Efficient runtime monitoring through static analysis

Double-blinded submission

Abstract

Researchers frequently use runtime-monitors for obsem¥ia be-
havior of a program under test and verifying this behaviaiast
a given specification. For this purpose they instrument tbgram
in such a way that it emits all events of interest to the oleeAn
inherent problem with this approach is that a major perforcea
penalty can arise if many such instrumentation points haveet
inserted.

In this work we tackle this problem by automatically anafygi
the program at compile-time to decide what parts of the $ipaei
tion can be violated at all once the program runs. For paatscén-
not be violated, the optimization removes the related imsenta-
tion points so that they are not evaluated at runtime. Arrabsbn
of the static call-graph of the program allows us to effidighain-
dle arbitrary finite-state properties. We employ an indnsbased,
context-sensitive and flow-insensitive points-to analysei decide
per-object properties with free variables.

Our results show that for some properties and programs phis o ,
timization can remove all of the instrumentation pointsthie av- 4
erage of our benchmarks it removed more than two thirds. Alse
it is efficient, requiring an order of magnitude less time tome 10
pute than an average points-to analysis. The call-graptinaaien 1
turned out to be crucial and sufficient for an efficient anialyfhe 12
points-to analysis proved equally important but still suéffrom its
flow-insensitivity. "

As this work shows, runtime-monitors can be effectively ancjz
efficiently specialized. We believe that our methods areavoeial
step in getting those monitors fast enough for pervasivénisege-
scale applications. Further progress on the field of flovsiser
points-to analysis might help to yield even better resuitshie
future.

Categories and Subject Descriptors TODO [TODQ: TODO—
TODO

General Terms TODO
Keywords TODO

o o s w N P

17
18
19

1. Introduction

A runtime monitorobserves a sequence of events occurring during
the execution of a piece of software. They have been fretuent
used for the purpose of Runtime Verificatiod].[In the begin-
ning of the verification process stands a formal, often datilz,

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI ‘07, XXX
Copyright© 2007 ACM X-XXXXX-XXX-XXXXX. . . $5.00

specification based on regular expressions, temporaldpgicon-
text free grammars. An automatic process then generatesigomo
equivalent to this specification and alters the program uteds so
that it emits the necessary events to this monitor at runtime

In 2005, Avgustinov et al. [1] propsed an implementation of
such an approach under the namdratematchesFigure 1 gives
an example adapted from their paper.

Explain what this tracematch consists of and what it does.
Explain that there is overhead involved because so manyteven
have to be captured in the program. Also mention that it biinels
variables.

public aspect FailSafelter {

pointcut collectionupdate (Collection c) :
(call(x java. util . Collection .adck(..)) ||
call (x java. util . Collection .remove(..))) && target(c);

tracematch(Collection c, lterator i){
sym createiter after returning (i) :
call (x java. util . Collection . iterator ()) &&arget(c);
sym call_next before:
call (x java. util . lterator .next()) &&target(i);
symupdatesource after : collectionupdate (c);

createiter callLnextx updatesource+ callnext

throw new ConcurrentModificationException ();

Figure 1. Safe iteration tracematch

Although such trace monitors are certainly easy to use due to
their declarative specification, the compiler has to do adgob
to compiler the related runtime monitor efficiently. Thi®blem is
common to all runtime verification approaches. In [?], Avgus/
et al. compare different runtime monitoring systems and e
their performance. The authors further explain certairintigt-
tions applied to the generated monitor, resulting in fastenitors
compared to the other approaches. Those optimizationsatipec
the monitor with respect to the given specification.

The purpose of this work is now to specialize the monitor also
with respect to the program being monitored. We propose tof se
algorithms that analyze the program under test in orderdtice
the set of potential points of failure for a runtime monitor &
feasible minimum.

Figure 2 gives our running example. We use it to show what
our analysis is trying to achive. The example simulates widiga
package which has a canvas and shapes and some user ioteracti
with it. First we have a clasSanvasthat implements some canvas
that a collection of shapes. It exposes methods to add a stmape
read a set of shapes from an input stream and to animate pksha
on the canvas.

The clasaJl simulates some user interaction with the program.
First a canvas is created. The user adds a rectangle to ih The
the user adds shapes from a file. He clicks the animation rbutto
triggering the animation. Then he loads some other shapsfe w
the animation is running.

To this example we now apply the aforementioned tracematch
from Figure 1 as well as the one from Figure 3, which checks tha
nothing is read from a closed stream.

