Efficient runtime monitoring through static analysis

Double-blinded submission

Abstract

Runtime monitors observe a sequence of events occurririggdur
the execution of a program. They have been frequently used fo
the purpose of runtime verification. A compiler translatesratial
requirements specification into an equivalent monitor enptnta-
tion and instruments the program under test so that it emétaec-
essary events to this monitor at runtime. An inherent probléth

this approach is that this can significantly slow down thegpam

if many such instrumentation points have to be inserted.

In this work we concentrate on tracematches, a specification
formalism based on regular expressions which induces fitétee 1
monitors. We optimize each tracematch by statically ariatythe 2
program to decide what parts of it are unsafe, i.e. can plyssib®
violate the specification once it runs. For parts that proate,s
the optimization removes the related instrumentationtsao that
they are not evaluated at runtime. As proof of concept, wessp
an implementation on top of the AspectBench Compiler 8

Our results show that, in our benchmark set, for some tracer
matches and programs this optimization can remove all ofrthe 10
strumentation points, on average it removed more than twdsth 1

IS

5
[
7

The instrumented programs are usually much more responsite

13
14

when optimized. Also the analysis itself is efficient, remg
only seconds to run on sizable benchmarks in addition to argén
points-to analysis that is required for any such kind of ysial .
As this work shows, runtime monitors can be effectively and7
efficiently specialized. We believe that this is one impottstep
towards getting runtime monitors ready for widespread nzrge-
scale applications, leading to safer applications in gener

Categories and Subject Descriptors TODO [TODQ]: TODO—
TODO

General Terms TODO

18
19

Keywords Points-to analysis, runtime verification, model check-
ing, compiler optimization, aspect-oriented programming

1. Introduction

A runtime monitorobserves a sequence of events occurring during
the execution of a piece of software. They have been frejuent
used for the purpose of Runtime Verificatio®].[In the begin-
ning of the verification process stands a formal, often datiee,
specification based on regular expressions, temporaldpgicon-
text free grammars. An automatic process then generatesidomo

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titisenand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'07, XXX
Copyright© 2007 ACM X-XXXXX-XXX-XXXXX. . . $5.00

equivalent to this specification and alters the program utes so
that it emits the necessary events to this monitor at runtime

In 2005, Avgustinov et al. [1] propsed an implementation of
such an approach under the nameratematchesFigure 1 gives
an example adapted from their paper.

Explain what this tracematch consists of and what it does.
Explain that there is overhead involved because so manyteven
have to be captured in the program. Also mention that it biineis
variables.

public aspect FailSafelter {

pointcut collectionupdate (Collection c) :
(call(x java. util . Collection .adck(..)) ||
call (x java. util . Collection .remove(..))) && target(c);

tracematch(Collection c, lterator i){
sym createiter after returning (i) :
call(+ java. util . Collection . iterator ()) &&arget(c);
sym call_next before:
call(+ java. util . Iterator .next()) &&arget(i);
sym updatesource after : collectionupdate (c);

createiter calLnextx updatesource+ callnext

throw new ConcurrentModificationException ();

}

Figure 1. Safe iteration tracematch

Although such trace monitors are certainly easy to use due to
their declarative specification, the compiler has to do adgob
to compiler the related runtime monitor efficiently. Thi®blem is
common to all runtime verification approaches. In [?], Augus/
et al. compare different runtime monitoring systems and pzma
their performance. The authors further explain certairinoigh-
tions applied to the generated monitor, resulting in fastenitors
compared to the other approaches. Those optimizationsasipec
the monitor with respect to the given specification.

The purpose of this work is now to specialize the monitor also
with respect to the program being monitored. We propose taof se
algorithms that analyze the program under test in orderdtrice
the set of potential points of failure for a runtime monitor a
feasible minimum.

Figure 2 gives our running example. We use it to show what
our analysis is trying to achive. The example simulates witigh
package which has a canvas and shapes and some user iateracti
with it. First we have a clasSanvasthat implements some canvas
that a collection of shapes. It exposes methods to add a stmpe
read a set of shapes from an input stream and to animate psha
on the canvas.

The classJl simulates some user interaction with the program.
First a canvas is created. The user adds a rectangle to i The

the user adds shapes from a file. He clicks the animation rbutto
triggering the animation. Then he loads some other shapae w
the animation is running.

To this example we now apply the aforementioned tracematch
from Figure 1 as well as the one from Figure 3, which checks tha
nothing is read from a closed stream.

