
Virtual Machine-based Control Flow Matching

Michael Haupt Sebastian Kanthak Mira Mezini
Software Technology Group

Darmstadt University of Technology, Germany

{haupt,mezini}@informatik.tu-darmstadt.de, kanthak@rbg.informatik.tu-darmstadt.de

ABSTRACT
Aspect-oriented programming languages allow for quantify-
ing, using pointcuts, over the execution of programs, and
for attaching additional functionality to join points in the
execution where the quantifications match. Frequently, join
points cannot be statically resolved, i. e., mapped to loca-
tions in program code (join point shadows). In these cases,
pieces of conditional logic called residues are used to deter-
mine whether join point shadows actually yield join points
at run-time. Certain pointcuts allow for quantifying over
the dynamic control flow of programs. The implementation
of the associated residues is comparatively expensive with
respect to performance. This paper presents the implemen-
tation of control flow residues in a virtual machine support-
ing aspect-oriented programming natively. Extensive perfor-
mance measurements show that implementing such support
at virtual machine level is beneficial and yields results that
are at least comparable to static optimisations.

1. INTRODUCTION
In complex systems, concerns tend to “cross-cut” each

other. In terms of object-oriented decomposition, this means
that the implementations of most concerns are clearly map-
pable to classes and collaborations thereof. The implemen-
tations of other concerns, however, are scattered over mod-
ules of the aforementioned kind, and tangled with their code.

The aspect-oriented programming (AOP) paradigm [23,
12] introduces a new kind of modules called aspects that
allow for capturing crosscutting concerns in a localised way
and with explicit interfaces to the rest of the system. Aspect-
oriented programming languages introduce the following no-
tions [22]. Crosscutting behaviour, encapsulated in aspects,
is regarded as functionality that is to be executed whenever
the application it cuts across reaches certain points in its ex-
ecution. These points in the execution graph of an applica-
tion are called join points (e. g., method calls, field accesses,
etc.). They are quantified over by means of so-called point-
cuts, which thus are queries over the execution of a program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

1 c l a s s A {
2 B b = new B() ;
3 vo id m() { b . x () ; }
4 vo id n () { b . y () ; }
5 vo id o () { b . x () ; b . y () ; }
6 }
7

8 c l a s s B {
9 vo id x () { . . . t h i s . k () ; . . . }

10 vo id y () { . . . t h i s . k () ; . . . }
11 vo id k () { . . . }
12 }

Listing 1: Sample classes for cflow.

Whenever a pointcut matches, crosscutting behaviour, rep-
resented in the form of advice, which are method-like con-
structs, can be executed.

To implement such a model, a process called weaving is of-
ten used. It inserts advice invocations into application code
at locations called join point shadows [24]. Join point shad-
ows are code structures (expressions, statements or blocks)
that yield join points during execution. For example, the
shadow of a method call is a call instruction. Join point
shadows are determined by evaluating pointcuts.

Not all join point shadows can be fully determined stati-
cally, because join points are dynamic by nature. Pointcuts
that quantify over dynamic properties of join points cannot
definitely be mapped to code locations. For example, in As-
pectJ [22, 4] (an aspect-oriented extension to Java), point-
cuts exist that filter method calls based on the type of the
target object, or on the types of arguments to the call. When
such dynamic conditions apply to a join point shadow, the
weaver generates pieces of conditional logic called residues
that are woven in at the shadow along with advice invoca-
tions.

A commonly used dynamic pointcut is cflow. It quantifies
over control flows. To illustrate its meanings, consider, for
example, the two classes in Lst. 1. Both methods in A invoke
methods on an instance of B, and both of those methods in
turn invoke, at some time during their execution, B.k().

Next, assume that the call to k() is to be advised by some
aspect. The advice is to be executed only if k() is called in
the course of an execution of A.m(). The pointcut expressing
this looks as follows:

1 c a l l (vo id B. k ()) && c f l ow (execut i on (vo id A.m()))

In other words, “match all calls to B.k() that occur in the
control flow of the execution of A.m()”. Normally, it cannot
be determined statically whether a particular call to k() is

inside that control flow. This is why dynamic residues are
needed.

Different AOP implementations have different ways of im-
plementing these residues (details will be given in Sec. 2).
The vast majority of existing AOP systems implements them
as calls to the particular system’s AOP infrastructure that
are woven at join point shadows. This has the effect that
the residues have to be executed by the virtual machine as
part of the running application, which induces performance
penalties due to the overhead associated with maintaining,
updating, and querying the data structures connected with
the residues.

One way to reduce the amount of residues needed to be ex-
ecuted is by static analysis. The abc compiler [25, 7, 1] of the
popular AspectJ language introduces static inter-procedural
analysis to optimise away a large amount of residue over-
head. While the performance gain earned is considerable
[7], the downside of the approach is that the abc compiler
performs a whole-program analysis. This has two important
implications. Firstly, it increases compilation time signifi-
cantly even for simple programs. Secondly, it places Java
applications under a closed-world assumption that contra-
dicts Java’s dynamic class loading capabilities. This is es-
pecially hard to bear in the area of middleware containers,
for which AOP has been recognised as a great tool to reduce
the complexity of transparent service injection, because such
containers heavily rely on dynamic deployment of business
applications.

Another approach to deal with cflow residue performance
is in the focus of this paper. The idea is to provide sup-
port for cflow at the level of the execution layer, i. e., in
the virtual machine itself. The underlying rationale that
has driven our work has been as follows. First, the VM
maintains some dynamic model of the execution as it exe-
cutes the code, of which we can directly make use for some
kind of quantification over control flows. Second, when the
needed information is not directly accessible and we need to
construct it by integrating residues into the bytecodes, the
latter can be implemented more efficiently within the VM.