When taking those two monitor specifications into considera
tion, we can identify the following potential points of faiks: We
have a call tolterator . next()in line 30. This could potentially fail
if the collectionShapesvas modified since the last call text This

1 class Canvas{

Collection shapes mew ArrayList ();

might in fact be the case in our example, because the user adgls void add(Shape s} shapes.add(s)}

shapes from a file while the animation is running. Consedyent s
the associated instrumentation points at the lines 11, 203@n -
have to remain. The tracematch will actually be woven atehoss
positions and an error message will be issued at runtimeeadpgh ~ °
proprlate time. The shadow at line 5 can be removed, because®i
is only called from line 42, which takes certainly place befthe '
shapes are iterated over.

For the input stream property, thinks look better: The onlx4
two reads that occur do so before the respective streamssatlo ;5
Furthermore, the stream is not affected by the animatieathrSo 16
here, the analysis should infer, that the tracematch froordi@ 7
can be removed entirely. 18

Internal remark: We can later on use lines 43 and 49 to describ®®
that if we had reused the variable is1 in line 49, then the fsstn
info would have had represented the two streams as one xtbstr;i2
object (since it is flow-insensitive), which would have ledhte
optimization failing for this example. "

25
1.1 Constributions 2
27
28

e A set of algorithms to efficiently compute unnecessary |n29

strumentation points for tracematches. Those algorithras a
generic enought to be applied to other finite-state runtimve v,
fication systems. 2

This paper provides the following original contributions:

¢ A set of sizeable (?) benchmarks in order to evaluate theappf‘4

cability of our approach and its precision. w

e More? 37 }

38

void insertFromFile (InputStream is{
while(true) {
Shape shape = readShape(is);
if (shape=null) return;
shapes.add(shape);

private Shape readShape(InputStream i§)
Shape shape aull;
do{
int i =is.read ();
/% construct shape from content omitted

return shape;

}

void animate () { new Animator(). start (); }
class Animatorextends Thread{

public void run() {
for (Iterator iter = shapes. iterator (); iter .hasNext (¥;)
Shape s = (Shape) iter .next ();
s. translateBy (generateOffset ());
}
}

int generateOffset ({ /« omitteck/ }
}

The remainder of this paper is organized as follows: Se@ionss class Ul {

gives an overview of our optimization. It enumerates alllgsia 40
steps we apply and how thos esteps interact. Section 3 diees t!
concrete dynamic semantics of tracematches. This is reageiss *
order to be able to reason about the correctness of our abstr&
semantics. Those are presented in Section 4. Here we exptin j:
exact nature of our abstraction and how it is obtained. 8edi
then describes in detail how a given tracematch is evaluated ,
this abstraction in order to find the set aftive shadowsThis 4
concludes our discussion of the analysis. We give benclsnarke
results in Section 6, evaluating on the performance of tfierdint so
steps of our analysis. We close with a discussion of relatedkw 5!

(Section 7) as well as our results and future work (Section 8) 52 }

2. Overview

Here we just outline the analysis. First name our requiretaen
Want to handle free variables, threads and recursion. Brplaat
we have two major steps. First we create a sound abstraction o
the program which captures the abstract transition behawigith
respect to all given tracematches in form of a finite statehirec
Then secondly, we evaluate the tracematch automaton oiger th
state machine using a worklist algorithm.

static void userlnteraction (){
Canvas ¢ =new Canvas();
c.addfew Rectangle ());
InputStream is1 =new FilelnputStream ("myShapes”);
c. insertFromFile (isl);
is1.close ();

c.animate ();

InputStream is2 =new FilelnputStream ("myOtherShapes”);
c. insertFromFile (is2);

Figure 2. Running example of a Ul drawing package

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

public aspect StreamClosg
tracematch(InputStream is){
symclose after : call (x+ InputStream.close ()) &&arget(is);
symreadbefore: call (x InputStream.read (..)) &&arget(is);
close read{

throw new RuntimeException (
"Tried _to_read.from_closed.stream.” + is);

}

Figure 3. Tracematch checking for reads from closed streams

Further outline step 1 (with a graphic?): We first we create
a per-method state machine based on an exceptional unithgrap

Then we combine those automata to thread summaries and in the

end to one large state machine for the whole program.