When taking those two monitor specifications into considera
tion, we can identify the following potential points of faiks: We
have a call tolterator . next()in line 30. This could potentially fail
if the collectionshapesvas modified since the last call text This)
might in fact be the case in our example, because the user adgs
shapes from a file while the animation is running. Consedyent ,
the associated instrumentation points at the lines 11, 2038n
have to remain. The tracematch will actually be woven atehoss
positions and an error message will be issued at runtimeeath 7
propriate time. The shadow at line 5 can be removed, becausesi
is only called from line 42, which takes certainly place befthe °
shapes are iterated over. 10

For the input stream property, thinks look better: The onlji
two reads that occur do so before the respective streamssdalo
Furthermore, the stream is not affected by the animatieathrSo ,,
here, the analysis should infer, that the tracematch froordi® 15
can be removed entirely. 16

Internal remark: We can later on use lines 43 and 49 to degcribz7
that if we had reused the variable isl in line 49, then the {mto 18
info would have had represented the two streams as one abstra®
object (since it is flow-insensitive), which would have ledtte

optimization failing for this example. v

23

1.1 Constributions 24

This paper provides the following original contributions: %
26

e A set of algorithms to efficiently compute unnecessary inz’
strumentation points for tracematches. Those algorithras a®
generic enought to be applied to other finite-state runtisre v zz

fication systems. .

¢ A set of sizeable (?) benchmarks in order to evaluate theappé:

cability of our approach and its precision. 33
34
e More? 5

. 36
The remainder of this paper is organized as follows: Secion ;; }
gives an overview of our optimization. It enumerates alllgsia s

1 class Canvas{

Collection shapes wnew ArrayList ();

void add(Shape sY shapes.add(s)}

void insertFromFile (InputStream is}

}

while(true) {
Shape shape = readShape(is);
if (shape==null) return;
shapes.add(shape);

private Shape readShape(InputStream i§)

}

Shape shape aull ;

do{

int i =is.read();

/x construct shape from content omitted
}

return shape;

void animate () { new Animator(). start (); }

class Animatorextends Thread{

}

public void run() {
for (Iterator iter = shapes. iterator (); iter .hasNext (X;)
Shape s = (Shape) iter .next ();
s. translateBy (generateOffset ());
}
}

int generateOffset ({ /+ omitted«/ }

steps we apply and how thos esteps interact. Section 3 diges to class Ul {
static void userinteraction (){

concrete dynamic semantics of tracematches. This is reageiss 4
order to be able to reason about the correctness of our abstr&
semantics. Those are presented in Section 5. Here we expiin *
exact nature of our abstraction and how it is obtained. Sedi *
then describes in detail how a given tracematch is evaluated *
this abstraction in order to find the set attive shadowsThis
concludes our discussion of the analysis. We give benchsnark,
results in Section 7, evaluating on the performance of tfierdnt 4
steps of our analysis. We close with a discussion of relatedkw 4o
(Section 8) as well as our results and future work (Section 9) 50

51

2. Overview =}

}

Canvas ¢ =new Canvas();

c.addew Rectangle ());

InputStream is1 =new FilelnputStream ("myShapes”);
c. insertFromFile (isl);

is1.close ();

c.animate ();

InputStream is2 =new FilelnputStream ("myOtherShapes”);
c. insertFromFile (is2);

Here we just outline the analysis. First name our requiretaen
Want to handle free variables, threads and recursion. Brplaat
we have two major steps. First we create a sound abstractfon o
the program which captures the abstract transition behawigith
respect to all given tracematches in form of a finite statehireec
Then secondly, we evaluate the tracematch automaton oiger th
state machine using a worklist algorithm.

Further outline step 1 (with a graphic?): We first we create
a per-method state machine based on an exceptional unithgrap

Figure 2. Running example of a Ul drawing package

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

public aspect StreamClosg
tracematch(InputStream is){
symclose after : call (x InputStream.close ()) &&arget(is);
symreadbefore: call (x InputStream.read (..)) &&arget(is);
close read{

throw new RuntimeException (
"Tried_to_read.-from_closed.stream.” + is);

}

Figure 3. Tracematch checking for reads from closed streams

Then we combine those automata to thread summaries and in the

end to one large state machine for the whole program.

