
Call and Execution Semantics in AspectJ

Yishai A. Feldman
Efi Arazi School of Computer Science
The Interdisciplinary Center, Herzliya

yishai@idc.ac.il

Shmuel Tyszberowicz
Department of Computer Science

The Academic College of Tel Aviv Yaffo
tyshbe@mta.ac.il

Ohad Barzilay
School of Computer Science

Tel Aviv University
ohadbr@cs.tau.ac.il

Amiram Yehudai
School of Computer Science

Tel Aviv University
amiramy@post.tau.ac.il

Abstract

The Aspect-Oriented Programming methodology provides a means of encapsulation of crosscut-
ing concerns in software. AspectJ is a general-purpose aspect-oriented programming language that
extends Java. This paper investigates the semantics of call and execution pointcuts in AspectJ,
and their interaction with inheritance. We present semantic models manifested by the current and
previous releases of AspectJ, point out their shortcomings, and present alternative models.

1 Introduction

Aspect-oriented programming (AOP) [2] is a new programming paradigm that enhances object-oriented
programming with the ability to modularize crosscutting concerns. These are aspects of the program,
such as authentication, tracing, and logging, that affect large parts of the program across many modules.
With AOP, such crosscutting concerns can be put in separate modules, which contain program fragments,
called advice, that are inserted into other modules.

Advice can be applied to various types of events, such as object creation, method calls, access and
modification of fields, and so on. These are called join points. Advice code can be specified to execute
before or after the computation defined by a join point, or even replace it completely. Much of the power
of AOP comes from the ability to specify advice that applies to multiple join points. An expression
that specifies a set of join points is called a pointcut. This paper discusses the semantics of two types of
pointcut operators in AspectJ, which is one of the most popular AOP implementations for Java.

Call and execution pointcuts in AspectJ are very similar. Both refer to a method call events, and the
syntax of the pointcut expressions are identical, except for the use of the keywords call or execution.
The keyword is followed by a parenthesized method signature, which specifies a set of join points. The
signature can contain wildcards such as “*” to specify any type, “..” to specify any number of param-
eters of any type, and “+” to specify subclasses. For example, the pointcut call(* A+.get*(int,..))
designates all calls to methods

• whose names start with get;

• that receive one int parameter and any number of additional parameters;

• that return any type of result; and

• that are defined in class A or any of its subclasses.

1

There are a number of other types of pointcuts; of particular interest to the issues addressed in this
paper are this and target pointcuts. The former include all join points where the current object (this)
has a certain type, and the latter include all join points where the target of the call has a given type. These
pointcuts can also specify a variable to be bound to the current object or the target, respectively. (Of
course, this pointcuts only capture join points where there is a current object, excluding, for example, the
execution of static methods, and target pointcuts only capture non-static method-call join points, which
are the only ones that have a target.) Also relevant are if pointcuts, which may include any boolean
expression. Pointcuts can be combined using the operators &&, ||, and !, meaning set intersection, set
union, and complement, respectively.

A join point that can be captured by a call pointcut consists of the method call in the client (caller)
code. A join point that can be captured by an execution pointcut consists of the whole body of the
method in the supplier (callee) code. This seems to be a very subtle distinction, but it has significant
ramifications. Operationally, advice to call pointcuts is inserted into the client code, while advice to
execution pointcuts is inserted into supplier code. This implementation decision restricts the amount of
information available to each type of advice. For example, the calling object is available in call pointcuts
but not in execution pointcuts. Call pointcuts also have access to the static type of the object on which
the method is invoked (the target of the call), but execution pointcuts only know its dynamic type. (There
are other differences between call and execution pointcuts, but those are irrelevant to the discussion in
this paper.)

From the programmer’s point of view, call and execution pointcuts are very similar syntactically, and
they are expected to be similar semantically as well. It turns out, however, that there are some unintuitive
differences between them. In this paper we demonstrate these differences by presenting a semantic model
manifested by the current (5, also called 1.5) and previous (1.1.1) releases of AspectJ, and point out their
shortcomings. (We note that Jagadeesan et al. [4] mention a few of these shortcomings, but do not discuss
their deficiencies.) In addition, we suggest several alternative semantics for AspectJ and investigate their
expressive power and the relationships between them.