To validate our hypothesis, we have implemented native
support for cflow residues in Steamloom [16, 8], a Java vir-
tual machine with dedicated support for AOP mechanisms,
which is based on IBM’s Jikes Research Virtual Machine
[3, 2, 20]. We present and evaluate three different imple-
mentation strategies for cflow in the context of Steamloom
and analyse their performance characteristics. This side by
side discussion of three alternative implementations with the
evaluations of when each of them is best applicable consti-
tutes one of the contributions of this paper. The second con-
tribution is to show that the residue mechanisms for cflow
can be implemented more efficiently when exploiting direct
access to VM internals. This claim is backed by performance
evaluations.

The structure of this paper is as follows. In Sec. 2, we
will first abstractly outline three implementation strategies
for cflow, and then briefly present current existing AOP
implementations implementing the strategies. All of these
strategies have also been realised in Steamloom, which im-
plementations are presented in Sec. 3. The performance of
these approaches, and that of other systems, is evaluated in
Sec. 4. This section is also where the different approaches
are discussed. Sec. 5 concludes the paper.

2. CFLOW IMPLEMENTATIONS
When cflow is used, the idiom cflow(pc1) && pc2 is fre-

quently met, denoting that the pointcut shall match join
points pertaining to pc2 only if they occur in the control
flow of some join point matched by pc1. In the following,
join points matched by pc1 will be called control flow con-
stituents. A control flow constituent’s shadows mark entries
and exits of control flows. Shadows pertaining to join points
matched by pc2 will be called dependent shadows.

In general, an implementation of cflow needs to address
the following two issues:

1. At control flow entries and exits, action needs to be
taken to monitor the state of the control flow, i. e.,
whether it is active or not.

2. At dependent shadows, it must be checked whether the
control flow is currently active to determine whether
the advice attached to the join point shadow needs to
be invoked.

It is usually possible in AOP implementations to access
the context at constituent join points, and to use this con-
text in advice attached to dependent join points. In this
paper, we do not deal with cflow pointcuts that do this.
The focus of this work solely is on matching control flows,
not on accessing their constituent join points’ contexts.

We shall now outline three different approaches in gen-
eralised form before AOP implementations employing them
and their implementation in Steamloom are introduced.

2.1 Counters
When this approach is adopted, residues are attached to

control flow entries and exits that update counters. When
a control flow is entered, the counter is incremented, and it
is decremented when the control flow is left. At dependent
shadows, residues are woven that check whether the counter
is greater than zero. If so, the control flow is active and the
advice can be executed.

Control flow counters exist once per control flow. Further-
more, they must exist once per thread for this approach to
work. Did they not, different threads entering and leaving
the same control flow could easily corrupt the control flow
counter state. For example, AspectJ [22, 4] uses ThreadLocal
instances to maintain control flow counters.

Using counters imposes a constant overhead at control
flow entries and exits as well as at dependent shadows.

2.2 Stack Walking
The stack walking approach does not need any residues

at control flow entries and exits. Instead, it gets hold of the
current call stack at dependent shadows and iterates over
the methods on the stack to check whether the control flow
in question is currently active.

This approach does not need to regard thread locality,
because the call stack that a residue accesses is always the
one of the currently executing thread. Depending on the
language used, there are different approaches to access the
call stack. In Java, the call stack can be accessed by creating
an instance of Throwable, which can be queried for the stack
frames via its getStackTrace() method. In Smalltalk, the call
stack is immediately accessible due to the reflective nature
of the language. Any approach based on C can operate on
the machine level directly.

There is no cost at control flow entries and exits connected
with stack walking. However, the cost imposed on depen-
dent shadows is directly dependent on the depth of the call
stack. In the most inauspicious case, the entire stack must
be parsed only to determine that a particular control flow is
not active at present.

On the other hand, stack walking could be beneficial when
complex nested control flows are to be matched, stating, for
example, that a given sequence of methods must be on the
stack in a given order. It is possible to regard such a nested
control flow as a regular expression that can be matched by
an automaton that walks the stack.

2.3 Continuous Weaving
Using continuous weaving1, it is possible to leave depen-

dent join point shadows completely unaffected while the con-
trol flow in which they should be decorated with advice is
inactive. Instead, the control flow entries and exits are dec-
orated with residues that trigger continuous weaving of ad-
vice invocations at dependent shadows. In this case, there
is still an element of residual logic required at dependent
shadows: the advice must only be invoked when the shadow
is reached in the same thread in which the control flow is
currently active.

The simplest approach to implementing cflow using con-
tinuous weaving is to decorate all dependent shadows at
once, when the control flow is entered by the first thread,
and to withdraw the woven code when the control flow is
left by all threads. In the spirit of continuous weaving, more
fine-grained approaches are imaginable.

The cost imposed on control flow entries and exits, or on
parts of the dependent shadows, is as high as that of dy-
namic weaving. At dependent shadows, an additional over-
head is introduced to check for thread applicability.

2.4 AOP Implementations
We will now briefly introduce a number of prominent AOP

implementations with special regard to the way each of them
implements support for cflow. Most of the systems are AOP
implementations for the Java platform. We do not claim the
list to be complete; it is restricted to typical representatives.
The approaches will not be described in depth; for more
detailed descriptions, we refer to the particular literature,
or to a survey of AOP languages and their implementations
[10].

AOP implementations employing the counter approach
described above are AspectJ [22, 4] and AspectWerkz [9, 6].
AspectJ compiles an extended version of Java to bytecode.
It uses ThreadLocal instances to encapsulate cflow counters.
AspectWerkz supports dynamic weaving, i. e., weaving as-
pects into a running application. To that end, it prepares
applications at at load-time by inserting hooks to which ad-
vice invocations can later be added. AspectWerkz follows,
in principle, the counters approach, but it always uses a
stack to monitor control flows. Control flow checks are im-
plemented by querying the stack’s size. The stack is used
by default to allow for accessing state from the constituent
join points.

