
More efficient temporal pointcuts through dynamic advice
deployment

Eric Bodden
Sable Research Group

McGill University
Montréal, Québec, Canada

ericbodden@acm.org

Volker Stolz
MOVES: Software Modeling and Verification

RWTH Aachen University
Aachen, Germany

stolz@i2.informatik.rwth-aachen.de

ABSTRACT
In previous work we and others have studied the applica-
bility of various trace based matching approaches, such as
tracematches [3], tracecuts [14] and DLTL [13, 5] (through
our prototype tool J-LO). Such formalims provide users with
an expressive matching language that gives explicit and well-
defined access to an application’s execution history. In some
approaches, even free variables in expressions can dynami-
cally be bound to objects on the execution trace. This keeps
the burden of manual bookkeeping of state from the user.

In this work we demonstrate that besides the aforemen-
tioned issues of more convenient programming, such tempo-
ral pointcuts yield a large potential for possible optimiza-
tions through runtime deployment of aspects, due to their
well-defined structure. Functionally equivalent code in pure
AspectJ would not necessarily yield such a potential. This
feature of trace languages adds well to static optimizations
such as control flow and dataflow analysis as it has been
proposed in [3]. We do not want to give a fully fledged
end-to-end solution here, which would maybe restrict us
to a certain specification formalism or runtime weaving ap-
proach. Instead, we show up general potential for optimiza-
tions through dynamic deployment as a pointer for future
research on the field.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—
Interpreters

General Terms
Languages, Performance, Verification, Theory

Keywords
Program monitoring, aspect-oriented programming, dynamic
deployment

1. INTRODUCTION

Copyright is held by the author/owner.
DAW’06 March 20th, 2006, Bonn, Germany.
ACM X-XXXXX-XXX-X/XX/XXXX.

In the previous months, a lot of effort has been put into
trace based matching languages, which allow users to match
not only based on a current joinpoint but also based on infor-
mation of the execution history. Most of those mechanisms
are language extensions of AspectJ and hence we want to
concentrate on those. However, we believe that most other
applications which use a formalism for temporal reasoning
at runtime could benefit from the insights we provide. In
particular, previous workshops in the field of Runtime Ver-
ification [1] have shown a growing interest by people of the
verification community in aspect-oriented techniques. This
is is due to the fact that despite the enourmous contributions
which have been made to static verification approaches as
Model Checking, some properties can still only be checked
during the runtime of an application under test. Any hybrid
technique making use of such checker components at runtime
must of course induce some computational burden. The
contribution of this work is to point into directions which
promise potential for keeping this computational burden as
low as possible.

In the following we give examples for trace based matching
in different formalisms and compare to manual trace match-
ing in naive AspectJ. We then briefly describe how trace
matching formalisms are usually implemented and what im-
plementation properties they share. This enables us to iden-
tify common potential for optimizations through runtime
matching. We show that the explicit history access the for-
malisms provide is crucial to this optimization potential: An
equivalent aspect in native AspectJ could not easily be op-
timized in the same way - the optimizations only become
possible trough the explicit model provided by those for-
malism.

2. TRACE MATCHING APPROACHES
In the following we briefly introduce three approaches to

trace matching, based on different formalisms namely regu-
lar expressions, linear temporal logic and context free gram-
mars.

2.1 Tracematches
In 2005, Allan et al. introduced tracematches [3], an As-

pectJ language extension for history based matching based
on regular expressions. The input to a tracematch is a strict
sequence of named symbols, each such symbol essentially be-
ing a pointcut and a before/after specification. The trace-
match is then formed as a regular expression over an alpha-
bet defined by those symbols.

1 tracematch(Vector c , Enumeration e) {
2 sym c r e a t e after returning (e) : ca l l (Enumeration+.new (. .)) && args (c) ;
3 sym next before : ca l l (Object Enumeration . nextElement ()) && target (e) ;
4 sym update after : v e c to r update () && target (c) ;
5

6 c r e a t e next∗ update+ next
7 {
8 throw new ConcurrentModi f i cat ionExcept ion () ;
9 }

10 }

Figure 1: Safe enumeration tracematch

The listing in figure 1 shows a tracematch detecting unsafe
use of enumerations: Whenever an enumerator e is claimed
for a vector c (event create), the vector is not to be up-
dated (event update) as long as this enumeration is in use
(i.e. nextElement is being called). Line 1 declares free vari-
ables ds and e, which each possible matching instance will
be bound to. Lines 2-4 declare the symbol alphabet, while
line 6 holds the regular expression in question: Enumeration
creation (possibly followed by some calls to next) follwed by
an update of the vector and some call to next should trigger
an error message.