Many papers and books have been written about AOP in general, and about AspectJ in particular
(e.g., [2, 3, 5]), as well as several papers giving formal semantics of simple aspect-oriented languages
(e.g., [4, 6, 7, 9–11]), but none of them provides a precise (even if not completely formal) semantics of
AspectJ itself. Such a semantics is necessary for language users to express their intent, and is crucial
for tools that compile into AspectJ. For example, we are developing a design-by-contract [8] tool for
Java. The main purpose of such a tool is to instrument the code to check assertions (method pre-
and postconditions and class invariants) at run time. Existing tools we have examined perform this
instrumentation in various ways, all of which have subtle errors. Our tool uses AspectJ instead of ad-hoc
methods. While working on the tool, we discovered that some pointcuts we wrote did not yield the sets
of join points that we expected. This has led us to conduct the study that we report on here.

We believe that a close examination of the semantics of AspectJ as manifested by the current imple-
mentation, and a discussion of the desired or “correct” semantics, is important to the AOP community.
This could lead to improvements in AspectJ itself, as well as in other AOP languages. We hope that
studies of the semantics of other parts of the language will follow.

We follow the approach taken by authors of the AspectJ documentation and books by ignoring im-
plementation issues. For the purpose of this paper, we are not interested in how code instrumentation is
carried out, and in the practical constraints on which classes may or may not be instrumented. We sim-
ilarly ignore the implementation of the matching between pointcuts and join points in AspectJ. Instead,
we treat AspectJ as a black box, and examine its behavior on carefully-chosen test cases.

2 Semantics of AspectJ

The semantics of the wildcard operators (“*” and “..”) inside call and execution pointcuts are easily
specified by considering them to be an abbreviation for the (infinite) union of all possible expansions.
We will therefore ignore wildcards in the sequel. Also, in order to simplify the presentation, we will deal
only with void functions of no arguments. This will entail no loss of generality. Because we focus in this

2

paper on how inheritance affects the semantics of call and exeuction pointcuts, we will also ignore static
methods in the sequel.

2.1 Call Semantics

We start our discussion of call semantics with the 1.1.1 release of AspectJ. As we will see later, subsequent
releases have changed the semantics of call pointcuts, making them inconsistent with execution pointcuts,
whose semantics has not changed.

Consider the pointcut specified by call(void A1.f()). This should capture all calls to the method
f defined in class A1. Indeed it does, but that is due to the careful wording of the previous sentence.
What happens if f is inherited from another class? In order to answer this question, we will consider the
following hierarchy of classes:

public class A1
{

public void f() { /* ... */ }
public void g() { /* ... */ }

}

public class A2 extends A1
{

public void h() { /* ... */ }
}

public class A3 extends A2
{

public void f() { /* ... */ }
}

We then consider the following three variable definitions, in which the name of the variable indicates its
static type and, if different, also its dynamic type:

A1 s1 = new A1();
A3 s3 = new A3();
A1 s1d3 = new A3();

It turns out that the pointcut call(void A1.f()) captures the calls s1.f(), s3.f(), and s1d3.f().
Similarly, the pointcut call(void A1.g()) captures the calls s1.g(), s3.g(), and s1d3.g(). It seems
that even without the + subtype pattern modifier, which specifies subclasses, these pointcuts capture calls
to the same method in subclasses, whether inherited or overridden. This may be a little surprising—what
is the + modifier for, then?—but is consistent with the dynamic binding mechanism of Java. (We shall
have more to say about the + modifier later.)

The pointcut call(void A3.f()) captures the call s3.f() but not s1d3.f(). This implies that
matching of call pointcuts is based on the static type of the variable, which is not consistent with the
dynamic binding principle, but may perhaps be justified based on the information available at the calling
point. However, the real surprise is that the pointcut call(void A3.g()) does not capture any join
points in our example, not even s3.g()! (See Figure 1 for a summary of these results.) The only
difference between f and g in A3 is that f is overridden whereas g is only inherited. Thus, it seems
that for matching to succeed, it is necessary for the method to be lexically defined within the specified
class—inheritance is not enough. We use the term “lexically defined” to indicate that a definition (first
or overriding) of the method appears inside the definition of the class.