The abc compiler [25, 7, 1] also belongs to this group of
systems. However, it supports static analysis for the optimi-
sation of cflow. The interprocedural analysis implemented

1The term “continuous weaving” was introduced by Hanen-
berg et al. [14].

in abc [7] exploits a call graph of the entire application,
which is why all classes of the application must be known
at compile-time. For each pointcut expression containing a
cflow designator, it yields three sets of join point shadows
that are then further processed by the weaver.

Based on the example cflow(pc1) && pc2, the three sets
computed are as follows (in the following, “residues” and
“advice invocations” mean those pertaining to the sample
pointcut only). The first set contains those shadows of pc2
that may occur in a control flow constituted by a shadow of
pc1. At the shadows contained in this set, advice invocations
must be guarded by residues. At those shadows of pc2 that
are not contained in the first set, neither residues nor advice
invocations need to be woven because they are guaranteed
to never be executed inside a control flow pertaining to pc1.

The second set contains those shadows of pc2 that are
guaranteed to occur only in a control flow constituted by
a shadow of pc1. At these shadows, the advice invocation
can be woven without being guarded by a residue. At those
shadows of pc2 that are not contained in the second set,
residues are required.

In the third set, those shadows of pc1 (sic) are contained
that may influence the evaluation of residues at shadows of
pc2. At these shadows, residues for counter or stack main-
tenance must be woven.

The stack walking approach is adopted by JAsCo [27,
18] and AspectS [17, 5]. JAsCo is an extention to Java. The
residues it weaves at dependent join point shadows create
Throwable instances and iterate over the stack trace that can
be retrieved from such an instance. AspectS is implemented
in Smalltalk and accesses the call stack by means of the
thisContext pseudo variable.

Continuous weaving is offered as an alternative in As-
pectS. It does not only support cflow. In fact, it was imple-
mented to support the notion of morphing aspects [14] that
use continuous weaving in a much wider fashion than it is
described above.

3. IMPLEMENTATION IN STEAMLOOM
Steamloom [16, 8] is a Java virtual machine with dedi-

cated support for AOP language mechanisms. It is based on
IBM’s open source Jikes Research Virtual Machine (“Jikes”
for short) [3, 2, 20]. The support Steamloom has for AOP
is provided through an API, whose classes are members of
the VM itself.

Steamloom supports fully dynamic weaving. That is, it
allows for weaving aspects in and out while an application
is running. Classes are not prepared with hooks (like in
AspectWerkz, for example) at load-time. All weaving takes
place entirely at run-time.

In Steamloom, all of the three approaches mentionend
in Sec. 2 have been implemented. All of the implementa-
tions exploit the fact that Steamloom is a VM extension in
that they rely on specific functionality offered by the virtual
machine, or in that they themselves integrate part of their
functionality in the VM. The three implementations will be
presented in the same order as above.

3.1 Counters
For every cflow pointcut, Steamloom manages a thread-

local counter. It deploys a residue at control flow entries
and exits that increments or decrements, respectively, this
counter for the current thread. So far, Steamloom’s ap-

proach does not differ from other counter-based implemen-
tations.

The difference lies in the nature of the residues. Residues
woven at both control flow entries/exits and dependent shad-
ows are calls to methods that are part of the virtual machine
rather than other application methods. Thus, Steamloom’s
cflow residues are not subject to execution by the VM, but
they are executed as a part of the VM’s inherent function-
ality.

Control flow counters are also not maintained at applica-
tion level. They are stored directly in arrays that are them-
selves stored in the VM’s internal representation of Java
threads. Storing control flow counters in an array allows
for very fast access to them. The array indices for a given
cflow’s counters are fixed at the time the corresponding as-
pect is woven into the application code and do not change
while the aspect is active. The arrays are resized dynam-
ically and the handles are recycled so that the maximum
array size is bounded by the maximum number of control
flow pointcuts that are deployed at a given moment in time.
Since a particular thread’s array is only accessed by that
thread, no synchronisation is needed, enabling a lock-free
implementation of counter updating and checking residues.

This approach is further optimised by making the residues
deployed at dependent join point shadows thread-local so
that they are, in a given thread, only ever executed when
the corresponding control flow has been entered in that
thread. Steamloom supports scoping entire aspects to in-
dividual threads. Such aspects are active in a given thread
only. Residues for cflow woven at dependent shadows are
treated as parts of the advice that are attached to the shad-
ows. Making them thread-local implies that, whenever the
control flow counter is incremented from 0 to 1, the thread-
local advice is enabled for the current thread and when it is
decremented back to 0 it is disabled again.

3.2 Stack Walking
As mentioned in Sec. 2.2, no residues are required at con-

trol flow entries and exits when stack walking is used to
implement cflow checks. Consequently, Steamloom only
weaves residues at dependent join point shadows. The residue
is, like seen above with the counter approach, a direct call
into the virtual machine.

A so-called “stack frame matcher” is created for a cflow
designator when the aspect containing a pointcut with that
designator is woven into the application. From the pointcut
designator, the matcher builds, internally, a stack pattern
that represents the stack layout (in terms of methods on the
call stack) that must be met in order for the constituent
pointcut to match. In case of nested control flows, the pat-
tern contains the methods constituting the nested control
flow in the given order. Each entry of the pattern can – if
the corresponding constituent pointcut contains wildcards –
match multiple methods.

The matching process extracts the IDs of compiled meth-
ods from the VM-internal stack frames. From the ID of
a compiled method, the VM-internal representation of the
method is resolved. The methods retrieved from the stack
frames are subsequently matched against the elements of
the stack pattern to check. As soon as the pattern is safely
identified, the process stops, and the advice can be invoked.