As one would guess, there might be properties, which
may be cumbersome to express with regular expressions,
especially safety properties, which state that something bad
should never happen. Such a statement makes use of some
implicit negation, which in regular expressions can only be
implemented by converting the property to a regular expres-
sion enumerating the language of all possible path violating
this property.

2.2 J-LO and DLTL
Hence our previous work, which was inspired by static and

dynamic verification tools tried to overcome this drawback
by providing negation and conjunction explicitly, introduc-
ing another specification formalism over pointcuts based on
linear temporal logic (LTL), called dynamic LTL (DLTL). It
is dynamic, because it features dynamic bindings of free vari-
ables in a similar way as the aforementioned tracematches.
Besides, it is equal to usual LTL [11] with temporal oper-
ators X (next), F (finally), G (globally), U (until) and R

(release). This logic can then be used to specify temporal
assertions, which have to hold during each execution of the
given application. Any violation of such a trace condition
is reported at runtime. Our research prototype J-LO imple-
ments DLTL, currently in a purely dynamic way.

Table 2 gives an example specification stating that always
(G) after a collection c has been added to a hash set s, this
collection should not be modified on the subsequent path,
unless it was removed from the hast set again.

2.3 Context-free patterns
There are other approaches around (e.g. tracecuts [14],

PQL [9]) which allow for even more expressiveness, in par-
ticular for context-free patterns. We do not want to explain
those in depth here, because handling of such features would
lead us out of the scope of this paper. Section 4.5 however
explains the rough idea of how our observations could pos-
sibly be of similar use to such formalism.

3. COMMON ASPECTS OF TRACE
MATCHING

The aforementioned approaches, despite providing quite
different specification formalisms, share quite some imple-
mentation details. The implementation of tracematches and
J-LO for example both use finite state machines to propa-
gate state over time. An implementation allowing for the
specification of context-free expressions however might need
to employ a pushdown automaton (stack machine) depend-
ing on the kind of pattern. Yet, all those automata, ir-
respective the fact of being finite or infinite are triggered
in the same way - through declared symbols (pointcuts) in
AspectJ: A transition is only triggered at well-defined join
points, which need to be exposed by the AOP runtime that
is employed.

And this fact yields optimization potential through dy-
namic aspect deployment: Maybe the interested reader has
noticed in our examples already, that not all such symbols
may actually trigger a state transition at any time.

Take for example tracematch about “safe enumeration”:
Here, between create enum and update source it does not
matter whether there are zero, one or multiple occurrances
of call next — the pattern would match either way. We
say that call next is irrelevant in this state.

Or take the DLTL formula checking for safe use of hash
sets: It does not matter to us whether a collection is actually
modified or removed from a hash set unless it was added to
a hash set before. Hence, our conclusion is that not every
declared symbol is of interest at any time. Consequently, in
those states the associated joinpoints should not even trigger
an event in order to achive an improved performance. This
can and should be achived by dynamic advice enablement.

But how can we algorithmically determine the set of rel-
evant or irrelevant symbols? We give initial pointers for
answering this question in the next section.

4. DETERMINING THE SYMBOLS OF IN-
TEREST

Symbols of interest are those symbols which are able to
change the internal state of a trace matching automaton —
whatever this automaton might look like. By state we here
refer to the full configuration of the automaton, i.e. in the
case of stack-based automata, the stack content has to be
taken into account for those considerations.