3. Concrete semantics

The concrete semantics are basically defined in three
steps (see three subsections). First we state our general
assumptions and prerequisites. Then we define what the
underlying NFA for a tracematch looks like: Essentially

a normal NFA but with additional skip-edges. Note that
here, as | proposed weeks ago, skip edges have Igbels!
We assume (that will be mentioned eralier in the paper),
that a state has a skip-loogkip-1, if there is not alread
a loop (s,1, s) in the transition relatiom\. In the last
step, we define the actual tracematch automaton, i.¢. the
machinery that is executed at runtime - on top of that
given NFA.

3.1 Program representation

In the following, we assume the following sets as given. Taey
induced by the specification of the given tracematches.

We start off by stating some basic assumptions, such
as that we have a given set of tracematch symbols jwith

associated variable names plus a potentially infinite set
of objects.
Sym finite set of fully qualified tracematch-symbol names
Vars finite set of variable names for eagke Sym
Var defined byVar := Usesym Vars
0] possibly infinite set of objects

Then we define the underlying NFA for a tracematch
automaton. It is almost a usual NFA, with the only real
difference, that its set of input labels can be splitted |nto
labels! andskip-i. Also, the transition relation can e
partitioned in the same way into skip transitions and
“normal” transitions.

3.2 Underlying NFA

Definition 1 (Nondeterministic finite automaton, NFA) We de-
fine a nondeterministic finite automatoh in the usual way as a
quintuple A € (Q*, 24, Qg', A*, Q7) with

e Q* finite set of states

¢ >4 finite set of input symbols

* Qi C Q4 set of initial states

o A C Q4 x =4 x Q* transition relation

* Q7 C Q* set of final states

As usual, an input wordy € X" is accepted by4 if Aisin

a final state (fromQ+) after readingw letter by letter through the
transition relatiorA*, starting in any initial state, € Q'

For the NFAs in this paper, we further assume thas parti-
tioned in two setsy = ¥ U X_ with the following property:

a € X4 & skip-a € ¥_
This also induces a partitioning & = Ay U A_ as:

A+ = {(S,l,t) €A | le 2+}
A_ = {(s,skip-l,t) € A | skip-l € £_}
3.3 Definition of the tracematch automaton
Definition 2 (Powerset) For each sets, we define its powerset as
P(s).

Definition 3 (Disjunct) A disjunctd is a pair of positive and neg-
ative binding functions(d,d—) with d+ Var — O and
d—:Var — P(O).

Note that the negative binding maps a variable tseaof
objects. We denote the set of all disjunctsBy

Definition 4 (Constraint) Any element oP (D) is a constraint.

We denote the set of all constraints@dyThe constrainf is also
calledfalse and the constrainfd} is also calledrue (in line with
the well-known definition of disjunctive normal form).

We model a configuration (i.e. complete state of a trace-
match automaton) as a mapping from states to con-
straints.

Definition 5 (Configuration) A configurationy(Q) with respect
to a finite state se€) is a mapping from the states ¢f to con-
straints. Hence, the set of all configurations o@gis defined as

Q) :={ylv:Q—C}

In the following we will often writel" instead ofl’(Q) if @ is
clear from the context.

Definition 6 (Initial configuration) For any set of configurations
I'(Q), over a state sef) with subset of initial state, C @, we
define the initial configuratiory, € I'(Q) as follows:

if ¢ € Qo
if ¢ & Qo

Note that herérue andfalse are the corresponding constraints
as defined above.

true

Vg€ Q . v(q) 3:{

false

Definition 7 (Domain) For any functiony, we definelom(y) as
the domain ofp.

The join operation just combines two configurations gis-
jointly.

Definition 8 (Join of configurations) We define a join operation

@ : I' x ' — T which combines two configurations disjointly.

For v1,v2 € T with dom(y1) = dom(vy2) we define:

Ve € dom(y1) . (v1 ®72)(c) := 71(c) Ur2(c)

The satisfying disjuncts are all disjuncts which are gon-
tained in a constraint at a final state. . . (but fudse)

Definition 9 (Satisfying disjunct) We identify the satisfying dis-
juncts of a configuration as the ndiaidse disjuncts at a final state.

sat(y):={d € D|3q € Qr.dec~(q)}\{false}

A configuration is accepting if there exists at least pne
satisfying disjunct in that configuration.