3.3 Continuous Weaving

Continuous weaving as implemented in Steamloom follows
the simple approach mentioned in Sec. 2.3, where all depen-
dent shadows are immediately decorated when the control
flow is entered.

When an aspect unit containing a cflow pointcut is de-
ployed, the entry and exit shadows are decorated with residues
that notify Steamloom’s dynamic weaver of the entry or
exit. The residues are, as in the two preceding solutions,
VM methods. Apart from triggering continuous weaving,
the entry and exit residues also have to update counters.
Counters are still required because a control flow may be
entered recursively; the dependent shadows must be kept
decorated until the last activation of the respective control
flow is left.

Unlike the constituent shadows, most of the dependent
shadows are not decorated. Some are, which is due to a
small optimisation that will be explained below. Normally,
dependent shadows are completely unaffected by residues
pertaining to a cflow pointcut until the first thread enters
the control flow, which triggers the deployment of residues
and advice invocations at dependent shadows. All other
threads that enter the control flow merely lead to the respec-
tive aspects being marked as applicable to those threads (see
the above remarks for thread-local aspects). Consequently,
code woven at the dependent shadows is not removed as
long as any thread is inside the control flow. When the last
thread leaves the control flow, residues and advice invoca-
tions at dependent shadows are removed.

The aforementioned optimisation applied in the imple-
mentation of continuous cflow weaving is applied when a
situation like the following one is met. When a pointcut like

1 c f l ow (execut i on (vo id X.m())) && c a l l (vo id Y. n ())

is used and the method X.m() contains calls to Y.n(), then
the method whose execution constitutes the control flow also
contains dependent shadows.

Normally, woven code inserted before and after the execu-
tion of X.m() would trigger dynamic weaving of residues and
advice invocations at dependent shadows. However, since
the method X.m() itself contains such shadows, they can
right away be decorated as well. This is just what the op-
timisation is about. It applies a very simple form of static
analysis and determines exactly those dependent shadows
that are contained in methods constituting the control flow.
That way, an unnecessary weaving step can be avoided for
dependent shadows.

4. EVALUATION
This section evaluates and discusses several implementa-

tions of cflow. We do not only regard the three implementa-
tions that have been achieved in Steamloom, but also take
other AOP systems into account.

For the evaluation, several performance benchmarks are
used. They have various levels of complexity and target
different characteristics of cflow implementations. The first
benchmark measures the cost of executing join point shad-
ows inside versus outside a control flow. The second bench-
mark highlights the scalability of cflow implementations with
regard to varying numbers of (a) control flow entries/exits,
(b) dependent join point invocations, and (c) threads. The
third benchmark targets nested control flows.

The Java 5 standard VM was used to run the benchmarks
on the following systems: AspectJ 5 milestone 4, abc 1.1.0,

JAsCo 0.8.6, and AspectWerkz 2.0. Jikes 2.3.1 was used
to run the benchmarks on the following systems: Steam-
loom (static counters, stack walking, continuous weaving),
AspectJ 1.2.1, and abc 1.1.0. AspectJ and abc were mea-
sured on Jikes in addition to the Java 5 standard VM to
gain results that are better comparable to the performance
of Steamloom. AspectS is excluded from the measurements,
because it does not run on the Java platform and thus deliv-
ers no comparable results. All measurements were made on
a Dual Xeon workstation (2x3GHz) with 2GB RAM run-
ning Linux 2.4.23.

4.1 Simple Micro-Measurements
Based on the JavaGrande benchmark framework [11, 19],

we have implemented a micro-measurement suite [15] that
measures the performance of certain kinds of join points
when advice are attached to them. Measurement results are
expressed in operations per second, i. e., in the number of
join point executions including advice invocations that are
performed per second. All advice just increment a counter.
The measured join points are minimal as well; in the case
of method calls and executions, the corresponding methods
also only increment a counter.

This micro-measurement suite is used here to measure the
throughput of method execution join points in the presence
of cflow pointcuts. Method executions were chosen because
they are supported by all AOP implementations in focus.
The entry point of the measurement is the JGFrun() method
in the measurement class. The entire measurement is run
twice: the first run is started by simply invoking JGFrun(),
the second by invoking CFlow(), which calls the former. In
the measurement, a pointcut is used that matches the mea-
sured method executions only if they occur in the control
flow of the execution of CFlow().

This benchmark is indeed very simple in that the con-
trol flow is only ever entered and left exactly once. So, the
performance measured here is basically that of residues at
dependent shadows.

Results from the measurement are shown in Fig. 1. The
standard JVM-based systems are represented by the left bar
chart; the systems running on Jikes by the right. The “exe-
cution plain” bar is given for all systems to show how many
method executions the plain run-time environment (Java 5
or Jikes 2.3.1) can perform in a second.

It is immediately visible that the approaches using stack
walking perform worst. Still, the stack walking implemen-
tation based on Steamloom (abbreviated “SL” in the fig-
ure) performs considerably better than JAsCo, which cre-
ates Throwable instances to access the call stack. Inside the
virtual machine, the call stack is immediately available for
access, while a representation must be expensively created
when it is accessed at application level.

Even though stack walking clearly benefits from VM in-
tegration, it still performs significantly worse than all other
approaches. The conceptual benefit of stack walking, re-
quiring residues only at dependent join point shadows, is
annulled by the high cost of the residues.

The counter-based approaches all perform better. Steam-
loom has the most efficient of all counter implementations.
It even outperforms AspectJ running on the standard VM.
Basically, both approaches use thread-local counters to mon-
itor control flows, but AspectJ does so at application level
using ThreadLocal instances, while Steamloom directly asso-

ciates the counters with the VM’s internal representation of
threads. Residues checking the counters also are immediate
calls into the VM in Steamloom, while AspectJ executes all
checks at application level.