Thus we are led to the following model. The semantics of a pointcut will be given as a set of join
points, formalized as a predicate specifying which join points are captured by the pointcut. Consider the
following definitions:

• a pointcut pcc = call(void C.f()),

3

A1.f() A3.f()

s1.f() Y —
s3.f() Y Y
s1d3.f() Y N

A1.g() A3.g()

s1.g() Y —
s3.g() Y N
s1d3.g() Y N

Figure 1: Capture of join points by call pointcuts. Rows are labeled by the method pattern used in
the pointcut, and rows are labeled by the actual call. Y (resp., N) in the table means that the call join
point is (resp., is not) captured by the pointcut, whereas a dash means that the call is unrelated to the
pointcut. The box indicates the surprising behavior.

A1.f() A3.f()

s1.f() Y/Y —
s3.f() Y/Y Y/Y
s1d3.f() Y/Y N/ Y

A1.g() A3.g()

s1.g() Y/Y —
s3.g() Y/Y N/N
s1d3.g() Y/Y N/N

Figure 2: Capture of join points by call and execution pointcuts. Each cell in the table indicates capture
by the call pointcut, followed by the indication for the corresponding execution pointcut.

• a variable defined as S x = new D(),

• a call join point jpc = x.f().

That is, the pointcut specifies a class C, and the target of the call join point has the static type S and
the dynamic type D. (Obviously, D must be a descendant of S for this to compile correctly. We will
denote this relationship by D v S.) Because Java uses dynamic binding, the code that will be executed
in response to the method call is the body of the method f of the class D. Note that this code is not
necessarily lexically defined in the class D itself; D may inherit the implementation of f from one of its
ancestors, and in this case, the execution join point jpe refers to the code in that ancestor. With this
notation, the semantics of the call pointcut is

jpc ∈ pcc ⇐⇒ S v C ∧ f is lexically defined in C.

2.2 Execution Semantics

Continuing with our example, we find that call and execution pointcuts capture exactly the same method
calls for s1 and s3. The only difference is in the treatment of s1d3.f(), which is captured by both
execution(A1.f()) and execution(A3.f()). (Recall that it was captured by call(A1.f()), but not
by call(A3.f()).) However, execution(void A3.g()), like the corresponding call pointcut, captures
none of our method calls. (See Figure 2 for a summary of these results.)

We now add the definitions of the execution pointcut and join point corresponding to the call pointcut
and join point above:

• an execution pointcut pce = execution(void C.f()), and

• an execution join point jpe consisting of the body of method f of class D.

The semantics of the execution pointcut now seems to be:

jpe ∈ pce ⇐⇒ D v C ∧ f is lexically defined in C.

That is, the static type is replaced by the dynamic type. Again, this can be justified by the different type
information available at execution join points, but is nevertheless an inconsistency in the semantics.

4

A1.f() A3.f() A1+.f() A3+.f()

s1.f() Y/Y — Y/Y —
s3.f() Y/Y Y/Y Y/Y Y/Y
s1d3.f() Y/Y N/Y Y/Y N/Y

A1.g() A3.g() A1+.g() A3+.g()

s1.g() Y/Y — Y/Y —
s3.g() Y/Y N/N Y/Y N/N
s1d3.g() Y/Y N/N Y/Y N/N

A1.h() A3.h() A1+.h() A3+.h()

s3.h() N/N N/N Y/Y N/N

Figure 3: Capture of join points with the subtype pattern.

2.3 Subtype Pattern Semantics

The semantics of a subtype pattern such as call(A1+.f()) should naturally be equivalent to the union
of all possible expansions where A1 is replaced by any of its descendants. This is indeed the case in
AspectJ. However, because of the surprising semantics described above, this has a subtle interpretation.
If

pc+
c = call(void C+.f())

is a call pointcut using subtypes, the matching rule is:

jpc ∈ pc+
c ⇐⇒ S v C ∧ f is lexically defined in some F s.t. S v F v C.