In the following we will however first explain the easier
case where finite state machines are involved. This covers
the implementations of tracematches and J-LO and might

1 Co l l e c t i on c , HashSet s :
2 G(
3 (
4 exit (ca l l (∗ HashSet+.add (. .)) && target (s) && args (c))
5) −> (
6 (
7 entry (ca l l (∗ HashSet+.remove (. .)) && target (s) && args (c))
8) R (
9 ! (

10 entry (
11 (
12 ca l l (∗ Co l l e c t i on +.add ∗ (. .)) | |
13 ca l l (∗ Co l l e c t i on +.remove ∗ (. .)) | |
14 ca l l (∗ Co l l e c t i on +. c l e a r ())
15) && target (c)
16)))))

Figure 2: DLTL formula ensuring safe use of hash sets

also apply to special cases of more expressive implementa-
tions. We will cover such systems a bit deeper in section
4.5.

4.1 Regular expressions
The use of regular expressions leads naturally to finite

state machines, which are usually deterministic but some-
times also determinized on-the-fly for enhanced efficiency.
Here the notion of an irrelevant transition is easy as we can
see in our example tracematch.

0 1 2 3
create update next

next update

Figure 4.1 shows the (nondeterministic) state machine for
the “safe enumeration” tracematch. (We abstract from skip
transitions as they are mentioned in [3] because they do not
contribute to, nor interfere with, the analysis we describe
here.) Taking into account that in tracematches all events
which are not part of the alphabet are ignored, obviously
all loops (here shown in grey) can safely be dropped, still
yielding the same semantics. For example, in state 1, it
would make no difference if there occured a call to the next

method of the associated enumeration.
Consequently, the associated joinpoints can be dynami-

cally deactivated when such a state is reached. This leaves
us for this example with the following relevant symbols for
each state:

state relevant symbols

0 {create}
1 {update}
2 {next}
3 ∅

In the following, we will denote this relationship by the
function rel : Q → 2Σ which returns for each state the set
of relevant input symbols. Formally, we define

rel(q) := {s ∈ Σ | ∃q
′ ∈ Q . (q, s, q′) ∈ ∆}.

4.2 Dynamic deployment
Based on this information, we can now augment our origi-

nal automaton with generic dynamic deployment commands:

• deploy(s) - Deploy advice associated to s ∈ Σ so that
symbol s can be triggered.

• undeploy(s) - Undeploy advice for s respectively.

We define the set of all such commands as:

CΣ := {deploy(s), undeploy(s) | s ∈ Σ}

This yields an enriched finite state machine with a la-
belling function comm : Q → 2CΣ , which associates each
state q ∈ Q with the set of necessary deployment commands:
Let qp be the previous state observed, then in each state we
deploy advice for those symbols which are relevant but have
not been relevant before and we undeploy those symbols
which have been relevant in qp but are now not relevant any
more.

comm(q) = {deploy(s)|s ∈ rel(q) ∧ s 6∈ rel(qp)}

∪ {undeploy(s)|s 6∈ rel(q) ∧ s ∈ rel(qp)}

Note that this procedure may lead to relatively frequent
(un)deployment. This might not be a problem, especially in
environments, where such (un)deployment can be performed
reasonably fast. However, depending on the overhead this
(un)deployment may induce, one might want to use a larger
window instead, i.e. one would undeploy a symbol only if
it is irrelevant and has been so for the last n states. The
exact parameters will of course heavily depend on the in-
frastructure in operation. Hence we leave this as open work
for other researchers. For our example from above, the com-
mand function would look at follows:

state q deployment command comm(q)

0 {deploy(create)}
1 {undeploy(create),deploy(update)}
2 {undeploy(update),deploy(next)}
3 {undeploy(next)}

Those commands are obviously to be applied immediately
upon arrival at q.

4.3 The case of temporal logic
In temporal logic, it is usually even quite more often the

case that certain events are ignored (as e.g. noted in [3,
5]). The LTL formula G(p → Fq) requires one event q

to follow whenever p is seen — it specifies nothing at all
about events that could happen in between. Consequently,
any path where always p is followed by q would satisfy the
formula.

0 1 2
add modify

¬modify ∧ ¬remove

¬modify ∧ remove

Figure 4.3 shows a finite state machine implementing the
check for our hash set example formula (cf. figure 2). In con-
trast to regular expressions as they are used in tracematches,
LTL is propositional i.e. it can distinguish between different
propositions holding at the same time. Hence, the input to
an LTL formula (or the equivalent automaton) is usually a
sequence of sets of symbols, i.e. an element of (2Σ)∗. This is
reflected by transitions with conditions as ¬modify∧remove:
This transition is taken when remove matches the current
joinpoint, but modify does not.

