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Laurie Hendren2, Oege de Moor1, Neil Ongkingco1, Ganesh Sittampalam1

1 Programming Tools Group 2 Sable Research Group 3 Programming Languages Group
University of Oxford McGill University University of Waterloo

ABSTRACT
A wealth of recent research involves generating program
monitors from declarative specifications. Doing this effi-
ciently has proved challenging, and available implementa-
tions often produce infeasibly slow monitors. We demon-
strate novel optimisations that dramatically improve per-
formance — typically reducing overheads to within an order
of magnitude of the program’s normal runtime.
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1. INTRODUCTION
Generating program monitors from declarative trace spec-

ifications is currently a very active research area. i.e. [2–4]
Proposals have been put forward by the runtime verifica-
tion and aspect-oriented programming communities. Both
have discovered the difficulty of making trace monitoring
feasible – clearly any naive implementation of an entity that
observes the entire trace of program execution is bound to
fail. The fact that many proposals remain at the stage of re-
search prototypes and there are few “real” implementations
is a clear indication of the inherent difficulties.

2. TRACEMATCHES
Figure 1 introduces our running example and illustrates

the syntax of a tracematch. It shows a program monitor
that checks the ‘safe enumeration’ property:
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1 pointcut vector update() :
2 call(∗ Vector.add∗(..)) || call(∗ Vector.clear ()) ||
3 call(∗ Vector.insertElementAt(..)) ||
4 call(∗ Vector.remove∗(..)) ||
5 call(∗ Vector.retainAll (..)) || call(∗ Vector.set ∗(..));
6

7 tracematch(Vector ds, Enumeration e) {
8 sym create after returning(e) :
9 call(Enumeration+.new(..)) && args(ds);

10 sym next before :
11 call(Object Enumeration.nextElement()) && target(e);
12 sym update after :
13 vector update() && target(ds);
14

15 create next∗ update+ next
16 {
17 throw new ConcurrentModificationException();
18 }
19 }

Figure 1: Tracematch for unsafe enumerators.

After an enumeration is created, the datasource
upon which it is based may not be modified until
the enumeration has finished being used — that
is, its next() method is never called again.

The regular expression (line 15) picks out violations of
this property. It matches the filtered execution history of
a program at the point a violation occurs. This filtering
removes all events which don’t correspond to the alphabet
of the regular expression (defined in lines 8–13).

A complete semantics of tracematch matching is beyond
the scope of this document but has been published sepa-
rately [1].

Our design differs from existing approaches in that trace-
matches allow free variables in symbols — the stipulation
is that there must be a consistent binding of the free vari-
ables to program values to trigger a match; filtering, thus,
becomes specific to possible values of the variables. For ex-
ample, after filtering, the trace

1 create(ds1, e1), create(ds2,e2), update(ds1), next(e2), next(e1)

will match once with variable bindings (ds1,e1) — these can
be accessed in the body. Using free variables, it is possible
to query the history of specific object instances.

3. CHALLENGES
Efficiently implementing any trace monitoring feature is

certainly no easy undertaking. We have identified a series
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Figure 2: Performance comparisons

of challenges that implementors must face, and propose so-
lutions to them that have been proved to work in the case
of tracematches.

The overall design of a trace monitor is similar to a parsing
concern — we would like to recognise the interesting traces
of the program, observing one event at a time. However, the
usual textbook techniques for parser generation and optimi-
sation apply only in a limited form, due to the presence of
filtering and free variables.

We choose to view the task of picking out relevant traces
as a finite-state automaton recognising some language. This
is a rather pervasive idea in the field, and much of the related
work shares it. Again, however, care must be taken.

Challenge 1 (Automaton Construction). Using au-
tomata to implement trace monitors is a natural idea, but
some care must be taken.

Both performance and correctness can suffer if this is ap-
proached naively. We identify the requirements and develop
an algorithm for constructing a matching automaton from
a tracematch.

Challenge 2 (Partial Matches). During program ex-
ecution, some record of partially completed matches must be
kept, since matching happens in an incremental fashion —
the trace is observed one event at a time. Comparison to re-
lated work has shown that doing this naively by using some
generic data structure incurs unnecessary overheads.

Our solution is to generate partial match classes that are
specialised to the particular tracematch. We find it conve-
nient to represent the matching state in disjunctive normal
form — each disjunct corresponds to a filtered trace that
might lead to a complete match. By customising the repre-
sentations of these disjuncts, we are able to reduce memory
usage and ensure access time to bound variables is a simple
field access. Also, a lot of the conditional logic required in
the updates that happen when a new event is observed can
be unrolled into the specialised methods, resulting in faster
execution.

Challenge 3 (Space Leaks). Since tracematches al-
low the capture of program values, it is natural to be con-
cerned about possible space leaks — if some object is captured
by a TM variable, it might not be reclaimed by the garbage
collector as it normally would have been, and over the course
of a program execution memory will be wasted.

We propose a comprehensive set of analyses to address
this problem, categorising the free variables a tracematch
defines into groups according to their memory behaviour,
and eliminating space leaks whenever possible (while giving
a compile-time warning when it isn’t).

Challenge 4 (Partial Match Set Representation).
A common problem is that even though a large number of
partial matches can be accumulated during the execution of
the program, each event only requires the update of a small
subset of these.

We exhibit an algorithm and data structure (indexing)
which significantly alleviate this problem — whenever pos-
sible, only the relevant partial matches are traversed during
an update.

4. PERFORMANCE AND FURTHER WORK
Figure 2 shows the performance differences that the opti-

misations make. The comparison with PQL [3] gives an in-
dication of the advantages of generating specialised code for
representing automata and partial matches, because PQL is
a similar trace monitoring system which does not perform
those two optimisations.

We plan to develop additional analyses that would al-
low some tracematches to be evaluated statically — a user
could thus opt for a significantly increased compilation time,
but if a whole-program analysis can determine that certain
tracematch-relevant events always (or never) occur, the in-
strumentation can be adapted to take this into account.

We believe there is also further scope to improve our in-
dexing data structure and algorithm.
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