In particular, the pointcut call(A1+.h()) captures s3.h(), because h is defined in A2, but the same join
point is not captured by call(A3+.h()), even though A3 has this method. (See Figure 3.) This violates
our expectation that call(A3+.h()) should be a subset of call(A1+.h()) that is identical for all join
points in classes under A3.

Similarly, for
pc+

e = execution(void C+.f()),

the matching rule is:

jpe ∈ pc+
e ⇐⇒ D v C ∧ f is lexically defined in some F s.t. D v F v C.

In this case, too, the pointcut execution(A1+.h()) captures the execution of s3.h(), but execution(A3+.h())
does not.

2.4 Changes in Call Semantics

Since AspectJ version 1.2 (including version1 1.5.0, and also in version 1.1.1, when used with the -1.4
compilation switch), call semantics do not require the lexical definition of the method in the class C (when
+ is not used) or one of its descendants (with the + modifier). Thus, call semantics are now aligned with
the broad–static semantics we define in Section 3 below. However, execution semantics has not changed,
and still requires the method to be lexically defined in C or one of its subclasses. (See Figure 4.) This
inconsistency is not explained in the AspectJ documentation.

1AspectJ version numbers have recently been coordinated with Java version numbers. AspectJ version 1.5 corresponds
Java 1.5, and since the latter is also called Java 5, the former is also called AspectJ 5.

5

A1.f() A3.f() A1+.f() A3+.f()

s1.f() Y/Y — Y/Y —
s3.f() Y/Y Y/Y Y/Y Y/Y
s1d3.f() Y/Y N/Y Y/Y N/Y

A1.g() A3.g() A1+.g() A3+.g()

s1.g() Y/Y — Y/Y —
s3.g() Y/Y Y /N Y/Y Y /N
s1d3.g() Y/Y N/N Y/Y N/N

A1.h() A3.h() A1+.h() A3+.h()

s3.h() N/N Y /N Y/Y Y /N

Figure 4: Capture of join points in AspectJ version 1.2 and above. Boxes indicate the differences from
version 1.1.1 (Figure 3).

A recent document titled “The AspectJ 5 Development Kit Developer’s Notebook” found on the
AspectJ website (Dec. 2005) explains the semantics of call and execution pointcuts in terms of join-point
signatures. (This device is a result of changes in the Java 1.5 specification.) Each call join point may
have several signatures, depending on the class it is part of, regardless of whether the class redefines the
method or not. According to this document, “[j]oin point signatures for execution join points are defined
in a similar manner to signatures for call join points.” The document contains no formal definition, but
the section ends with the statement that “[t]here is one signature for each type that provides its own
declaration of the method.” The associated example makes it clear that classes not containing a lexical
definition of the method do not contribute execution join-point signatures, while still contributing the
corresponding call join-points signatures.

We conjecture that this difference is due to the way that execution advice is instrumented by AspectJ.
The compiler inserts advice for execution join points into the method itself. Advice for execution(void C+.f())
will be inserted into the code for the method in all subclasses of C that implement it. Advice for
execution(void C.f()) will be instrumented in the same way, but only if C itself has an implementa-
tion of the method. However, subclasses that do not implement the method will not be instrumented.
In order to have execution pointcuts consistent with the new behavior of call pointcuts, it would be
necessary for the compiler to insert an implementation of the method f into the class C if it does not
already have one; this implementation will only call super.f(). This implementation of f will then serve
as the point at which advice can be inserted. This is a small change, and is scheduled for a future release
of the AspectBench Compiler for AspectJ [1].

Since version 1.2, AspectJ issues warnings (labelled Xlint:unmatchedSuperTypeInCall) when it finds
call pointcuts that do not capture some calls because of type mismatches in the inheritance hierarchy. In
our example, it issues eight warnings. Two are for the call s1.f() with the pointcuts call(void A3.f())
and call(void A3+.f()). Two others are analogous for the call s1.g(). The other four are the same,
but for the variable s1d3. In this case, the warnings might be useful, since the programmer might expect
call pointcuts to have a dynamic semantics (that is, one that uses the dynamic type of the object; see
Section 3). For s1, however, there is no distinction between the static and dynamic types, and the
warnings are spurious. These warnings are probably caused by the limited inference capability of the
AspectJ compiler to detect this fact.