3. Concrete semantics

The concrete semantics are basically defined in three
steps (see three subsections). First we state our general
assumptions and prerequisites. Then we define what the
underlying NFA for a tracematch looks like: Essentially

a normal NFA but with additional skip-edges. Note that
here, as | proposed weeks ago, skip edges have Igbels!
We assume (that will be mentioned eralier in the paper),
that a state has a skip-loogkip-, if there is not alread
a loop (s,1, s) in the transition relatiom\. In the last
step, we define the actual tracematch automaton, i.¢. the
machinery that is executed at runtime - on top of that
given NFA.

3.1 Program representation

In the following, we assume the following sets as given. Taey
induced by the specification of the given tracematches.

We start off by stating some basic assumptions, such
as that we have a given set of tracematch symbols jwith
associated variable names plus a potentially infinite set
of objects.

Sym finite set of fully qualified tracematch-symbol names

Vars finite set of variable names for eaghke Sym
Var defined byVar := USESynL Vars
0] possibly infinite set of objects

Then we define the underlying NFA for a tracematch
automaton. It is almost a usual NFA, with the only real
difference, that its set of input labels can be splitted |nto
labelsi and skip-I. Also, the transition relation can be
partitioned in the same way into skip transitions and
“normal” transitions.

3.2 Underlying NFA

Definition 1 (Nondeterministic finite automaton, NFA) We de-
fine a nondeterministic finite automato in the usual way as a
quintupleA € (Q*4, 24, Q3', A4, Q7) with

o Q* finite set of states

o >4 finite set of input symbols

e Q7' C Q* set of initial states

o A4 C Q4 x =4 x Q* transition relation
e Q7 C Q™ setof final states

As usual, an input wordy € X" is accepted by4 if Aisin
a final state (fromQ7) after readingw letter by letter through the
transition relatiorA*, starting in any initial state, € Qg'.

For the NFAs in this paper, we further assume thas parti-
tioned in two setsy = ¥ U X_ with the following property:

a € Y4 < skip-a € ¥_
This also induces a partitioning & = A, U A_ as:

A+ = {(S,l,t) €A | le Z+}
A_ = {(s,skip-l,t) € A | skip-l € £_}
3.3 Definition of the tracematch automaton
Definition 2 (Powerset) For each sets, we define its powerset as
P(s).

Definition 3 (Disjunct) A disjunctd is a pair of positive and neg-
ative binding functions(d+,d—) with d4 : Var — O and
d_ :Var — P(O).

Note that the negative binding maps a variable tseaof
objects. We denote the set of all disjunctsBy

Definition 4 (Constraint) Any element oP (D) is a constraint.

We denote the set of all constraints®yThe constrainf is also
calledfalse and the constrainf(0,)} is also calledrue (in line
with the well-known definition of disjunctive normal form).

We model a configuration (i.e. complete state of a trace-
match automaton) as a mapping from states to con-
straints.

Definition 5 (Configuration) A configurationy(Q) with respect
to a finite state se€ is a mapping from the states ¢f to con-
straints. Hence, the set of all configurations o@grs defined as

r@):={ylr:Q—=0C}

In the following we will often writel instead of'(Q) if @ is
clear from the context.

Definition 6 (Initial configuration) For any set of configurations
I'(@), over a state sef) with subset of initial state§o C Q, we
define the initial configuratior, € I'(Q) as follows:

if g € Qo
ifg & Qo

Note that herérue andfalse are the corresponding constraints
as defined above.

true

Vg€ Q. 7(q) :—{

false

Definition 7 (Domain) For any functiony, we definelom(y) as
the domain ofp.

The join operation just combines two configurations dis-
jointly.

Definition 8 (Join of configurations) We define a join operation

@ : I' x I' — T which combines two configurations disjointly.

For v1,v2 € T with dom(y1) = dom(v2) we define:

Ve € dom(71) - (M1 ©2)(c) == 71(c) U2(c)

The satisfying disjuncts are all disjuncts which are gon-
tained in a constraint at a final state. . . (but fudke)

Definition 9 (Satisfying disjunct) We identify the satisfying dis-
juncts of a configuration as the ndiaise disjuncts at a final state.

sat(y) :={d € D|3q € Qr.d e ~(q)}\{false}

A configuration is accepting if there exists at least pne
satisfying disjunct in that configuration.

Definition 10 (Accepting configuration) We define a configura-
tion~ € I" as accepting if it has any satisfying binding:

Ir={y €T |sat(y) # 0}

We still have to define what the input to the tracematch
automaton is. In our notation here, a tracematch automa-
ton reads “events”. An event is basically the informa-
tion we get from each matching joinpoint: A set of pairs
(s, B) wheres is a symbol name and a variable bind
ing...