Definition 10 (Accepting configuration) We define a configura-
tiony € I" as accepting if it has any satisfying binding:

Ip ={yel'|sat(y) # 0}

We still have to define what the input to the tracematch
automaton is. In our notation here, a tracematch automa-
ton reads “events”. An event is basically the informa-
tion we get from each matching joinpoint: A set of pdirs
(s, B) wheres is a symbol name and a variable bind
ing...

Definition 11 (Binding and Event) A binding3 is a partial func-
tion of types : Var — O. We denote the set of all bindings by
B:={8|p:Var — O}

An event is an then element @ (Sym x B), i.e. a set of symbol-
labels, each associated with a variable binding. We dertogeset
of all events by¢.

A tracematch is now defined as follows. Its states|are
configurations. It reads events. It starts in the initial
configuration. The transition function will be described
later. Its accepting configurations are exactly those de-
fined byIl'r.

Definition 12 (Tracematch automaton) A tracematch automaton
T(A) is a deterministic automaton augmenting a given NEA
It is defined as a quintupl€ (A) := (I',&,70,9,I'r) where
I := I'(Q*) and4 as will be described in Definition 14.

In particular this definition implies that, sindeis a potentially
infinite set of configurations, this automaton has a potiytia-
finite set of states. Yet, acceptance foris defined as usual: An
event-tracet € £ is accepted by7 if after readingt, 7 is in
an accepting configuration € I'r, i.e. has a satisfying binding.
When this is the case, the tracematch body is executed fasuaty
bindingb € sat(7).

In the following we will often write7 instead of7 (A) if A is
clear from the context.

Before we define the transition functian we first introduce
some more notation. . .

We need to be able to update a binding. Hence, we define
a functional update, replacing a mappiag— ¢ by
ST,

Definition 13 (Function update) Further, for all s € dom(y) we
define an update operatds — t/s — r] (in postfix notation) as
follows:

r ifa=s
p(a) otherwise

pls —t/s—r1](a) = {

If before the update operation ¢ dom(p), we also simply
write p[s — r] instead ofp[s — t/s > r].

Definition 14 (Transition function ¢)

The transition functiom is of type:
6:'x€&E—-T
It is defined as:

We compute the successor configuration by iterating
over all transitions ofd. We do so separately fakip-
and “normal” transitions, then in the end join the results.
In the followingunderlined parts of the definitions are
new functions which are the defined right below.

0(v,e) (1)
= d(y,e,A%) 2)
= §(70,6, A1) ® 8(7, e, A?) (3)

4

with §(, e, A) defined as:

For all transitions imA. ..

5(v,e,A) (5)
= 5(v,e,{(s1,l1,t1), (s2,l2,t2), ..., (Sn,ln,tn)}) (6)
= 0(6(7, e (s1,01,t1)),e,{(s2,l2,t2), ..., (Snyln,tn) XV)

(8)
with §(, e, (s,1,t)) defined as:

For pairs(s, 3) in the event. ..

6(v, e (s,1,t)) €)

= 0(7, {1, 1), (12, B2), - - -, (b, Brm) } (5,1, 2)) (10)
= 0(0(7, (I, 81), (5,1, 1)), {(I2, B2), - - -, (lim, Brm) }, (5, U(2])
(12)

with §(v, (Ie, B), (s,1,t)) defined as:

If we process a “normal” edge with the right label, |do
update positively, if we see a skip edge with that lapel,
update negatively, else do nothing.

6(7, (le, B), (s,1,1)) (13)
pos(v, B, s,t) ifl=1le
= neg(vy, 3, t) if I = skip-I. (14)
~ otherwise

where we defin@os(v, 3, s, t) as:

he

—

Do the positive update by replacing the constraint at
target statet by the result ofpos(yo(s), 3), which is
described below. Note that here we pass initiigal

configurationyo, which corresponds to the fact that the
temp disjuncts in the actual implementation are all in
tialized tofalse.

pos(v, B, s,t) := [t = ¢/t > pos(y0(s), B)]
with pos(c, 3) defined as:

For all disjuncts. ..

pos(c, B) = Upos(d, B)

ced
For all variables. ..
pos(c, B) (15)
= pos(e,{vi — 0i,...}) (16)
(17)

Returnfalse if in the current positive binding is not the
same as the one we see or if we have a negatiove pind-
ing to that same object. Else, recurse for the remaihing
variables, storing the positive binding.

false , if v; € dom(dy) A dy(vi) # o

= V v; & dom(d4) ANd—(vi) = o5 (18)
pos((d+[vi — 0i],d-),{vit1 — 0it1,...}),€lse
(19)