2.5 super Calls

Java allows calls to overridden methods using the super keyword. Such calls have a corresponding
execution join point, but no call join point. The existence of the execution join point is inevitable, given

6

Variable definition: S x = new D()
Call join point: jpc = x.f()
Execution join point: jpe = body of method f in D
Pointcuts: pcc = call(void C.f())

pce = execution(void C.f())
pc+

c = call(void C+.f())
pc+

e = execution(void C+.f())

jpc ∈ pcc ⇐⇒ S v C ∧ f is lexically defined in C
jpe ∈ pce ⇐⇒ D v C ∧ f is lexically defined in C
jpc ∈ pc+

c ⇐⇒ S v C ∧ f is lexically defined in some F s.t. S v F v C
jpe ∈ pc+

e ⇐⇒ D v C ∧ f is lexically defined in some F s.t. D v F v C

(a)

jpc ∈ pcc ⇐⇒ S v C ∧ f exists in C
jpc ∈ pc+

c ⇐⇒ S v C ∧ f exists in S

(b)

Figure 5: Semantics of AspectJ implementation: (a) version 1.1.1; (b) changes since version 1.2.

that advice for execution join points is inserted into the body of the called method. Such advice code
will be executed regardless of how the method body was called. However, there is no reason why super
calls should not have call join points as well. The AspectJ compiler can treat such calls like any other
call, since all information about the method being called is available during compilation.

It seems reasonable that super invocations should be treated like any other method invocation.
However, this raises another issue relating to the definition of join points in AspectJ. In plain Java,
the addition of an overriding method that only forwards the call to its superclass does not change the
semantics of the program. In contrast, the addition of an implementation

void f() { super.f(); }

in AspectJ does change which join points are captured by (execution) pointcuts. Suppose that the
implementation of f in our example class A3 contains a call super.f(). Any advice to the pointcut
execution(void A1.f()) will be invoked twice, for the implmentation of f in A3 and for the super call
to the implementation in A1. If we now add the above definition also to class A2, the advice will be
executed three times, once for each of the implementations of f in classes A1, A2 and A3.

An aspect language should respect invariants of the underlying language as much as possible. In this
example, the effect of making a change in the Java program only affects the aspects, not the original
program. However, in a scenario where aspects are developed separately from the main Java code, inde-
pendent changes made by the Java programmer could affect the behavior of the aspects in unanticipated
ways.

In this particular case, it is hard to see how execution join points can be implemented efficiently
without violating this invariant. However, AspectJ programmers need to take this phenomenon into
account. Also, if execution join points behave in this way, it seems better to make call join points behave
in the same way rather than creating another internal inconsistency in the AspectJ language.

2.6 Summary

The semantics of version 1.1.1 and later version of AspectJ are summarized in Figure 5. We use the
term “f exists in C” to denote the fact that the method f exists in class C, whether or not it is lexically
defined in it.

The AspectJ semantics satisfies some of our intuitive expectations but violates others. The points on
which AspectJ is consistent with the intuitive semantics are:

7

• Pointcuts with wildcards are equivalent to the union of all possible expansions.

• Pointcuts with subtype patterns are equivalent to the union of all pointcuts with subtypes substi-
tuted for the given type.

• The semantics of execution pointcuts is based on the dynamic type of the target.

On the following points the semantics of AspectJ deviates from our intuition:

• The semantics of call pointcuts is different from that of execution pointcuts, and is determined by
the static type of the target rather than the dynamic type. Since version 1.2, call and execution
pointcuts also differ on the lexical definition requirement.

• Execution (and, in version 1.1.1, also call) pointcuts only capture join points for classes where the
given method is lexically defined.

• As a result of this, the difference between pointcuts with or without subtype patterns is subtle and
unintuitive.

