
Efficient runtime monitoring through static analysis

Double-blinded submission

Abstract
Researchers frequently use runtime-monitors for observing the be-
havior of a program under test and verifying this behavior against
a given specification. For this purpose they instrument the program
in such a way that it emits all events of interest to the observer. An
inherent problem with this approach is that a major performance
penalty can arise if many such instrumentation points have to be
inserted.

In this work we tackle this problem by automatically analyzing
the program at compile-time to decide what parts of the specifica-
tion can be violated at all once the program runs. For parts that can-
not be violated, the optimization removes the related instrumenta-
tion points so that they are not evaluated at runtime. An abstraction
of the static call-graph of the program allows us to efficiently han-
dle arbitrary finite-state properties. We employ an inclusion-based,
context-sensitive and flow-insensitive points-to analysis to decide
per-object properties with free variables.

Our results show that for some properties and programs this op-
timization can remove all of the instrumentation points, inthe av-
erage of our benchmarks it removed more than two thirds. Also
it is efficient, requiring an order of magnitude less time to com-
pute than an average points-to analysis. The call-graph abstraction
turned out to be crucial and sufficient for an efficient analysis. The
points-to analysis proved equally important but still suffers from its
flow-insensitivity.

As this work shows, runtime-monitors can be effectively and
efficiently specialized. We believe that our methods are onecrucial
step in getting those monitors fast enough for pervasive usein large-
scale applications. Further progress on the field of flow-sensitive
points-to analysis might help to yield even better results in the
future.

Categories and Subject Descriptors TODO [TODO]: TODO—
TODO

General Terms TODO

Keywords TODO

1. Introduction
A runtime monitorobserves a sequence of events occurring during
the execution of a piece of software. They have been frequently
used for the purpose of Runtime Verification [?]. In the begin-
ning of the verification process stands a formal, often declarative,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI ’07, XXX
Copyright c© 2007 ACM X-XXXXX-XXX-XXXXX. . . $5.00

specification based on regular expressions, temporal logics, or con-
text free grammars. An automatic process then generates a monitor
equivalent to this specification and alters the program under test so
that it emits the necessary events to this monitor at runtime.

In 2005, Avgustinov et al. [1] propsed an implementation of
such an approach under the name oftracematches. Figure 1 gives
an example adapted from their paper.

Explain what this tracematch consists of and what it does.
Explain that there is overhead involved because so many events
have to be captured in the program. Also mention that it bindsfree
variables.

1 public aspect FailSafeIter {
2

3 pointcut collection update (Collection c) :
4 (call (∗ java . util . Collection .add∗(..)) ||
5 call (∗ java . util . Collection . remove∗(..))) && target(c);
6

7 tracematch(Collection c, Iterator i){
8 sym createiter after returning (i) :
9 call (∗ java . util . Collection . iterator ()) &&target(c);

10 sym call next before:
11 call (∗ java . util . Iterator . next ()) &&target(i);
12 sym updatesource after : collection update (c);
13

14 createiter call next∗ updatesource+ callnext
15 {
16 throw new ConcurrentModificationException ();
17 }
18 }
19 }

Figure 1. Safe iteration tracematch

Although such trace monitors are certainly easy to use due to
their declarative specification, the compiler has to do a good job
to compiler the related runtime monitor efficiently. This problem is
common to all runtime verification approaches. In [?], Avgustinov
et al. compare different runtime monitoring systems and compare
their performance. The authors further explain certain optimiza-
tions applied to the generated monitor, resulting in fastermonitors
compared to the other approaches. Those optimizations specialize
the monitor with respect to the given specification.

The purpose of this work is now to specialize the monitor also
with respect to the program being monitored. We propose an set of
algorithms that analyze the program under test in order to restrict
the set of potential points of failure for a runtime monitor to a
feasible minimum.

Figure 2 gives our running example. We use it to show what
our analysis is trying to achive. The example simulates a drawing
package which has a canvas and shapes and some user interaction
with it. First we have a classCanvasthat implements some canvas
that a collection of shapes. It exposes methods to add a shape, to
read a set of shapes from an input stream and to animate all shapes
on the canvas.

The classUI simulates some user interaction with the program.
First a canvas is created. The user adds a rectangle to it. Then
the user adds shapes from a file. He clicks the animation button
triggering the animation. Then he loads some other shapes, while
the animation is running.

To this example we now apply the aforementioned tracematch
from Figure 1 as well as the one from Figure 3, which checks that
nothing is read from a closed stream.

