfied or falsified on the observed path.

Important: Note that notifyTearDown is executed within the control flow
of a shutdown hook (cf. section 4.4.1). No other shutdown hooks may be
installed from within such a context. While usually one would never even
try to do so, however we found that apparently some methods of the Sun
Abstract Windowing Toolkit (AWT) implicitly do so, in particular the methods
of java.awt.Toolkit.

4.4.3.1 User caused exceptions

Lines 20-26 define the method notifyOnUserCausedException. This method
is called whenever the evaluation of an if-closure (cf. section 4.3.1.1) leads to an
exception which is cause by an invalid expression. (A typical case would be the
if pointcut if(1/0<2).) When this happens, the formula is removed from fur-
ther verification. In particular no calls to notifyUpdate and notifyTearDown

will be performed any more for this formula.

Also notifyOnUserCausedException is called with the following arguments:
The Id of the formula, the thread which triggered the evaluation7, the expression
that caused the exception in String format, the exception that was thrown and
the last configuration before the transition was tried to be taken. Given that
the configuration holds all current bindings it should be straightforward to
determine the cause of the exception.

4.4.3.2 Custom observers

J-LO provides a default implementation of this interface, which just dumps all
the available information to the console. Of course more intelligent observers
are possible. For instance an observer could have a special treatment for certain
formulae to implement fast fail semantics (”abort application immediately”) or
issue notifications over some communication channel etc. This however is out
of the scope of this work and will be addressed in the future.

This shall conclude our summary of the implementation details of J-LO. Further
information about how J-LO is used along with further examples may be found
on http://www-i2.informatik.rwth-aachen.de/JLO/.

The next chapter will elaborate on the correctness and performance of the J-LO
implementation.

7This might be important to debugging because the expression could access the thread.
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Metrics and performance

In this section we want to report on how we tested J-LO with respect to cor-
rectness and performance.

5.1 Correctness of the implementation

Though we did nor formally prove the implementation of J-LO correct, we
are reasonably confident that it correctly implements the operational semantics
given in section 3.5 for the following reasons:
First of all most of the functions defined by the operational semantics are rea-
sonably straightforward to implement and are small. We have have used the
Eclipse metrics plugin available at [?] to derive the following data:
An average method of the J-LO runtime library has about 7 lines of code, the
whole library has about 2000 method lines of code (MLOC1).
The only methods that were reported as ”out of bounds” because they were
unreasonably long or had unreasonably many possible paths were generated
methods implementing equals and hashCode for some objects. Those methods
are not thought to be read or altered by human being anyway.
Hence we believe that the implementation is easy to follow and should hence
be easy to proof equivalent to the operational semantics if needed.
Additionally we employed the tool FindBugs [?] in order to find potential
sources of bugs in the implementation of the runtime library. Two minor issues
were found and resolved immediately.
With respect to the code generation part of J-LO of course we would have to
proof correct abc as well as our implementation of additional compiler passes,
which would certainly be a hard task. We did not conduct such a proof and
so rely on the brought user base of abc and its principal components Soot and
Polyglot. Indeed abc has proven very stable in the past and bugs don’t seem
to be reported very frequently.

1non-blank and non-comment lines within method bodies

83
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5.2 Performance

This section is split into two parts. First we want to give some arguments for the
general theoretical performance of the employed algorithsm. Then in the second
subsection we elaborate on the performance of the specific implementation of
J-LO.

5.2.1 Theoretical performance

As noted above, the evaluation of each formula can be performed separately.
Thus the overall cost of Runtime Verification is linear in the number of formulae.

For each formula, this formulae first needs to be brought into negation normal
form and then installed with the runtime engine. This can be seen as constant
cost over the runing time of the application. The cost of the evalation of
installed formulae then heavily depends on two factors:

1. The size of the formula.

2. The kind of pointcuts defined by the propositions of the formula.

3. The number of different bindings available at a joinpoint.

The first point is general to all algorithms employing LTL: For a given formula
ϕ it is known (e.g. [?]) that the calculation of a successor of ϕ has an exponential
worst case complexity in |ϕ| := |cl(ϕ)|.

Since in the case of J-LO we generate successor states on-the-fly, we know the
set of propositions to calculate the (unique) successor for, so here the cost is
constant with respect to the number of propositions.