It is arguable whether pointcuts without subtype patterns should capture join points in subclasses at
all. On the one hand, an instance of a class is ipso facto considered to belong to all its superclasses; this
is reflected in the syntactic restrictions on assignment and parameter passing, and in the semantics of the
instanceof operator. On the other hand, the existence of the subtype pattern modifier seems to imply
the intention that a pointcut that does not use it refer only to direct instances of the specified class.

We believe that the lexical restrictions shown in these semantic definitions were unintended; their
removal would greatly simplify the semantics. Some evidence that this is not the intended semantics
comes from the following quote from one of the AspectJ gurus [5, p. 79]: “The [call(* Account.* (..))
pointcut] will pick up all the instance and static methods defined in the Account class and all the parent
classes in the inheritance hierarchy” (emphasis added). This was not true in AspectJ at the time of
writing (version 1.1.1), but is intuitively appealing. This is true for the current semantics of AspectJ,
but is not true for execution pointcuts, where intuition requires the same treatment. Thus, even an
AspectJ expert’s intuition differs from the implemented semantics.

3 Alternative Semantics

If the current AspectJ semantics is inappropriate, we should propose one or more alternatives. As
mentioned above, such alternatives should not restrict methods to be lexically defined in the designated
class. Two questions remain:

1. Should subclasses be included when the subtype pattern modifier does not appear in the pointcut?

2. Should call and execution pointcuts capture different join points?

These issues lead to four possible definitions of the semantics (see Figure 6). We use the term “broad”
for those semantics that include subclasses even when subtypes are not indicated, and “narrow” for
those that do not. The term “static” denotes semantics that use the static type for call pointcuts, and
“dynamic” denotes those that use the dynamic type. (Both use the dynamic type for execution pointcuts,
for which static type information is not available.)

We can simplify these definitions even further. The condition that the method f exist in D is
redundant, since if it is not met, there are no join points that are candidates for the pointcut at all. The
condition that f exist in S is also redundant, under the assumption that the original program compiles
sucessfully. Since S is the static type of the variable x, the call x.f() will be rejected by the Java compiler
unless f exists in S. Under these assumptions, Figure 6 reduces to Figure 7.

Each of the four semantics is consistent, and also reasonable. Perhaps the broad–dynamic semantics
best reflects object-oriented principles, in that a reference to a class may point to elements of any of its
subclasses, and the type that determines matching is the dynamic rather than static type of the variable.

8

Narrow Broad

jpc ∈ pcc ⇐⇒ S = C ∧ f exists in C jpc ∈ pcc ⇐⇒ S v C ∧ f exists in C
jpe ∈ pce ⇐⇒ D = C ∧ f exists in C jpe ∈ pce ⇐⇒ D v C ∧ f exists in C

S
ta

ti
c

jpc ∈ pc+
c ⇐⇒ S v C ∧ f exists in S jpc ∈ pc+

c ⇐⇒ S v C ∧ f exists in S
jpe ∈ pc+

e ⇐⇒ D v C ∧ f exists in D jpe ∈ pc+
e ⇐⇒ D v C ∧ f exists in D

(a) (b)

jpc ∈ pcc ⇐⇒ D = C ∧ f exists in C jpc ∈ pcc ⇐⇒ D v C ∧ f exists in C
jpe ∈ pce ⇐⇒ D = C ∧ f exists in C jpe ∈ pce ⇐⇒ D v C ∧ f exists in C

D
y
n
am

ic

jpc ∈ pc+
c ⇐⇒ D v C ∧ f exists in D jpc ∈ pc+

c ⇐⇒ D v C ∧ f exists in D
jpe ∈ pc+

e ⇐⇒ D v C ∧ f exists in D jpe ∈ pc+
e ⇐⇒ D v C ∧ f exists in D

(c) (d)

Figure 6: Four possible semantics: (a) narrow–static; (b) broad–static; (c) narrow–dynamic; (d) broad–
dynamic.