As we can however easily see, this change in the automa-
ton model does not really affect our previous observations.
Still we can determine the set of relevant symbols for any
state of the automaton, just as before, now joining over all
symbols contributing to a transition. (As for regular ex-
pressions, we assume that self-loops have already been elim-
inated.) Also the command function remains unaffected.

In our hash set example, this would yield the following
result:

state q rel(q) comm(q)

0 {add} {deploy(add)}
1 {modify, {undeploy(add),

remove} deploy(modify),
deploy(remove)}

2 ∅ {undeploy(modify),
undeploy(remove)}

4.4 Per-object deployment
What we did not consider so far is one hidden peculiar-

ity which is common to all the aforementioned formalisms:
They all allow to dynamically bind objects in their specifica-
tion. In other words, taking our LTL formula into account,
the structure of the formula is not just

G(add → (remove R ¬modify))

but rather:

∀h∀c : G(add(h, c) → (remove(h, c) R ¬modify(c)))

So in order to apply the above deployment correctly, one
would have to modify the command function accordingly:

state q rel(q) comm(q)

0 {add(h,c)} {deploy(add,(h,c))}
1 {modify(c), {undeploy(add,(h,c)),

remove(h,c)} deploy(modify,(c)),
deploy(remove,(h,c))}

2 ∅ {undeploy(modify,(c)),
undeploy(remove,(h,c))}

We are currently aware of one application, namely Steam-
loom [2, 4], which is going to provide such a feature in the
near future. Certainly such support would most sensibly
have to be integrated into the JVM in use.

4.5 More expressiveness: Stacks and counters
When moving from regular expressions to more expres-

sive formalisms there are usually two natural directions to
take: One is the one of allowing for context-free expressions
(i.e. context free grammars, CFGs), which might lead to
the necessity of bookkeeping state on a stack during run-
time. Tracecuts for example is one system with this prop-
erty. The second direction formally corresponds Petri Nets
and provides for counting properties, i.e. expressions of the
form anbncn for symbols a, b, c and some arbitrary n ∈ N.

Again, we don’t want to go into detail here, but instead
we want to point to the important fact that the reachabil-
ity problem is for both formalism, CFGs and Petri Nets,
statically decidable:

For CFGs one can construct the so-called p-automaton [?]
in polynomial time. This automaton is an ordinary finite
state machine and accepts the language of all configurations
reachable from one given configuration. By the use of such
an automaton, one can hence decide, which symbols might
still be of use on subsequent computations. Similarly, for
Petri Nets, reachability is decidable [10, 7] by a special form
of enumerating successor configurations - however in at least
exponential time.

4.6 Applicability to non-AOP approaches
As mentioned above, several tools exist, especially in the

Runtime Verification community, which are not directly re-
lated to the use of aspects or to aspect-oriented program-
ming at all. Instead they seek to verify certain program
properties at runtime. Yet, such tools could naturally ben-
efit from our observations in the very same way, as also
those tools might be able to speed up themselves by dy-
namic (un)weaving of employed instrumentation. PQL [9],
PTQL [12], HAWK [6], and EAGLE [8] are for instance some
candidates which could benefit from such efforts.

5. THE CASE OF PURE ASPECTJ
The purpose of this section is to show that formalisms as

the one above, which explicitly match on the execution his-
tory of an application, is essential to the analyses we provide
in this work.

Assume again the example of assuring safe enumeration,
as it was conducted using tracematches. Assume further,
one would have tried to implement the same functionality
in pure AspectJ. One would have had no other option than
generating an aspect containing at least three pieces of ad-
vice (one each for create, update and next) and then using
those pieces of advice to conduct state transitions within
the aspect. Figure 3 shows an excerpt of some pseudo im-
plementation as it would be necessary. As would guess, an
analysis of such an aspect for any temporal properties is in
the general case impossible. Since the temporal structure is
now “flattened” into independent pieces of advice, every po-
tential for analysis of the temporal behaviour is gone. Hence
we argue that the abovementioned approaches for a formal,
explicit specification of temporal properties are indeed nec-
essary to allow for such analyses in the first place.