To some amount, δ may be statically precalculated, which theoretically should
yield a constant cost for taking transitions at runtime. However, the use of
dynamic bindings leads into problems here. We comment on this further in the
section about related work, specifically section ??.

The second point is specific to AspectJ: J-LO allows arbitrary AspectJ point-
cuts to occur within a proposition. Recalling our definition of a filtered path (cf.
section ??), this of course means that the moe joinpoints are matched by the
pointcuts contained in a formula, the more frequently the AFA for this formula
is updated.

The worst case scenario is here an unguarded if pointcut: A pointcut as
if(A.field==true) leads, as described in section 4.3.1.1, to a piece of ad-
vice with associated pointcut if(true). This means that this piece of advice
and hence the evaluation of δ is triggered at every possible joinpoint, which is
certainly very expensive. Hence we advise users to guard such pointcuts e.g.
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by writing instead: set(A.field) && args(bool) && if(bool==true). This
would only capture events where the field is set, which should be sufficient in
most cases and would capture much less joinpoints, hence being more efficient.

The third point depends on the way how proposition specifications overlap
within the definition of a formula. Usually the number of possible valuations
at a joinpoint is 1. However in cases where multiple pointcuts holding an
overlapping set s of variables match an overlapping set of joinpoints, this leads
to multiple valuations for all variables in s. According to the definition of δ, we
have to evaluate formulae for all such valuations, which makes the calculation
of δ more expensive.

5.3 Performance of the implementation

We did some performance measurements using the commercial tool JProbe
[?]. JProbe allows to take detailed profiles down to the level of single Java
statements.

Interestingly, the analysis showed that the largest part of the overhead was
caused by the fact that we use a set based implementation and not actually by
the intrisic complexity of the algorithms. Specifically, the implementation uses
hash sets over hast sets of formulae. So whenever a formula is added to such
a set, its hash code needs to be calculated. Over 70% of the time were spent
in this calculation of hash codes. Calculation is done by recursively calculating
hash codes for all propositions over the whole term structure of the formula.
For the calculation of the hash codes of propositions it is crucial that bindings
are taken into account, because a proposition p(x) has different semantics than
p(1) where x has been bound to 1. This again makes it necessary to calculate
a hash code for a weak values hash map (see section 4.4.2) and this is where
performance is lost: Since weak values maps hold a volatile set of mappings,
for calculating the hash code, one needs to generate a current snapshot of the
contents of the map and generate a hash code from this snapshot. This is rather
expensive, especially when done so frequently.

We implemented some different caching techniques to counterbalance this be-
haviour with notable success. Though it seems to be a good idea to employ a
different implementation technique in future versions.

In addition to profiling, we tested running time of some small example ap-
plications in contrast to their counterpart which had been instrumented with
J-LO.

Here it showed up that it is not only important, what formulae are specified
in the system but also how expensive the execution of the uninstrumented code
(we call this the ”shadow” of the formula) is.
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Specifically we attached a formula to an ArrayList based stack, stating that
after each push operation top returns the pushed element until another push

or pop is invoked. Then we pushed 1000 times the same object in the stack.
Naturally, the calculation of δ for this formula was rather constant. Though,
this constant overhead prooved quite expensive compared to the usual push
operation . In fact it slowed down the operation by about a factor 1000.

When reasoning about operations on a higher level however, those operations
tend to are more expensive themselves so that the constant cost of the evaluation
of a specific formula is rather small compared to the execution of the shadow.

Altogether one can say that if joinpoints of interest occur reasonably seldom
and show a reasonably small shadow then the instrumentation overhead showed
negligible.

Static precalculation (see section ?? and our publication [?]) should help to
mitigate this overhead to the feasible minimum.

TODO: LOR
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Related Work

In this section we present related and previous work both, on the side of Run-
time Verification and the side of aspect-oriented programming.

6.1 Design by contract

Runtime Verification can be seen as an extemsion of the well-known Design
By Contract (DBC) principle, which became popular by the work of Bertrand
Meyer [?] and his reference implementation in the programming language Eiffel
[?]. In DBC, the programmer is able to annotate a method with preconditions,
postconditions and invariants, which are checked during runtime before, after
respectively during the execution of the annotated method.