Narrow Broad

jpc ∈ pcc ⇐⇒ S = C ∧ f exists in C jpc ∈ pcc ⇐⇒ S v C ∧ f exists in C
jpe ∈ pce ⇐⇒ D = C ∧ f exists in C jpe ∈ pce ⇐⇒ D v C ∧ f exists in C

S
ta

ti
c

jpc ∈ pc+
c ⇐⇒ S v C jpc ∈ pc+

c ⇐⇒ S v C
jpe ∈ pc+

e ⇐⇒ D v C jpe ∈ pc+
e ⇐⇒ D v C

(a) (b)

jpc ∈ pcc ⇐⇒ D = C ∧ f exists in C jpc ∈ pcc ⇐⇒ D v C ∧ f exists in C
jpe ∈ pce ⇐⇒ D = C ∧ f exists in C jpe ∈ pce ⇐⇒ D v C ∧ f exists in C

D
y
n
am

ic

jpc ∈ pc+
c ⇐⇒ D v C jpc ∈ pc+

c ⇐⇒ D v C
jpe ∈ pc+

e ⇐⇒ D v C jpe ∈ pc+
e ⇐⇒ D v C

(c) (d)

Figure 7: Simplified semantics from Figure 6.

If we accept that call pointcuts are instrumented in the caller’s code, the broad–static semantics is
appropriate (and, indeed, it is the closest to the current AspectJ semantics). However, other semantics
may be easier to use if they more closely reflect the intent of AspectJ programmers.

4 Expressive Power

... WORK IN PROGRESS ...

5 A Comprehensive Set of Operators

In this section, we present a proposal for syntactic and semantic changes to AspectJ. This proposal can
express all the types of pointcuts described elsewhere in this paper, and is therefore more expressive
than all the other possible semantics mentioned here. However, it is perhaps not the most convenient for
programmer use, and we therefore present it more for its theoretical value than as a practical proposal.

Looking back at Figures 5 and 6, we find several types of relationships used in the various semantics:

• The first set consists of inheritance relationships: S = C, S v C, D = C, and D v C.

• The second set consists of lexical definition requirements on the method f ; it could be required to
be lexically defined in C, in some F such that S v F v C, or in some F such that D v F v C.

9

• The third set consists of requirements on the existence (but not necessarily lexical definition) of the
method f in the classes C, S, or D.

Not all combinations of these operators make sense. As explained in the introduction, we assume that
the semantics of execution pointcuts never refers to the static class S. This is true in all the semantics
presented above, and is a result of the fact that advice on execution join points is instrumented in the
target class, at which point no static information about the type of the target variable is available.

It is now clear that we will be able to express all these four semantics given the ability to express the
relationships from the first set plus the fact that f exists in C. The former can be achieved by adopting the
new static operator suggested at the end of Section 4 and possibly modifying the semantics of this and
target. The relationship S = C would be expressed by static(C), and S v C by static(C+). (Because
of the assumption that execution join points contain no static information, these are only relevant for
call join points.)

As mentioned in Section 4, we can capture the dynamic relationship D = C using the expression
if(x.getClass() == C.class), and D v C is easily captured by target(C) for call pointcuts and
by this(C) for execution pointcuts. However, it would be more consistent with the proposed static
pointcuts to express D = C by target(C) for call pointcuts and by this(C) for execution pointcuts,
and D v C by target(C+) for call pointcuts and by this(C+) for execution pointcuts. (Note that the
syntax this(C+) and target(C+) is already supported by AspectJ, but, as far as we could find, these
expressions mean the same as the corresponding expressions that do not contain the + modifier. The
warnings mentioned at the end of Section 2.4 sometimes include the + and sometimes do not, indicating
a possible difference, but this might be due to a simple copying of the class expression from the pointcut
expression.)

We can now restrict call and execution pointcuts to specify the signature of the method, with-
out a class, since class information can be added using the first set of operators. While this re-
sults in an orthogonal set of operators, it would lose conciseness in the most common cases. Instead,
we can take the most liberal meaning of call and execution pointcuts that do contain classes. We
thus take call(void C.f()) and execution(void C.f()) to mean D v C ∧ f exists in C, and
call(void C+.f()) and execution(void C+.f()) to mean D v C. This is just the broad-dynamic
semantics of Figure 7. (There may be methods f with the same signature in classes that do not inherit
from C. Since the pointcut expressions specifically mention C, these should be excluded. This is the
reason for the requirement D v C in all cases.)