When taking those two monitor specifications into considera-
tion, we can identify the following potential points of failures: We
have a call toIterator . next ()in line 30. This could potentially fail
if the collectionShapeswas modified since the last call tonext. This
might in fact be the case in our example, because the user adds
shapes from a file while the animation is running. Consequently,
the associated instrumentation points at the lines 11, 29 and 30
have to remain. The tracematch will actually be woven at those
positions and an error message will be issued at runtime at the ap-
propriate time. The shadow at line 5 can be removed, because it
is only called from line 42, which takes certainly place before the
shapes are iterated over.

For the input stream property, thinks look better: The only
two reads that occur do so before the respective stream is closed.
Furthermore, the stream is not affected by the animation thread. So
here, the analysis should infer, that the tracematch from figure 3
can be removed entirely.

Internal remark: We can later on use lines 43 and 49 to describe
that if we had reused the variable is1 in line 49, then the points-to
info would have had represented the two streams as one abstract
object (since it is flow-insensitive), which would have led to the
optimization failing for this example.

1.1 Constributions

This paper provides the following original contributions:

• A set of algorithms to efficiently compute unnecessary in-
strumentation points for tracematches. Those algorithms are
generic enought to be applied to other finite-state runtime veri-
fication systems.

• A set of sizeable (?) benchmarks in order to evaluate theappli-
cability of our approach and its precision.

• More?

The remainder of this paper is organized as follows: Section2
gives an overview of our optimization. It enumerates all analysis
steps we apply and how thos esteps interact. Section 3 gives the
concrete dynamic semantics of tracematches. This is necessary in
order to be able to reason about the correctness of our abstract
semantics. Those are presented in Section 4. Here we explainthe
exact nature of our abstraction and how it is obtained. Section 5
then describes in detail how a given tracematch is evaluatedover
this abstraction in order to find the set ofactive shadows. This
concludes our discussion of the analysis. We give benchmarks
results in Section 6, evaluating on the performance of the different
steps of our analysis. We close with a discussion of related work
(Section 7) as well as our results and future work (Section 8).

2. Overview
Here we just outline the analysis. First name our requirements:

Want to handle free variables, threads and recursion. Explain that
we have two major steps. First we create a sound abstraction of
the program which captures the abstract transition behaviour with
respect to all given tracematches in form of a finite state machine.
Then secondly, we evaluate the tracematch automaton over this
state machine using a worklist algorithm.

1 class Canvas{
2

3 Collection shapes =new ArrayList ();
4

5 void add(Shape s){ shapes .add(s);}
6

7 void insertFromFile (InputStream is){
8 while(true) {
9 Shape shape = readShape(is);

10 if (shape==null) return ;
11 shapes .add(shape);
12 }
13 }
14

15 private Shape readShape(InputStream is){
16 Shape shape =null ;
17 do{
18 int i = is . read ();
19 /∗ construct shape from content omitted∗/
20 }
21 return shape;
22 }
23

24 void animate () { new Animator(). start (); }
25

26 class AnimatorextendsThread{
27

28 public void run () {
29 for (Iterator iter = shapes . iterator (); iter .hasNext ();){
30 Shape s = (Shape) iter . next ();
31 s . translateBy (generateOffset ());
32 }
33 }
34

35 int generateOffset (){ /∗ omitted∗/ }
36 }
37 }
38

39 class UI {
40 static void userInteraction (){
41 Canvas c =new Canvas();
42 c.add(new Rectangle ());
43 InputStream is1 =new FileInputStream (”myShapes”);
44 c. insertFromFile (is1);
45 is1 . close ();
46

47 c.animate ();
48

49 InputStream is2 =new FileInputStream (”myOtherShapes”);
50 c. insertFromFile (is2);
51 }
52 }

Figure 2. Running example of a UI drawing package

1 public aspect StreamClose{
2

3 tracematch(InputStream is){
4

5 sym close after : call (∗ InputStream . close ()) &&target(is);
6

7 sym readbefore: call (∗ InputStream . read (..)) &&target(is);
8

9 close read{
10 throw new RuntimeException(
11 ”Tried to read from closed stream” + is);
12 }
13

14 }
15

16 }

Figure 3. Tracematch checking for reads from closed streams

Further outline step 1 (with a graphic?): We first we create
a per-method state machine based on an exceptional unit graph.
Then we combine those automata to thread summaries and in the
end to one large state machine for the whole program.

3. Concrete semantics

The concrete semantics are basically defined in three
steps (see three subsections). First we state our general
assumptions and prerequisites. Then we define what the
underlying NFA for a tracematch looks like: Essentially
a normal NFA but with additional skip-edges. Note that
here, as I proposed weeks ago, skip edges have labels!
We assume (that will be mentioned eralier in the paper),
that a states has a skip-loopskip-l, if there is not already
a loop (s, l, s) in the transition relation∆. In the last
step, we define the actual tracematch automaton, i.e. the
machinery that is executed at runtime - on top of that
given NFA.