Table 6.1 (adopted from 1) gives an example of such conditions. The annotated
method shall put the element x into a map, so that it is retrievable by key.

Lines 2 to 5 state required preconditions: The capacity should not be exceeded
and the key may not be empty. Lines 7 to 11 state postconditions which shall
hold after the method body has been executed: x shall be contained in the map;
item should return x for this key and the value count should have increased
by 1.

There are other languages with native support for DBC, namely D 2, Lisaac
3, and the ADA [?] based SPARK 4, which aimes at high-integrity software
development.

Several DBC implementation for Java exists [?, ?, ?, ?, ?, ?, ?, ?, ?]. They
all work with conditions specified in the source code somehow. The one that
comes closest to the technology of J-LO is Contract4J [?]. Similar to J-LO

1http://archive.eiffel.com/doc/manuals/technology/contract/page.html
2http://www.digitalmars.com/d/index.html
3http://isaacos.loria.fr/
4http://www.praxis-his.com/sparkada/
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put (x : ELEMENT; key : STRING) i s
require
count < capac i ty
not key . empty

do
. . . Some i n s e r t i o n a lgor i thm . . .

ensure
has (x )
item ( key ) = x
count = old count + 1

end

Table 6.1: Example for pre and postconditions in Eiffel

Contract4J is also based on Java 5 annotations and the generation of AspectJ
code. However, Contract4J uses the Java Annotation Processing Tool (APT)
[?], which comes with the JDK [?]. This allows annotation extraction from
source code only. Contract4J uses APT to produce an XML structure holding
all annotation information. Then it uses XSLT [?] transformations to produce
aspects implementing runtime checks for the given conditions. In that way,
the internal workflow is quite similar to the one of J-LO except that J-LO
does not employ XSLT transformations but rather a real compiler for code
transformations, which provides for type safety checks and more.

We believe that apart from the automaton-based backend, that J-LO provides,
Contract4J and J-LO have much in common and so we met with the developer
of Contract4J, Dean Wampler at the AOSD ’05 conference [?] and talked about
a possible bundling of efforts.

Equal to all other aforementioned tools, Contract4J allows simple DBC, while
the logic provided by J-LO is much richer as we will see.

Though those pre and postconditions are very valuable, and already much more
expressive and convenient to use than the aforementioned assertions, they still
do not provide any temporal notion: All, pre and postconditions as well as
invariants only reason about each single method invocation. There is no way of
specifying temporal interdependencies such as which can be expressed in LTL.
On the other hand, any of this condition can easily be expressed with LTL.
Hence, Runtime Verification provides a superset of expressiveness compared to
DBC.
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6.1.0.1 JML

6.2 Runtime Verification

With respect to Runtime Verification, few tools have been released so far.

6.2.0.2 Java PathFinder and Java PathExplorer

The probably best known project is the Java PathExplorer (JPaX) [?], a suc-
cessor of Java PathFinder (JPF) [?]. The latter one is now open source and
can be accessed on the web [?], while the former remains under closed source
development at NASA AMES [?].

The system consists of a virtual machine (VM) which is written in pure Java
and thus runs inside the usual Java VM. This double interpretation naturally
leads to a rather large runtime overhead compared to other approaches, however
provides for powerful and flexible instrumentation. JPF used to support LTL
input, as described in [?].

6.2.0.3 ptrace

6.2.0.4 Temporal rover

6.2.0.5 Orchids

http://www.lsv.ens-cachan.fr/orchids/
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Conclusion

7.1 Future work

7.2 Pitfalls we came across

7.3 Own related publications
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Chapter 8

APPENDIX

8.1 AspectJ pointcuts

The pointcut language of AspectJ version 1.2 comprises the following kinds of
pointcuts. Informal definitions of id, type, method and constructor patterns
are given on page 25.

