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Abstract
A wealth of recent research involves generating program monitors
from declarative specifications. Doing this efficiently hasproved
challenging, and available implementations often produceinfeasi-
bly slow monitors. We demonstrate how to dramatically improve
performance — typically reducing overheads to within an order of
magnitude of the program’s normal runtime.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms Experimentation, Languages, Performance

Keywords Program monitoring, runtime verification, program
analysis, aspect-oriented programming

1. INTRODUCTION
Generating program monitors from declarative trace specifications
is currently a very active research area (e.g.[2–4]). Proposals have
been put forward by the runtime verification and aspect-oriented
programming communities. Both have discovered the difficulty of
making trace monitoring feasible — clearly any naive implementa-
tion of an entity that observes the entire trace of program execution
is bound to fail. The fact that many proposals remain at the stage of
research prototypes and that there are few “real” implementations
is a clear indication of the inherent difficulties.

We present our approach to declarative trace monitoring: trace-
matches. The novel contribution is the design of a trace monitoring
feature with free variables, as well as an efficient, feasible imple-
mentation.

2. TRACEMATCHES
Figure 1 introduces our running example and illustrates thesyntax
of a tracematch. It shows a program monitor that checks the ‘safe
enumeration’ property:

After an enumeration is created, the datasource upon which
it is based may not be modified while the enumeration is in
use — that is, until the last call to itsnext () method.

The regular expression (line 15) picks out violations of this
property. It matches thefiltered execution history of a program at
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1 pointcut vector update () :
2 call (∗ Vector .add∗(..)) || call (∗ Vector . clear ()) ||
3 call (∗ Vector . insertElementAt (..)) ||
4 call (∗ Vector .remove∗(..)) ||
5 call (∗ Vector . retainAll (..)) || call (∗ Vector . set∗(..));
6

7 tracematch(Vector ds, Enumeration e){
8 sym create after returning (e) :
9 call (Enumeration+.new (..)) &&args(ds);

10 sym next before :
11 call (Object Enumeration.nextElement ()) &&target(e);
12 sym updateafter :
13 vector update () &&target(ds);
14

15 create next∗ update+ next
16 {
17 throw new ConcurrentModificationException ();
18 }
19 }

Figure 1. Tracematch for unsafe enumerators.

the point a violation occurs. This filtering removes all events which
don’t correspond to the alphabet of the regular expression (defined
in lines 8–13).

A complete semantics of tracematch matching is beyond the
scope of this document, full details can be found in [1].

Our design differs from existing approaches in that trace-
matches allow free variables in symbols — the stipulation isthat
there must be a consistent binding of the free variables to program
values to trigger a match; filtering, thus, becomes specific to possi-
ble values of the variables. For example, after filtering, the trace

create (ds1, e1) create (ds2,e2) update(ds1) next (e2) next(e1)

will match once with variable bindings(ds1,e1)— these can be
accessed in the body. Using free variables, it is possible toquery
the history of specific object instances.

3. CHALLENGES
Efficiently implementingany trace monitoring feature is certainly
no easy undertaking. We have identified a series of challenges that
implementors must address, and propose solutions to them that
have been proved to work in the case of tracematches.

The overall design of a trace monitor is similar to a parsing
concern — we would like to recognise the interesting traces of
the program, observing one event at a time. However, the usual
textbook techniques for parser generation and optimisation apply
only in a limited form, due to the presence of filtering and free
variables.



Figure 2. Performance comparisons

We choose to view the task of picking out relevant traces as a
finite-state automaton recognising some language. This is arather
pervasive idea in the field, and much of the related work shares it.

CHALLENGE 1 (Automaton Construction). Using
automata to implement trace monitors is a natural idea, but some
care must be taken.

Both performance and correctness can suffer if this is ap-
proached naively. We identify the requirements and developan
algorithm for constructing a matching automaton from a trace-
match.

CHALLENGE 2 (Partial Matches). During program
execution, some record of partially completed matches mustbe
kept, since matching happens in an incremental fashion — thetrace
is observed one event at a time. Comparison to related work has
shown that doing this naively by using some generic data structure
incurs unnecessary overheads.

Our solution is to generate partial match classes that are spe-
cialised to the particular tracematch. We represent the matching
state in disjunctive normal form — each disjunct corresponds to
a filtered trace that might lead to a complete match. By customis-
ing the representations of these disjuncts, we are able to reduce
memory usage and ensure access time to bound variables is a sim-
ple field access. Also, a lot of the conditional logic required in the
updates that happen when a new event is observed can be unrolled
into the specialised methods, resulting in faster execution.

CHALLENGE 3 (Space Leaks).Since tracematches allow the cap-
ture of program values, it is natural to be concerned about possible
space leaks — if some object is captured by a TM variable, it might
not be reclaimed by the garbage collector as it normally would
have been, and over the course of a program execution memory
will be wasted.

We propose a comprehensive set of analyses to address this
problem, categorising the free variables a tracematch defines into
groups according to their memory behaviour, and eliminating space
leaks whenever possible (while giving a compile-time warning
when it isn’t).

CHALLENGE 4 (Partial Match Representation).
A common problem is that even though a large number of partial
matches can be accumulated during the execution of the program,
each event only requires the update of a small subset of these.

We exhibit an algorithm and data structure (indexing) which
significantly alleviate this problem — whenever possible, only the
relevant partial matches are traversed during an update.

4. PERFORMANCE AND FUTURE WORK
Figure 2 shows the performance differences that the optimisations
make. The comparison with PQL [3] gives an indication of the ad-
vantages of generating specialised code for representing automata

and partial matches, because PQL is a similar trace monitoring sys-
tem which does not perform those two optimisations.

We plan to develop additional analyses that would allow some
tracematches to be evaluated statically — a user could thus opt for
a significantly increased compilation time, but if a whole-program
analysis can determine that certain tracematch-relevant events al-
ways (or never) occur, the instrumentation can be adapted totake
this into account.

We believe there is also further scope to improve our indexing
data structure and algorithm.
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