3.1 Program representation

In the following, we assume the following sets as given. Theyare
induced by the specification of the given tracematches.

We start off by stating some basic assumptions, such
as that we have a given set of tracematch symbols with
associated variable names plus a potentially infinite set
of objects.

Sym finite set of fully qualified tracematch-symbol names
V ars finite set of variable names for eachs ∈ Sym
V ar defined byV ar :=

S
s∈Sym

V ars

O possibly infinite set of objects

Then we define the underlying NFA for a tracematch
automaton. It is almost a usual NFA, with the only real
difference, that its set of input labels can be splitted into
labelsl andskip-l. Also, the transition relation can be
partitioned in the same way into skip transitions and
“normal” transitions.

3.2 Underlying NFA

Definition 1 (Nondeterministic finite automaton, NFA) We de-
fine a nondeterministic finite automatonA in the usual way as a
quintupleA ∈ (QA, ΣA, QA

0 , ∆A, QA
F) with

• QA finite set of states
• ΣA finite set of input symbols
• QA

0 ⊆ QA set of initial states
• ∆A ⊆ QA × ΣA × QA transition relation
• QA

F ⊆ QA set of final states

As usual, an input wordw ∈ Σ∗ is accepted byA if A is in
a final state (fromQA

F) after readingw letter by letter through the
transition relation∆A, starting in any initial stateq0 ∈ QA

0 .
For the NFAs in this paper, we further assume thatΣ is parti-

tioned in two sets,Σ = Σ+ ∪ Σ− with the following property:

a ∈ Σ+ ⇔ skip-a ∈ Σ−

This also induces a partitioning of∆ = ∆+ ∪ ∆− as:

∆+ := {(s, l, t) ∈ ∆ | l ∈ Σ+}

∆− := {(s, skip-l, t) ∈ ∆ | skip-l ∈ Σ−}

3.3 Definition of the tracematch automaton

Definition 2 (Powerset)For each sets, we define its powerset as
P(s).

Definition 3 (Disjunct) A disjunctd is a pair of positive and neg-
ative binding functions(d+, d−) with d+ : V ar → O and
d− : V ar → P(O).

Note that the negative binding maps a variable to aset of
objects. We denote the set of all disjuncts byD.

Definition 4 (Constraint) Any element ofP(D) is a constraint.

We denote the set of all constraints byC. The constraint∅ is also
calledfalse and the constraint{∅} is also calledtrue (in line with
the well-known definition of disjunctive normal form).

We model a configuration (i.e. complete state of a trace-
match automaton) as a mapping from states to con-
straints.

Definition 5 (Configuration) A configurationγ(Q) with respect
to a finite state setQ is a mapping from the states ofQ to con-
straints. Hence, the set of all configurations overQ is defined as

Γ(Q) := {γ | γ : Q → C}

In the following we will often writeΓ instead ofΓ(Q) if Q is
clear from the context.

Definition 6 (Initial configuration) For any set of configurations
Γ(Q), over a state setQ with subset of initial statesQ0 ⊆ Q, we
define the initial configurationγ0 ∈ Γ(Q) as follows:

∀q ∈ Q . γ0(q) :=

(
true if q ∈ Q0

false if q 6∈ Q0

Note that heretrue andfalse are the corresponding constraints
as defined above.

Definition 7 (Domain) For any functionϕ, we definedom(ϕ) as
the domain ofϕ.

The join operation just combines two configurations dis-
jointly.

Definition 8 (Join of configurations) We define a join operation
⊕ : Γ × Γ → Γ which combines two configurations disjointly.
For γ1, γ2 ∈ Γ with dom(γ1) = dom(γ2) we define:

∀c ∈ dom(γ1) . (γ1 ⊕ γ2)(c) := γ1(c) ∪ γ2(c)

The satisfying disjuncts are all disjuncts which are con-
tained in a constraint at a final state. . . (but notfalse)

Definition 9 (Satisfying disjunct) We identify the satisfying dis-
juncts of a configuration as the non-false disjuncts at a final state.

sat(γ) := {d ∈ D | ∃q ∈ QF . d ∈ γ(q)}\{false}

A configuration is accepting if there exists at least one
satisfying disjunct in that configuration.

Definition 10 (Accepting configuration) We define a configura-
tion γ ∈ Γ as accepting if it has any satisfying binding:

ΓF = {γ ∈ Γ | sat(γ) 6= ∅}

We still have to define what the input to the tracematch
automaton is. In our notation here, a tracematch automa-
ton reads “events”. An event is basically the informa-
tion we get from each matching joinpoint: A set of pairs
(s, β) wheres is a symbol name andβ a variable bind-
ing. . .