Context exposure
Those three pointcuts are used to expose context. They all match on actual
runtime types.
This

Syntax this( TypePattern ), this( Identifier )

Semantics matches each joinpoint, where the currently executing object is an
instance of a type matched by TypePattern resp. the declared type of the
Identifier

binds Identifier to the currently executing object

Target

Syntax target( TypePattern ), this( Identifier )

Semantics matches each joinpoint, where the called object is an instance of a
type matched by TypePattern resp. the declared type of the Identifier

binds Identifier to the target object

Args

Syntax args( ArgPattern )
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Semantics matches each joinpoint, where the actual types of the arguments
are matched by the ArgPattern

binds Identifier to an array containing the argument objects; primitive are
automatically boxed into objects

Primitive / kinded pointcuts
Those pick out joinpoints of a certain kind (method call, field access, etc.). They
all match the execution of a single statement or a region of the dynamic control
flow. Each pointcut can expose state in combination with this, target,args
(see above).
Execution

Syntax execution( MethodPattern ), execution( ConstructorPattern )

Semantics matches the execution of any method/constructor matched by the
MethodPattern/ConstructorPattern

binds this to executing object (or null if method is static)

binds target to executing object (or null if method is static)

binds args to arguments of method invocation

Call

Syntax call( MethodPattern ), call( ConstructorPattern )

Semantics matches call to any method/constructor matched by the Method-
Pattern/ConstructorPattern

binds this to caller object (or null if called from static context)

binds target to called object (or null if method is static)

binds args to arguments of method invocation

Get

Syntax get( FieldPattern )

Semantics matches reading access to any field matched by the FieldPattern

binds this to accessed object

binds target to accessed object

binds args to empty
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Set

Syntax set( FieldPattern )

Semantics matches writing access to any field matched by the FieldPattern

binds this to accessed object

binds target to accessed object

binds args to new field value

Static Initialization

Syntax staticinitilization( TypePattern )

Semantics matches initialization of all static members as well as the execution
of the static{...} block in all types matched by TypePattern

binds this to null

binds target to null

binds args to empty

Pre-Initialization

Syntax preinitilization( ConstructorPattern )

Semantics matches code executed between entry of a constructor matched by
ConstructorPattern and the first line after the call to super(...)

binds this to null

binds target to null

binds args to arguments of constructor invocation

Initialization

Syntax initilization( ConstructorPattern )

Semantics matches code executed in a constructor matched by Constructor-
Pattern starting from the first line after the call to super(...)

binds this to object being initialized

binds target to object being initialized

binds args to arguments of constructor invocation
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Execution Handler

Syntax handler( TypePattern )

Semantics matches code executed inside exception handlers for exceptions
matched by TypePattern

binds this to executing object (or null if surrounding method is static)

binds target to executing object (or null if surrounding method is static)

binds args to the exception to handle

Lexical scope pointcuts
Those allow to restrict other pointcuts to certain lexical scopes.
Lexcial scoping over types

Syntax within( TypePattern )

Semantics matches code in the lexical scope of a type matched by TypePattern

binding of this,target,args null resp. empty

Lexcial scoping over methods/constructors

Syntax withincode( MethodPattern ), withincode( ConstructorPattern )

Semantics matches code in the lexical scope of a method/constrcutor matched
by MethodPattern/ConstructorPattern

binding of this,target,args null resp. empty

Control flow-based pointcuts
Those allow to restrict matching to the control flow of other pointcuts.
Control flow

Syntax cflow( Pointcut )

Semantics matches any joinpoint occuring in the control flow of the any join-
point matched by Pointcut

binding of this,target,args null resp. empty

Control flow (below)

Syntax cflowbelow( Pointcut )
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Semantics matches any joinpoint occuring in the control flow of the any join-
point matched by Pointcut which is not matched by Pointcut itself

binding of this,target,args null resp. empty

Expression-based pointcuts
Those allow the dynamic evaluation of Boolean expressions.
Boolean evaluation

Syntax if( BooleanExpression )

Semantics matches any joinpoint at which the BooleanExpression holds; the
BooleanExpression can only access static members, parameters exposed
by the enclosing pointcut or advice, and reflective information

binding of this,target,args null resp. empty
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LOR-Formel

G(

¬lock(i, x)U(

lock(i, x) ∧X(

¬unlock(i, x)Ulock(i, y)x 6=y

→
G¬(

¬lock(j, y)U(

lock(i, y)i 6=j ∧X(

¬unlock(j, y)Ulock(j, x)i 6=j

)

)

)

)