Now the negative binding, similarly. Here we pass in{the
current configurationy.

andneg(v, 3, t) defined as:

neg(v,B,t) := [t — ¢/t — neg(v(s), B)]
with neg(c, 8) defined as:

For all disjuncts. ..

neg(c, B) := | neg(d,)

dec
with neg(d, 8) defined as:
For all variables. ..
neg(d,8) = |J {neg(d,B,v)}

vedom(3)

Returnfalse if the incoming (negative) binding clashes
with the positive one we have stored. If we do have a
positive binding to a different object, just retudnun-
changed. We do not need to store the negative binding.
If the variable is unbound positively, add the negative

binding and return.

with neg(d, 8, v) defined as:

i s (v) = (o)
if d- (v) # B(v)
if v & dom(dy)

false
neg(d, 3,v) == < d
(d+,d-[v— B(v)])

4, Static abstraction

Explain that our analysis has to assure three things in otddoe
correct. First we have to make sure that for any dynamic et@tu
path which leads from one shadow to another, there alsosaist
path in our abstraction. Secondly, we have to make sure teat w
take thread interleavings into account. Last but not leasthave
to update the bingings in our abstraction correctly. Thistlatep
will be explained in detail in Section 5. Here we first concatet
on the creation of the program abstraction.

Outline the different steps involved: 1.) create per-métsiate
machines 2.) explain the concept of a thread context andedtfa
contents of a thread summary 3.) give algorithm to combiatest
machines interprocedurally

5. Flow analysis

Here we consistently refer to the concrete semantics enguiin
Section 3. Explain that our abstraction is essentially veimilar

to the actual implementation. The only difference is thatead

of mappingsvar +— object we now have mappingsar +—
pointsToSet. Explain how those mappings have to be updated in
order to be correct. Explain the concept of the “shadow higto
which helps us to identify the trace of all shadows that cassfimy
lead to a match.

Give algorithm for the optimized fixed-point iteration. Eaip

merge operation in detail. (has to preserve the shadow tyisto

6. Benchmarks

Here we evaluate around 10 medium-sized benchmarks, psobab
taken of the dacapo and ashes suites, in combination witteat b
tracematches. Questions to answer: 1.) How many shadowkecan

removed for each combination? 2.) How long do different paft

the analysis take for each combination? 3.) Is it worth mining

the abstraction or the tracematch automaton? 4.) How muc do

those benchmarks run faster with the reduced instrumemtatb.)

Does the analysis scale to multiple tracematches in on amddime

program? 6.) What role does context-sensitivity play? 7.jnore?
Discussion: Where do we fail? Why? What could be improved?

7. Related work
7.1 (Generalized) Typestates
¢ Do not handle threads (unsound).

¢ The non-generalized version used in [2] can only handle-prop
erties that talk about one single object.

¢ [2] does handle must-alias information nicely, however

7.2 PQL
no idea what they are doing so far. have to look into this!

7.3 Bandera (slicing)
no idea what they are doing so far. have to look into this!

7.4 Compiler optimizations using temporal logic

by this | mean [3] - kind of the inverse approach: Expressftiata
analyses as finite-state properties which are then evaluaier a
program. Could we do similar stuff in our approach? (expotser
flow analyses in this framework)

7.5 More?

8. Discussion and future work

¢ Were able to remove many instrumentation points for certain
properties.

¢ Worse precision for other properties. Need must-alias/fioe-
lyis (future work).

¢ Bulk of time spent in points-to and callgraph computation.

e Can be applied to virtually any finite-state runtime verifica
system.

e more?

References

[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensé&murie
Hendren, Sascha Kuzins, Ondfej Lhotak, Oege de Moor, Bami
Sereni, Ganesh Sittampalam, and Julian Tibble. Adding eTrac
Matching with Free Variables to Aspect. bject-Oriented
Programming, Systems, Languages and Applicatipages 345-364.
ACM Press, 2005.

Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, anthtanuel
Geay. Effective typestate verification in the presence iafsag.

In ISSTA'06: Proceedings of the 2006 international symposimm
Software testing and analysipages 133—-144, New York, NY, USA,
2006. ACM Press.

David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Chasti
Frederiksen. Proving correctness of compiler optimizetidy
temporal logic. IlPOPL '02: Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languagages
283-294, New York, NY, USA, 2002. ACM Press.

2

—
R