When compared to other approaches running on Jikes,
Steamloom’s counters still perform better than those of abc,
though only slightly. Apparently, the VM-integrated sup-
port for counters still has a larger positive impact on per-
formance than static optimisation. Still, this benchmark is,
due to its simple nature, not ideal for judging about Steam-
loom’s counters versus abc’s optimisation.

Continuous weaving performs extremely well. Given the
nature of this benchmark (the control flow is only ever en-
tered and left once), this was to be expected; this benchmark
is not suited to yield accurate results concerning continuous
weaving. The benchmark results described in the following
subsection will give better insights on its performance, since
they enter and leave control flows more often.

4.2 Variability Benchmark
The purpose of this benchmark application is to mea-

sure how the performance of the introduced cflow imple-
mentations varies depending on the number of control flow
entries/exits and on the number of dependent join point
shadow occurrences in- and outside of the control flow. In
addition, it evaluates the scalability of cflow implementa-
tions with an increasing number of threads.

The Benchmark. The core measurement class is shown
in Lst. 2. The aspect applied to the benchmark class is
also contained in the listing, starting at line 44. As can
be seen from its pointcut, the control flow entries and exits
in the benchmark are defined by executions of the method
CflowBenchmark.m(). The dependent join point shadows are
calls to CflowBenchmark.x().

The benchmark consists of two nested loops. The outer
loop is implemented in CflowBenchmark.test() and controls
the number of control flow entries and exits during a bench-
mark run. The inner loop controls the number of executions
of the dependent join point shadow. It is implemented in
CflowBenchmark.m() and m0(), respectively, for reasons that
will be described below.

The CflowBenchmark.test() method is the entry into the
benchmark. It accepts four parameters, each of which con-
trols a certain facet of the benchmark behaviour.

The outer value denotes the number of iterations of the
outer loop. The additional parameter freq cflow defines the
fraction of those iterations that actually enter and exit the
control flow. The inner value controls the number of iter-
ations in the inner loop. Finally, the freq dep parameter
controls the actual number of executions of the dependent
join point shadow, by defining the fraction of entered/ex-
ited control flows in whose context a dependent shadow is
actually reached.

Fig. 2 shows an abstracted sample run of the measure-
ment in one thread. Each box in the vertical bar represents
one iteration of the outer loop. Similarly, a box in one of
the horizontal bars represents an iteration of the inner loop.
Both outer and inner are set to 10. The other two parame-
ters freq cflow and freq dep are set to 2 and 3, respectively.
Where an iteration of the outer loop enters the control flow,
the corresponding box in the vertical bar is filled grey. For
the given values, every second iteration actually enters the
control flow; every third iteration of the outer loop leads to

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

AspectJ abc JAsCo AspectWerkz

e
x
e
c
u

ti
o

n
s
 p

e
r
 s

e
c
o

n
d

 (
lo

g
a
r
it

h
m

ic
)

execution plain execution outside cflow execution inside cflow

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

SL Counter SL Stack

Walking

SL

Continuous

AspectJ/Jikes abc/Jikes

e
x
e
c
u

ti
o

n
s
 p

e
r
 s

e
c
o

n
d

 (
lo

g
a
r
it

h
m

ic
)

execution plain execution outside cflow execution inside cflow

Figure 1: Results from micro-measurements for Java 5 (left) and Jikes-based (right) systems.

10
9
8
7
6
5
4
3
2
1

ou
te

r l
oo

p
ite

ra
tio

ns
(g

re
y:

 e
nt

er
in

g
cfl

ow
)

execution of dependent shadows (grey: in cflow)

Figure 2: Execution of the variability benchmark.

actual executions of the inner loop, and thereby to potential
executions of the dependent shadow. Where the latter are
actually executed inside the control flow, the corresponding
boxes are also marked grey.

The measurements were not run on all systems mentioned
in Sec. 2.4. Those with extremely poor performance due to
stack walking, namely JAsCo, PROSE, and Spring AOP,
were excluded. Of the stack walking approaches, only Steam-
loom’s was kept as a representative with better performance.
The measurements were run with 1,000 outer and inner loop
iterations, and for all combinations of 1, 2, 5, 10, 100, and
1,000 for the two frequencies and 1, 5, 10, 15, and 20 for the
number of threads. A representative selection of the results
is discussed in the following.

The diagrams pertaining to this discussion (Figs. 3–6) should
be read as follows. Each diagram represents the results for a
certain measurement point (freq cflow, freq dep). In each
diagram, the logarithmic y axis denotes the time (in mil-
liseconds) needed to execute the benchmark, while the x axis
denotes the number of threads. In addition to the results for
the measured AOP implementations, results for plain Java
are given as a reference.

Discussion of Results: Continuous Weaving and
Stack Walking. From the figures, it is immediately evident
that continuous weaving (indicated by “SL Continuous”) is
prohibitively expensive when control flows are entered and
left frequently. The only scenario in which it ranges in the
average is the measurement point set in Fig. 4, where the
frequency of dependent shadows is significantly higher than
that of control flows. This was to be expected: recompi-
lation is expensive, and when it is done frequently, overall
performance suffers. Stack walking (“SL Stack W.”) is ex-

tremely expensive in exactly this scenario. This was also to
be expected: when the control flow is not active, the entire
stack must be walked to yield a negative result. Match-
ing is done much faster when it is successful, as in the first
scenario.

Continuous weaving and stack walking are suited for op-
posite scenarios with extreme differences between the fre-
quencies of control flows and dependent shadows. This can
also be seen from the results pertaining to these two strate-
gies in scenarios with the same frequency of control flows
and dependent shadows (Figs. 5 and 6).