Definition 11 (Binding and Event) A binding 3 is a partial func-
tion of types : Var — O. We denote the set of all bindings by

B:={8|8:Var — O}

An event is an then element 62 (Sym x B), i.e. a set of symbol-
labels, each associated with a variable binding. We derfugeset
of all events by¢.

A tracematch is now defined as follows. Its states|are
configurations. It reads events. It starts in the initial
configuration. The transition function will be descrilged
later. Its accepting configurations are exactly those| de-
fined byl .

Definition 12 (Tracematch automaton) A tracematch automaton
T(A) is a deterministic automaton augmenting a given NEA
It is defined as a quintupl€ (A) := (T',&,70,d,T'r) where
I := I'(Q*) and ¢ as will be described in Definition 14.

In particular this definition implies that, sindeis a potentially
infinite set of configurations, this automaton has a potiytia-
finite set of states. Yet, acceptance oris defined as usual: An
event-tracet € £ is accepted bys if after readingt, 7 is in
an accepting configuration € I'r, i.e. has a satisfying binding.
When this is the case, the tracematch body is executed faaty
bindingb € sat(y).

In the following we will often write7 instead of7 (A) if A is
clear from the context.

Before we define the transition functian we first introduce
some more notation. ..

We need to be able to update a binding. Hence, we define
a functional update, replacing a mappiag— ¢ by
ST

Definition 13 (Function update) Further, for all s € dom(y) we
define an update operatds — t/s — 7] (in postfix notation) as
follows:

r ifa=s
p(a) otherwise

pls = t/s = 1l(a) == {

If before the update operation ¢ dom(y), we also simply
write ¢[s — r] instead ofp[s — t/s — r].

Definition 14 (Transition function ¢)

The transition functiom is of type:
6:I'xE—-T

It is defined as:

We compute the successor configuration by iterating
over all transitions of4. We do so separately fakip-
and “normal” transitions, then in the end join the results.
In the followingunderlined parts of the definitions ane
new functions which are the defined right below.

6(v.€) @

= 8(v, e, AM) (2)
= (70,6, A1) B 8(7,e,A) 3)
4

with §(, e, A) defined as:

For all transitions imA\. ..

5(y,e,4) ®)

= 6(’7365{(513l15t1)7(827l2at2)7'"7(8naln7tn)}) (6)
6(5(77 € (817 lla tl))? €, {(827 l27t2)7 A (877«7 ln, tn)KY)
®)

with §(v, €, (s,1,t)) defined as:

We introduce an accumulating parametgr which is
initialized to~o, i.e. (true, false,...).

5y, e, (5,1,1)) == 6(v, 70, €, (5,1, 1)) Now the negative binding, similarly. Here we pass inthe

current configurationy.
with §(, va, €, (s,1,t)) defined as: g i

and , 3, t) defined as:
For pairs(s, 8) in the event. .. neg(y.51)

neg(y, B,t) == [t — ¢/t — neg(c, B)] (21)
(7, Yar €, (5,1, 1)) 9) with neg(c, 5) defined as:
= 0(v,7a, {(l, 1), (I2, B2), - ., (Im, Bm) }, (s, 1,){10) -
= letys == 6(7,7a, (11, B1), (5,1, 1)) 11) For all disjuncts...
ino(yi, 1, {(l2, B2), -, (lm, Bm) }: (s, 0,8)) (12)
With 5(7, v, (Ie, B), (s, 1, £)) defined as: neg(c, B) := ggw (22)

If we process a “normal” edge with the right label, do with neg(d,) defined as:

update positively, if we see a skip edge with that lapel, .
update negatively, else do nothing. For all variables. ..
neg(d, B) = {neg(d, 8, v)} (23)
5(v, (les B), (s,1,1)) (13) vedyn(ﬂ) —
pos(VyYa, B, 8,t) ifl=le
= {neg(v,8,t) if 1 = skip-l. (14) Returnfalse if the incoming (negative) binding clashgs
~ otherwise with the positive one we have stored. If we do have a

positive binding to a different object, just retudhun-
changed. We do not need to store the negative binding.
If the variable is unbound positively, add the negative
Do the positive update by replacing the constraint at binding and return.
the target state by the result ofpos(v(s), 3), which
is described below. Note that here we operate on the
accumulating parametey, (initialized to ~o), which
corresponds to the fact that themp disjuncts in the

where we defin@os(v, va, 3, s, t) as:

with neg(d, 8, v) defined as:

actual implementation are all initialized false. neg(d, 5,v)
false if dy(v) = B(v)
d if dy(v) # B(v)