Definition 11 (Binding and Event) A bindingβ is a partial func-
tion of typeβ : V ar ⇀ O. We denote the set of all bindings by

B := {β | β : V ar ⇀ O}

An evente is an then element ofP(Sym×B), i.e. a set of symbol-
labels, each associated with a variable binding. We denote the set
of all events byE .

A tracematch is now defined as follows. Its states are
configurations. It reads events. It starts in the initial
configuration. The transition function will be described
later. Its accepting configurations are exactly those de-
fined byΓF .

Definition 12 (Tracematch automaton)A tracematch automaton
T (A) is a deterministic automaton augmenting a given NFAA.
It is defined as a quintupleT (A) := (Γ, E , γ0, δ, ΓF) where
Γ := Γ(QA) andδ as will be described in Definition 14.

In particular this definition implies that, sinceΓ is a potentially
infinite set of configurations, this automaton has a potentially in-
finite set of states. Yet, acceptance forT is defined as usual: An
event-tracet ∈ E∗ is accepted byT if after readingt, T is in
an accepting configurationγ ∈ ΓF , i.e. has a satisfying binding.
When this is the case, the tracematch body is executed for anysuch
bindingb ∈ sat(γ).

In the following we will often writeT instead ofT (A) if A is
clear from the context.

Before we define the transition functionδ, we first introduce
some more notation. . .

We need to be able to update a binding. Hence, we define
a functional update, replacing a mappings 7→ t by
s 7→ r.

Definition 13 (Function update) Further, for all s ∈ dom(ϕ) we
define an update operator[s 7→ t/s 7→ r] (in postfix notation) as
follows:

ϕ[s 7→ t/s 7→ r](a) :=

(
r if a = s

ϕ(a) otherwise

If before the update operations 6∈ dom(ϕ), we also simply
write ϕ[s 7→ r] instead ofϕ[s 7→ t/s 7→ r].

Definition 14 (Transition function δ)

The transition functionδ is of type:

δ : Γ × E → Γ

It is defined as:

We compute the successor configuration by iterating
over all transitions ofA. We do so separately forskip-
and “normal” transitions, then in the end join the results.
In the following,underlined parts of the definitions are
new functions which are the defined right below.

δ(γ, e) (1)

:= δ(γ, e, ∆A) (2)

:= δ(γ0, e, ∆
A
+) ⊕ δ(γ, e, ∆A

−) (3)

(4)

with δ(γ, e, ∆) defined as:

For all transitions in∆. . .

δ(γ, e, ∆) (5)

= δ(γ, e, {(s1, l1, t1), (s2, l2, t2), . . . , (sn, ln, tn)}) (6)

:= δ(δ(γ, e, (s1, l1, t1)), e, {(s2, l2, t2), . . . , (sn, ln, tn)})(7)

(8)

with δ(γ, e, (s, l, t)) defined as:

For pairs(s, β) in the evente. . .

δ(γ, e, (s, l, t)) (9)

= δ(γ, {(l1, β1), (l2, β2), . . . , (lm, βm)}, (s, l, t)) (10)

:= δ(δ(γ, (l1, β1), (s, l, t)), {(l2, β2), . . . , (lm, βm)}, (s, l, t))(11)

(12)

with δ(γ, (le, β), (s, l, t)) defined as:

If we process a “normal” edge with the right label, do
update positively, if we see a skip edge with that label,
update negatively, else do nothing.

δ(γ, (le, β), (s, l, t)) (13)

:=

8><>:pos(γ, β, s, t) if l = le

neg(γ, β, t) if l = skip-le
γ otherwise

(14)

where we definepos(γ, β, s, t) as:

Do the positive update by replacing the constraint at
the target statet by the result ofpos(γ0(s), β), which
is described below. Note that here we operate on the
initial configurationγ0, which corresponds to the fact
that thetemp disjuncts in the actual implementation are
all initialized tofalse.

pos(γ, β, s, t) := γ0[t 7→ c/t 7→ pos(γ(s), β)]

with pos(c, β) defined as:

For all disjuncts. . .

pos(c, β) :=
[
c∈d

pos(d, β)

For all variables. . .

pos(c, β) (15)

= pos(c, {vi 7→ oi, . . .}) (16)

(17)

Returnfalse if in the current positive binding is not the
same as the one we see or if we have a negatiove bind-
ing to that same object. Else, recurse for the remaining
variables, storing the positive binding.