Discussion of Results: Counter-Based Implemen-
tations. Counter-based approaches generally yield the best
performance. Differences lie in the particular implementa-
tions of counter storage and management. The effects of dif-
ferent implementation approaches become especially visible
when the two scenarios with different frequencies of control
flows and dependent shadows (Figs. 3 and 4) are regarded.

It is a characteristic of the (5, 100) scenario that the op-
eration that is most frequently executed in it is control flow
counter update. Conversely, the (100, 5) scenario’s charac-
teristic is that the most frequent operation is the counter
check. Thus, the performance of systems in the first scenario
is an indicator for the efficiency of counter management for
updating, and the performance in the second scenario indi-
cates the efficiency of counter checks.

Of the counter approaches, abc and Steamloom provide
the most efficient implementations for both counter updates
and checks, which Figs. 3 and 4 indicate. Steamloom bene-
fits from maintaining counters directly in the VM’s internal
representation of threads, and abc profits from avoiding un-
necessary updates and checks due to static optimisation.

AspectWerkz reveals a weakness in counter check effi-
ciency (Fig. 4); its performance is almost the same as that
of Steamloom’s continuous weaving. This due to its imple-
mentation approach; it does not merely encapsulate coun-
ters, but maintains stack objects, and a control flow check
needs to determine whether the size of the stack is larger
than zero. This operation is more expensive than a simple
arithmetic comparison on numbers.

Scalability with the Number of Threads. An inter-
esting aspect with regard to the efficiency of cflow-related
operations is their scaling behaviour when multiple threads
are involved. The systems based on Jikes, independently
of whether AspectJ, abc, or Steamloom with counters are
regarded, generally are the most moderate ones in this re-

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

Java
AspectJ

AspectJ Jikes
abc

abc/Jikes

AspectWerkz
SL Counter

SL Stack W.
SL Continuous

Figure 3: Variability results (5,100): frequent con-
trol flows, infrequent dependent join points.

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

Java
AspectJ

AspectJ Jikes
abc

abc/Jikes

AspectWerkz
SL Counter

SL Stack W.
SL Continuous

Figure 4: Variability results (100,5): infrequent con-
trol flows, frequent dependent join points.

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

Java
AspectJ

AspectJ Jikes
abc

abc/Jikes

AspectWerkz
SL Counter

SL Stack W.
SL Continuous

Figure 5: Variability results (5,5): frequent control
flows and dependent join points.

1

10

100

1000

0 2 4 6 8 10 12 14 16 18 20

Java
AspectJ

AspectJ Jikes
abc

abc/Jikes

AspectWerkz
SL Counter

SL Stack W.
SL Continuous

Figure 6: Variability results (100,100): infrequent
control flows and dependent join points.

1 pub l i c c l a s s CflowBenchmark {
2 i n t e n t r i e s , deps ;
3 pub l i c vo id t e s t (
4 i n t oute r , i n t f r e q c f l ow , i n t i nn e r ,
5 i n t f r e q d e p
6) {
7 wh i l e (oute r−− != 0) {
8 i n t r e a l i n n e r =
9 (ou t e r % f r e q d e p == 0) ? i n n e r : 0 ;

10 i f (ou t e r % f r e q c f l o w == 0) {
11 m(r e a l i n n e r) ;
12 } e l s e {
13 m0(r e a l i n n e r) ;
14 }
15 Thread . y i e l d () ;
16 }
17 }
18 pub l i c vo id m(i n t run s) {
19 e n t r i e s ++;
20 wh i l e (runs−− != 0) {
21 f oo () ;
22 x () ;
23 }
24 }
25 pub l i c vo id m0(i n t run s) {
26 wh i l e (runs−− != 0) {
27 f oo () ;
28 x () ;
29 }
30 }
31 pub l i c vo id f oo () {
32 x () ;
33 }
34 pub l i c vo id x () {
35 ++deps ;
36 }
37 }
38

39 pub l i c aspect Cf lowAspect {
40 i n t c t r ;
41 be fo re () :
42 c f l ow (execut i on (∗ CflowBenchmark .m(i n t))) &&
43 c a l l (∗ CflowBenchmark . x ()) {
44 c t r++;
45 }
46 }

Listing 2: Source code of the cflow benchmark.

spect. Their moderate scaling behaviour hence is not due to
their specific implementations, but to the scheduler of Jikes,
and to the way the access to thread-local state (even for
ThreadLocal instances) is implemented in its class library,
which is GNU Classpath [13]. Steamloom’s integrated ap-
proach thus does not affect the scaling behaviour as much
as it affects the performance of residue executions.

4.3 Nested Control Flow Benchmark
The purpose of this benchmark is to measure the perfor-

mance of cflow implementations when nested cflow state-
ments are used. In the benchmark, ten methods f0()–f9()
invoke each other recursively in all possible permutations.
The last method in the row always invokes a method foo().

The benchmark applies an aspect with a pointcut/advice
combination like the one in Lst. 3 to the application. It nests
ten cflow pointcuts in some order and attaches an advice to
the execution of the foo() method.

The semantics of this aspect is that the advice will be ex-
ecuted only if the ten f ...() methods are on the call stack
in exactly the order determined by the nested cflow des-
ignators. That is, the advice will, during the benchmark,
be executed exactly once, when the correct permutation of

1 be fo re () :
2 c f l ow (execut i on (vo id X. f0 ()) &&
3 c f l ow (execut i on (vo id X. f1 ()) &&
4 c f l ow (execut i on (vo id X. f2 ()) &&
5 c f l ow (execut i on (vo id X. f3 ()) &&
6 c f l ow (execut i on (vo id X. f4 ()) &&
7 c f l ow (execut i on (vo id X. f5 ()) &&
8 c f l ow (execut i on (vo id X. f6 ()) &&
9 c f l ow (execut i on (vo id X. f7 ()) &&

10 c f l ow (execut i on (vo id X. f8 ()) &&
11 c f l ow (execut i on (vo id X. f9 ())
12)))))))))) && execut i on (vo id X. foo ()) {
13 X. count++;
14 }

Listing 3: An aspect with nested cflow pointcuts.