P0s(7Y;Yas B, 8,1) := Ya[t = ¢/t — (cUpos(v(s),B))] (15) T\ Ay d_[o — {B()}) if v dom(dy

dom(d-)
with pos(c, 3) defined as: (d+,d—[v— (nUBW))]) ifv¢dom(ds

A
Nd—(v)=n

~— —

For all disjuncts. ..)
4. Correctness proof for concrete semantics

pos(c, B) == U pos(d, §) 4.1 Labeled versus generic skip edges
ced Instead of
For all variables. .. skip(e) = Aa:a € A: —a(e)
we now use symbolskip-a for all a € A with:
pos(c,) (16)
= pos(c,{vi + 0i,...}) 17) skip-a(e) = —a(e)
(18)

At each place where there used to be a skip-loop before, we now

Returnfalse if in the current positive binding is not the place the appropriate skip edges for each symbol. (We cae lea
same as the one we see or if we have a negatiove pind- ~ OUt @n edge(s, skip-a, s) on a states if there is already an edge
ing to that same object. Else, recurse for the remaifing _(s,a,s), but let's forget _about this optimization for now.) This
variables, storing the positive binding. is a correct transformation, as long as those edges areaspdat
conjointly, which we are going to make sure now. ..

We have the following definition:

false ,if v; € dom(d+) A os # di(vs) .
= V v; & dom(d+) A o; € d—(v;) (29) lab(s,te) = (Vs :s" =P s:lab(s,t) A skip(e))
pos((d+[vi = 0i],d-), {vit+1 > 0it1,...}) ,€lse V(Va,s' :a€ ANS —%s:lab(s',t) Aa(e))
(20)

which we can rewrite to:

(Vs': ha: s _,skip-a . lab(s', t) A skip-a(e))
V (Va,s':a€ ANS = s:lab(s',t) Aa(e))

lab(s,te) =

Or in the optimized version instead of...

lab(s, te) =
(if s —=°KP sthenlab(s,t) A skip(e) elsefalse)
V (Va,s' :a€ ANs —*s:lab(s',t) Aa(e))

(24)
... We can write:

lab(s,te) = _
(Aa € A:if s »SKIPO s then lab(s,) A skip-a(e) elsefalse)
V(Va,s' :a € ANs — s :lab(s',t) Aa(e))
(25)
What differences still remain to the actual implementaion

1. There can be multiple events at one an the same joinpaint. |
this case, we have to “or” over those.

2. The way bindings are stored.

In the casel (v) # B(v), we would actually have to return a
disjunct representinv = d+(v)) A (v # B(v)). However, since
v is already bound in this disjunct and by the definitiomo$ (pos
only binds if there is nothing bound yet), there is no needdoes
the negative binding. We can just return the original disjun

In the third case, where there is neither a positive nor ativega
binding forv, we generate a negative binding foholding{3(v)}.
This will preventpos from bindingv to this value in the future.

In the last case where there is already some negative bifaling
v butw is positively unbound, we just add the value to the negative
bindings for the same reason.

4.4 Positive updates

Positive updates have to be performed on a temporary coafigar
~va Which is initialized toy,. This is because the result of the pos-
itive update is combinedisjointly (!) with the one of the negative
update to form the global result. So if we did perform the tiosi
update ont he current configuration, we would at each statedma
implicit VViab(s, t), which would be incorrect.

Hence, we include an accumulating parametgr which is
initialized toyo = (true, false, . . .). By the definition of equation
(11), this parametety, is replaced in each consecutive positive
update with the result of the last such update, hence acetimgl
all updates iny,.

By equation (15), return a constraint based on the accuinglat

The above equation suggests that it is possible to derive anparameter, replacing the constraint of

implementation as described by equation (3): We first pmeds
skip loops, then separately all other edges and combinesthudts
disjointly.

4.2 Whatto prove

A correct implementation based on equation (3) would there ha
to fulfill the following requirements:

1. When processing skip-loops, this has to be done in a manner

such that the result of processing each loop is conjoined wit
the previous results. Also, the updates have to be perfoomed
(a copy of) the current configuration, which holds thé(s, t)

for all statess.