:=

8><>:false , if vi ∈ dom(d+) ∧ d+(vi) 6= oi

∨ vi 6∈ dom(d+) ∧ d−(vi) = oi

pos((d+[vi 7→ oi], d−), {vi+1 7→ oi+1, . . .}) , else
(18)

(19)

Now the negative binding, similarly. Here we pass in the
current configurationγ.

andneg(γ, β, t) defined as:

neg(γ, β, t) := γ[t 7→ c/t 7→ neg(γ(s), β)]

with neg(c, β) defined as:

For all disjuncts. . .

neg(c, β) :=
[
d∈c

neg(d, β)

with neg(d, β) defined as:

For all variables. . .

neg(d, β) :=
[

v∈dom(β)

{neg(d, β, v)}

Returnfalse if the incoming (negative) binding clashes
with the positive one we have stored. If we do have a
positive binding to a different object, just returnd un-
changed. We do not need to store the negative binding.
If the variable is unbound positively, add the negative
binding and return.

with neg(d, β, v) defined as:

neg(d, β, v) :=

8><>:false if d+(v) = β(v)

d if d+(v) 6= β(v)

(d+, d−[v 7→ β(v)]) if v 6∈ dom(d+)

4. Static abstraction
Explain that our analysis has to assure three things in orderto be
correct. First we have to make sure that for any dynamic execution
path which leads from one shadow to another, there also exists a
path in our abstraction. Secondly, we have to make sure that we
take thread interleavings into account. Last but not least we have
to update the bingings in our abstraction correctly. This last step
will be explained in detail in Section 5. Here we first concentrate
on the creation of the program abstraction.

Outline the different steps involved: 1.) create per-method state
machines 2.) explain the concept of a thread context and define the
contents of a thread summary 3.) give algorithm to combine state
machines interprocedurally

5. Flow analysis
Here we consistently refer to the concrete semantics explained in

Section 3. Explain that our abstraction is essentially verysimilar
to the actual implementation. The only difference is that instead
of mappingsvar 7→ object we now have mappingsvar 7→
pointsToSet. Explain how those mappings have to be updated in
order to be correct. Explain the concept of the “shadow history”,
which helps us to identify the trace of all shadows that can possibly
lead to a match.

Give algorithm for the optimized fixed-point iteration. Explain
merge operation in detail. (has to preserve the shadow history)

6. Benchmarks
Here we evaluate around 10 medium-sized benchmarks, probably

taken of the dacapo and ashes suites, in combination with at least 5
tracematches. Questions to answer: 1.) How many shadows canbe

removed for each combination? 2.) How long do different parts of
the analysis take for each combination? 3.) Is it worth minimizing
the abstraction or the tracematch automaton? 4.) How muc do
those benchmarks run faster with the reduced instrumentation? 5.)
Does the analysis scale to multiple tracematches in on and the same
program? 6.) What role does context-sensitivity play? 7.) .. . more?

Discussion: Where do we fail? Why? What could be improved?

7. Related work
7.1 (Generalized) Typestates

• Do not handle threads (unsound).

• The non-generalized version used in [2] can only handle prop-
erties that talk about one single object.

• [2] does handle must-alias information nicely, however

7.2 PQL

no idea what they are doing so far. have to look into this!

7.3 Bandera (slicing)

no idea what they are doing so far. have to look into this!

7.4 Compiler optimizations using temporal logic

by this I mean [3] - kind of the inverse approach: Express dataflow
analyses as finite-state properties which are then evaluated over a
program. Could we do similar stuff in our approach? (expressother
flow analyses in this framework)

7.5 More?

8. Discussion and future work
• Were able to remove many instrumentation points for certain

properties.

• Worse precision for other properties. Need must-alias/flowana-
lyis (future work).

• Bulk of time spent in points-to and callgraph computation.

• Can be applied to virtually any finite-state runtime verification
system.

• more?

References
[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensen,Laurie

Hendren, Sascha Kuzins, Ondřej Lhoták, Oege de Moor, Damien
Sereni, Ganesh Sittampalam, and Julian Tibble. Adding Trace
Matching with Free Variables to AspectJ. InObject-Oriented
Programming, Systems, Languages and Applications, pages 345–364.
ACM Press, 2005.

[2] Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel
Geay. Effective typestate verification in the presence of aliasing.
In ISSTA’06: Proceedings of the 2006 international symposiumon
Software testing and analysis, pages 133–144, New York, NY, USA,
2006. ACM Press.

[3] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian
Frederiksen. Proving correctness of compiler optimizations by
temporal logic. InPOPL ’02: Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
283–294, New York, NY, USA, 2002. ACM Press.