0

5000

10000

15000

20000

25000

A
sp

ec
tJ

ab
c

A
sp

ec
tW

er
kz

S
L
C
ou

nt
er

S
L
S
ta
ck

 W
al
ki
ng

A
sp

ec
tJ
/J
ik
es

ab
c/
Ji
ke

s

t
im

e
 t

a
k
e
n

 i
n

 m
il

li
s
e
c
o

n
d

s

Figure 7: Results from the nested control flow
benchmark.

f ...() methods is on the stack.
This benchmark measures the time the application takes

to run. It yields information on the cost of entering and
leaving control flows, and also on the cost of checking cflow
matches when nested control flows are on hand.

Results for the nested control flow benchmark are shown
in Fig. 7. This measurement was not applied to the continu-
ous weaving approach of Steamloom, because the extremely
high frequency of entering and leaving control flows, which
has already led to bad results in the previous benchmark,
suggests that its performance is extremely weak in such cir-
cumstances2.

The results show once more that the stack walking ap-
proach which has already proven to be suboptimal in the
simple control flow benchmarks is indeed not optimal, even if
support for it is integrated in the virtual machine. The cost
of walking the stack is too high, and non-matching stacks
impose a high cost on the matcher.

All other approaches that use counters perform better.
AspectWerkz suffers from its expensive counter manage-
ment strategy using a stack by default. Steamloom once
more benefits from the integration of counter storage with
VM-internal data structures. It even performs better than
AspectJ on the Sun standard VM. Put in relation to As-
pectJ running on Jikes, it becomes even more obvious that
Steamloom’s approach is beneficial.

The code generated by abc clearly benefits from the op-

2In fact, the benchmark was, as an experiment, run on the
continuous weaving implementation; the process was termi-
nated after several minutes.

timisation at compile-time. Both on the Java 5 VM and on
Jikes, the abc code is about twice as fast as the AspectJ
code. It is, however, interesting to note that Steamloom’s
counter approach performs slightly better than abc on Jikes.
The benefits gained by static analysis and optimisation are
obvious, but those gained by integrating support for control
flow counter management in the VM itself still have an, if
slightly, more significant impact.

4.4 Summary
The results of the analysis can be summarised as follows

with regard to comparing the three strategies. Stack walking
has not proven to be a reasonable solution since its complex-
ity depends on the stack depth met at join point shadows.
Continuous weaving does not yield satisfactory performance
unless control flows are very infrequently entered and left.
Counters, exhibiting constant cost at control flow entries and
exits as well as dependent shadows, appear to be the best
solution for matching control flows. When they are given
dedicated support from the run-time environment, they even
gain some more efficiency.

The above results suggest that VM integration of support
for dynamic pointcuts is promising. The results measured
for abc and Steamloom suggest that a combination of VM in-
tegration with interprocedural analysis will yield even better
results. By such a combination, we do not mean a combina-
tion of static analysis and VM integration, though. There
are two reasons for which this does not seem optimal.

First, the closed-world assumption imposed on the ap-
plication makes a large number of interesting applications
infeasible. A very prominent field of AOP adoption is mid-
dleware, where AOP is used to transparently decorate ob-
jects with services. The Spring framework [21, 26] is a good
example of a lightweight approach to middleware that does
so. In the context of middleware, dynamic deployment of
entire applications is an important feature. When the en-
tire application must be known at compile-time to perform
a whole-program analysis, dynamic deployment is no longer
an option.

Second, the whole-program analysis performed by abc to
optimise run-time performance significantly slows down the
compilation process. For example, the application for the
variability benchmark takes the AspectJ 1.2.1 compiler 1.6
seconds to compile. For abc without optimisations, compi-
lation takes 3.6 seconds. With interprocedural analysis, abc
needs three minutes.

So, instead of merely combining optimised compilers and
VM integration, we opt for exploiting even more of the VM’s
internal structures to achieve dynamic optimisation. The
VM maintains a call graph internally, which can also be
used to perform interprocedural control-flow analysis. The
facilities for performing such analyses exist in the VM, where
they are normally exploited by the optimising compiler.

5. CONCLUSION
There are two main conclusions that we draw from the

results of the paper.
Firstly, the most important result is that VM integration

of support for dynamic pointcuts is a research path worth
pursuing. We showed that both the counter-based as well
as the stack walking implementation strategies exhibit in-
creased performance when support for them is integrated
into the VM. An important point to make in this context

is that dedicated support from the run-time environment
makes the implementation of cflow at least as efficient as
the abc implementation. The latter provides one of the
most efficient implementations available today. However,
this is achieved at the cost of (a) significant increase of the
compilation time and (b) placing Java applications under
a closed-world assumption that contradicts Java’s dynamic
class loading capabilities. The VM-integrated approach does
not suffer from any of these problems. By exploiting analy-
ses of the dynamic control call graph in the VM, we hope to
be able to further improve the performance in the future.

Secondly, by implementing all three approaches within the
same environment, we have shown that counters, exhibiting
constant cost at control flow entries and exits as well as de-
pendent shadows, appear to be the best solution for match-
ing active control flows. Stack walking does not seem to
be an alternative since its complexity depends on the stack
depth met at join point shadows. Continuous weaving does
not yield satisfactory performance unless control flows are
very infrequently entered and left.

Acknowledgements
This work was supported by the AOSD-Europe Network
of Excellence, European Union grant no. FP6-2003-IST-2-
004349.