Figure 8 shows how the four types of pointcuts can be expressed in the proposed scheme of this section
in order to express the meanings of the original pointcuts under the four proposed semantics.

Narrow Broad

call(void C.f()) && static(C) call(void C.f()) && static(C+)
execution(void C.f()) && target(C) execution(void C.f())

S
ta

ti
c

call(void C+.f()) && static(C+) call(void C+.f()) && static(C+)
execution(void C+.f()) execution(void C+.f())

(a) (b)

call(void C.f()) && target(C) call(void C.f())
execution(void C.f()) && this(C) execution(void C.f())

D
y
n
am

ic

call(void C+.f()) call(void C+.f())
execution(void C+.f()) execution(void C+.f())

(c) (d)

Figure 8: The four pointcuts in the proposed scheme of Section 5. Each part shows how to express the
four pointcuts pcc, pce, pc+

c , and pc+
e in the relevant semantics.

In order to be able to express the AspectJ semantics of Figure 5 we need additional operators that
refer to lexical definitions. In Figure 5, the lower bounds S v F and D v F are also redundant, since

10

pcc = call(void C.f()) && lexical(void C.f()) && static(C+)
pce = execution(void C.f()) && lexical(void C.f())
pc+

c = call(void C+.f()) && lexical(void C+.f()) && static(C+)
pc+

e = execution(void C+.f()) && lexical(void C+.f())

Figure 9: Expressing AspectJ 1.1.1 semantics in the proposed scheme of Section 5.

the first is required for compilation without errors, and the second is required in order for any relevant
join point to exist at all. We therefore need to specify that a method is lexically defined in the class C
or below it. This can be achieved by a new pointcut operator lexical, which takes a method pattern,
like call and execution pointcuts. The semantics of lexical(void C.f()) would be that f is lexically
defined in C, and that of lexical(void C+.f()) would be that f is lexically defined in some F such
that F v C. Figure 9 shows how to express the AspectJ 1.1.1 semantics of Figure 5 in this new scheme.

6 Conclusions

The current semantics of AspectJ has some unintuitive aspects. We have presented a number of alternative
semantics, and compared their expressive power. The “right” semantics for AspectJ needs to be worked
out with the user community, since it ultimately depends on how AspectJ is used in practice. While
semantic changes in AspectJ may be limited by the desire for backward compatibility, this discussion is
also relevant for other AOP tools, both for Java and for other languages. We hope that this paper will
start a fruitful and constructive discussion on these questions.

References

[1] O. de Moor, 2005. Personal communication.

[2] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming: Introduction. Comm. ACM,
44(10):29–32, 2001.

[3] J. D. Gradecki and N. Lesiecki. Mastering AspectJ: Aspect-Oriented Programming in Java. John
Wiley & Sons, 2003.

[4] R. Jagadeesan, A. Jeffrey, and J. Reily. A calculus of untyped aspect-oriented programs. In
L. Cardelli, editor, European Conference on Object-Oriented Programming (ECOOP 2003), volume
2743 of Lecture Notes in Computer Science, pages 54–73. Springer-Verlag, 2003.

[5] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning, 2003.

[6] R. Lämmel. A semantical approach to method-call interception. In Proc. First Int’l Conf. Aspect-
Oriented Software Development (AOSD 2002), pages 41–55, April 2002.

[7] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation semantics of aspect-oriented programs. In
Ninth Int’l Workshop on Foundations of Object-Oriented Languages, 2002.

[8] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition, 1997.

[9] D. B. Tucker and S. Krishnamurthi. A semantics for pointcuts and advice in higher-order languages.
Technical Report CS-02-13, Brown University, 2003.

[10] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP ’03), pages 127–139, August 2003.

[11] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and dynamic join points in aspect-
oriented programming. In Ninth Int’l Workshop on Foundations of Object-Oriented Languages, 2002.

11