2. When processing a normal edge, this has to be done in andlisjo
manner. Also, the previous configuratibrb(s, t) plays no role
here. Hence, one must operate on temporary labels inédhliz
to false (asfalse is the neutral element for the operatiain

3. For the initial stata,, we are always going to haveb(so,t) =
true for anyt, due to the implicitA* loop on the state. Hence,
it does not matter, what we initialize the temporary vagabl
for so to. It is hence safe, to assume a tempoxamgfiguration
(true, false, .. .).

4.3 Proof of correctness
4.3.1 Negative updates

Skip-loops are processed usingg(, 3,t). Since skip-loops are
loops, we can ignore the source statas we know that = ¢.

As noted above, negative updates have to be performed on
copy of the current configuration, which we do by equation).(21
Equation (22) is correct because we are acting on consraint
DNF. Hence, we have to disjoin the result of the operationafbr
disjuncts.

5. Static abstraction

Explain that our analysis has to assure three things in otddve
correct. First we have to make sure that for any dynamic exacu
path which leads from one shadow to another, there alsoseaist
path in our abstraction. Secondly, we have to make sure tleat w
take thread interleavings into account. Last but not leasthave
to update the bingings in our abstraction correctly. Thistlatep
will be explained in detail in Section 6. Here we first concatet
on the creation of the program abstraction.

Outline the different steps involved: 1.) create per-métsiate
machines 2.) explain the concept of a thread context andedtfan
contents of a thread summary 3.) give algorithm to combiatest
machines interprocedurally

6. Flow analysis

Here we consistently refer to the concrete semantics engatain
Section 3. Explain that our abstraction is essentially veirpilar

to the actual implementation. The only difference is thatéad

of mappingsvar +— object we now have mappingsar +—
pointsToSet. Explain how those mappings have to be updated in
order to be correct. Explain the concept of the “shadow higto
which helps us to identify the trace of all shadows that cessjiy
lead to a match.

Give algorithm for the optimized fixed-point iteration. Eaip

merge operation in detail. (has to preserve the shadow tyisto

7. Benchmarks

al-

Here we evaluate around 10 medium-sized benchmarks, dsobab
taken of the dacapo and ashes suites, in combination wittest b
tracematches. Questions to answer: 1.) How many shadowbkecan
removed for each combination? 2.) How long do different paft

Equation (23) produces one set of disjuncts representiag th the analysis take for each combination? 3.) Is it worth mining

negative update of the original disjunct. This implemenhts fact
that updates have to be in a conjoint manner.
About the innermost overloaded definitionvafy, neg(d, 8, v):
The cased+(v) = pf(v), corresponds to the case where
lab(s,t) A skip-a(e) = false.

the abstraction or the tracematch automaton? 4.) How muc do
those benchmarks run faster with the reduced instrumemtatb.)
Does the analysis scale to multiple tracematches in on amddime
program? 6.) What role does context-sensitivity play? .7.jnore?
Discussion: Where do we fail? Why? What could be improved?

8. Related work
8.1 (Generalized) Typestates
¢ Do not handle threads (unsound).

¢ The non-generalized version used in [2] can only handle-prop
erties that talk about one single object.

e [2] does handle must-alias information nicely, however

8.2 PQL
no idea what they are doing so far. have to look into this!

8.3 Bandera (slicing)
no idea what they are doing so far. have to look into this!

8.4 Compiler optimizations using temporal logic

by this | mean [3] - kind of the inverse approach: Expressftiata
analyses as finite-state properties which are then evaluster a
program. Could we do similar stuff in our approach? (expotser
flow analyses in this framework)

8.5 More?

9. Discussion and future work

e Were able to remove many instrumentation points for certain
properties.

* Worse precision for other properties. Need must-alias/fdoe+
lyis (future work).

¢ Bulk of time spent in points-to and callgraph computation.

e Can be applied to virtually any finite-state runtime verifica
system.

e more?

References

[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensémurie
Hendren, Sascha Kuzins, Ondfej Lhotak, Oege de Moor, Bami
Sereni, Ganesh Sittampalam, and Julian Tibble. Adding €Trac
Matching with Free Variables to Aspectd. bject-Oriented
Programming, Systems, Languages and Applicatipages 345-364.
ACM Press, 2005.

Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, anthtanuel
Geay. Effective typestate verification in the presence iafsag.

In ISSTA'06: Proceedings of the 2006 international symposimm
Software testing and analysipages 133—-144, New York, NY, USA,
2006. ACM Press.

David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Chasti
Frederiksen. Proving correctness of compiler optimizetidy
temporal logic. IlPOPL '02: Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languagages
283-294, New York, NY, USA, 2002. ACM Press.

[2

[3