6. REFERENCES
[1] abc (AspectBench Compiler) Home Page.

http://aspectbench.org/.

[2] B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F.
Hummel, D. Lieber, M. Mergen, T. Ngo, J. Shepherd,
and S. Smith. Implementing Jalapeño in Java. In 1999
ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA’99). ACM Press, 1999.

[3] B. Alpern et al. The Jalapeño Virtual Machine. IBM
Systems Journal, 39(1):211–238, February 2000.

[4] AspectJ Home Page.
http://www.eclipse.org/aspectj/.

[5] AspectS Home Page. http://www-ia.tu-ilmenau.de/
~hirsch/Projects/Squeak/AspectS/.

[6] AspectWerkz Home Page.
http://aspectwerkz.codehaus.org/.

[7] P. Avgustinov et al. Optimising AspectJ. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and
Implementation, pages 117–128. ACM Press, 2005.

[8] C. Bockisch, M. Haupt, M. Mezini, and
K. Ostermann. Virtual Machine Support for Dynamic
Join Points. In Proc. AOSD 2004. ACM Press, 2004.

[9] J. Bonér. What Are the Key Issues for Commercial
AOP Use: how Does AspectWerkz Address Them? In
Proc. AOSD 2004, pages 5–6. ACM Press, 2004.

[10] J. Brichau and M. Haupt (editors). Survey of
Aspect-Oriented Languages and Execution Models.
http://aosd-europe.net/documents/aspLang.pdf,
AOSD-Europe Network of Excellence, 2005.

[11] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty,
and R. A. Davey. A Benchmark Suite for High
Performance Java. Concurrency: Practice and
Experience, 12(6):375–388, 2000.

http://aspectbench.org/
http://www.eclipse.org/ aspectj/
http://www-ia.tu-ilmenau.de/ ~hirsch/ Projects/ Squeak/ AspectS/
http://www-ia.tu-ilmenau.de/ ~hirsch/ Projects/ Squeak/ AspectS/
http://aspectwerkz.codehaus.org/
http://aosd-europe.net/ documents/ aspLang.pdf

[12] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit,
editors. Aspect-Oriented Software Development.
Addison-Wesley, 2005.

[13] GNU Classpath Home Page. http://www.gnu.org/
software/classpath/classpath.html.

[14] S. Hanenberg, R. Hirschfeld, and R. Unland. Morphing
Aspects: Incompletely Woven Aspects and Continuous
Weaving. In Proc. AOSD 2004. ACM Press, 2004.

[15] M. Haupt and M. Mezini. Micro-Measurements for
Dynamic Aspect-Oriented Systems. In M. Weske and
P. Liggesmeyer, editors, Proc. Net.ObjectDays 2004,
volume 3263 of LNCS. Springer, 2004.

[16] M. Haupt, M. Mezini, C. Bockisch, T. Dinkelaker,
M. Eichberg, and M. Krebs. An Execution Layer for
Aspect-Oriented Programming Languages. In Proc.
VEE 2005. ACM Press, June 2005.

[17] R. Hirschfeld. AspectS - Aspect-Oriented
Programming with Squeak. In M. Aksit, M. Mezini,
and R. Unland, editors, Objects, Components,
Architectures, Services, and Applications for a
Networked World, volume 2591 of LNCS, pages
216–232. Springer, 2003.

[18] JAsCo Home Page. http://ssel.vub.ac.be/jasco/.

[19] JavaGrande Benchmarks Home Page.
http://www.dhpc.adelaide.edu.au/projects/

javagrande/benchmarks/.

[20] The Jikes Research Virtual Machine.
http://jikesrvm.sourceforge.net/.

[21] R. Johnson and J. Hoeller. Expert One-on-One J2EE
Development without EJB. Wiley, 2004.

[22] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In J. Lindskov Knudsen, editor, Proc.
ECOOP 2001, volume 2072 of LNCS, pages 327–353.
Springer, 2001.

[23] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In M. Aksit and
S. Matsuoka, editors, ECOOP ’97: Object-Oriented
Programming, volume 1241 of Lecture Notes in
Computer Science, pages 220–242. Springer, 1997.

[24] H. Masuhara, G. Kiczales, and C. Dutchyn. A
Compilation and Optimization Model for
Aspect-Oriented Programs. In G. Hedin, editor, Proc.
CC 2003, volume 2622 of LNCS, pages 46–60.
Springer, 2003.

[25] P. Avgustinov and others. abc: an Extensible AspectJ
Compiler. pages 87–98. In [28].

[26] Spring Home Page.
http://www.springframework.org/.

[27] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:
an Aspect-Oriented Approach Tailored for Component
Based Software Development. In Proc. AOSD 2003,
pages 21–29, 2003.

[28] P. Tarr, editor. Aspect-Oriented Software
Development. Proceedings of the 4th International
Conference on Aspect-Oriented Software Development.
ACM Press, 2005.

http://www.gnu.org/ software/ classpath/ classpath.html
http://www.gnu.org/ software/ classpath/ classpath.html
http://ssel.vub.ac.be/ jasco/
http://www.dhpc.adelaide.edu.au/ projects/ javagrande/ benchmarks/
http://www.dhpc.adelaide.edu.au/ projects/ javagrande/ benchmarks/
http://jikesrvm.sourceforge.net/
http://www.springframework.org/

	Introduction
	Cflow Implementations
	Counters
	Stack Walking
	Continuous Weaving
	AOP Implementations

	Implementation in Steamloom
	Counters
	Stack Walking
	Continuous Weaving

	Evaluation
	Simple Micro-Measurements
	Variability Benchmark
	Nested Control Flow Benchmark
	Summary

	Conclusion
	REFERENCES -9pt