1 aspect SafeEnum {
2

3 State s t a t e = new State (0) ;
4

5 after (Vector c) returning (Enumeration e) : ca l l (Enumeration+.new (. .)) && args (c) {
6 i f (s t a t e . inSta te (0)) {
7 s t a t e = new State (1 , e , c) ;
8 }
9 }

10

11 // two more p i e c e s o f adv i ce here
12 }

Figure 3: Safe enumeration tracematch

6. CONCLUSION
In this work we have shown an overview of how properties

of temporal specification languages can be exploitet for the
purpose of efficiency gains through dynamic advice deploy-
ment. Such history based matching languages, opposed to
pure AspectJ, expose an explicit temporal structure in their
pointcut structure in order to match event patterns in the
execution history of a running application. This temporal
structure could successfully be shown to be rich enough to
allow for an improved runtime performance by temporarily,
dynamically unweaving parts of the matching machinery.

We have shown that this approach is applicable regular
expressions and linear temporal logic (LTL) and to the tools
implementing pointcuts based on those formalisms, namely
tracematches and J-LO. Furtheron, we described how the
mechanism could possibly be extended to more expressive
formalisms making use of stacks and counters.

By an example we demonstrated that through the attempt
of simulating a temporal pointcut of any of such formalisms
though pure AspectJ, one loses the explicit temporal stru-
cure, thus giving away any possibility for the analyses we
propose.

7. REFERENCES
[1] 1st, 2nd, 3rd, 4th and 5th CAV Workshops on

Runtime Verification (RV’01 - RV’05), volume 55(2),
70(4), 89(2), 113, ? Elsevier Science, 2001, 2002, 2003,
2004, 2005.

[2] 11 2005. Personal communication with Michael Haupt,
Darmstadt University, Germany.

[3] C. Allan, P. Avgustinov, A. Simon, L. Hendren,
S. Kuzins, O. Lhoták, O. de Moor, D. Sereni,
G. Sittamplan, and J. Tibble. Adding trace matching
to AspectJ (submitted to OOPSLA’05). abc Technical
Report abc-2005-01, McGill University, 2004.

[4] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.
Virtual machine support for dynamic join points. In
AOSD ’04: Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 83–92, New York, NY, USA, 2004. ACM Press.

[5] E. Bodden. J-LO - A tool for runtime-checking
temporal assertions. Master’s thesis, RWTH Aachen
university, 11 2005.

[6] M. d’Amorim and K. Havelund. Event-based runtime
verification of java programs. In WODA ’05:
Proceedings of the third international workshop on

Dynamic analysis, pages 1–7, New York, NY, USA,
2005. ACM Press.

[7] J. Esparza and M. Nielsen. Decidability issues for petri
nets - a survey. Bulletin of the European Association
for Theoretical Computer Science, 52:245–262, 1994.

[8] K. H. H. Barringer, A. Goldberg and K. Sen. Program
monitoring with ltl in eagle. In 18th International
Parallel and Distributed Processing Symposium,
Parallel and Distributed Systems: Testing and
Debugging - PADTAD’04. IEEE Computer Society
Press, Apr. 2004. ISBN 0769521320.

[9] M. Martin, B. Livshits, and M. S. Lam. Finding
application errors and security flaws using pql: a
program query language. SIGPLAN Not.,
40(10):365–383, 2005.

[10] E. W. Mayr. An algorithm for the general petri net
reachability problem. In STOC ’81: Proceedings of the
thirteenth annual ACM symposium on Theory of
computing, pages 238–246, New York, NY, USA, 1981.
ACM Press.

[11] A. Pnueli. The Temporal Logics of Programs. In
Proceedings of the 18th IEEE Symposium on
Foundations of Computer Science, 1977.

[12] R. O. Simon Goldsmith and A. Aiken. Light-weight
instrumentation from relational queries over program
traces. Technical Report UCB/CSD-04-1315, EECS
Department, University of California, Berkeley, 2004.

[13] V. Stolz and E. Bodden. Temporal Assertions using
AspectJ. In Fifth Workshop on Runtime Verification
(RV’05). To be published in ENTCS, Elsevier, 2005.

[14] R. J. Walker and K. Viggers. Implementing protocols
via declarative event patterns. In SIGSOFT FSE,
pages 159–169, 2004.

