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Abstract

In aspect-oriented programming, one can intercept evenerit-
ing patterns callegbointcuts The pointcut language of the most
popular aspect-oriented programming language, Aspetitlysa
the expression of highly complex properties of the statagpam
structure.

We present the first rigorous semantics of the AspectJ point-
cut language, by translating static patterns into saée ange-
restricted and stratified) Datalog queries. Safe Datalag lisgic
language like Prolog, but it does not have data structures; c
sequently it has a straightforward least fixpoint semargius all
queries terminate.

The translation from pointcuts to safe Datalog consists séta
of simple conditional rewrite rules, implemented using $iteatego
system. The resulting queries are themselves executabiiethé
CodeQuest system. We present experiments indicating et d
execution of our semantics is not prohibitively expensive.

Categories and Subject Descriptorg-.3 [Logics and Meanings of
Programg: Semantics of Programming Languages

General Terms Design, Experimentation, Languages

Keywords Aspect-oriented programming, pointcuts, logic pro-
gramming, Datalog, term rewriting

1. Introduction

Aspect-oriented programming enables one to intercepttevan
runtime by writing patterns callggbintcuts The intercepted events
are namedoinpoints Whenever a pointcut matches a joinpoint,
extra code (callecdvicg is run. The most popular language that
embodies these ideas is AspectJ, an extension of Java 28§ t
is also a modern aspect-oriented version of C#, named EGSJU [
Typical applications include runtime verification of systavide
invariants, the implementation of authentication and awsiation
mechanisms, as well as various caching and pooling stest§80].

With the growing popularity of aspect-orientation, numeso
researchers have started to investigate the semanticspettas
oriented languages(@. [2, 3, 10, 13, 14, 24, 26, 27, 32, 40, 43, 45—
47]). All such studies have focused on the operational séngan
of advice, taking a very simple pointcut language. For imstgin
[43], the core language identifies program points for imagnta-
tion through explicit labels, and pointcuts are sets of dabkls.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17-19, 2007, Nice, France.
Copyright(© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

Yet in Aspect] itself, the pointcut language is very complex
allowing the programmer to capture intricate propertidategl to
the static structure of the program. This complexity is aticming
source of serious bugs in AspectJ compilers (cf. the disouss
Section 6). Nevertheless the AspectJ user community agegito
make requests for a yet more expressive pattern language, on
exacerbating the problem.

In this paper, we bridge the gap between existing operdtiona
semantics of advice and current practice, by giving a coraple
semantics of the static matching of Aspect 1.2.1 pointduts
particular, our semantics can be used to reduce complexcpbén
to sets of labels that refer to source locations, and thedythamic
part of the story is told by an operational semantics in tiike gif
[43].

Our semantics consists of a translation from AspectJ paisitc
into Datalog queries over relations defined in the objecyrm.
Datalog is a logic query language that originated in the ribtéal
database community [17]. We restrict ourselves toghfefrag-
ment that has a straightforward least-fixpoint semantiggthér-
more all safe Datalog queries terminate. The translatimm fooint-
cuts to Datalog takes the form of about 90 conditional rexrites.
The full definition is thus quite short and elegant. It is &falie for
download as an accompanying technical report [6].

This semantics is put to work in three ways. First, it sengs a
a crisp definition to discuss tricky points in the languagsigie,
and has enabled us to lay bare several long-standing bugs-in A
pectJ implementations. Second, the semantics is exeeytatd we
present comparative experiments with an industrial-gtteocom-
piler to show the costs of directly executing the semantiesnat
prohibitive. Finally, our semantics provides a framewarkthe de-
sign and discussion of further language extensions thaspectJ
user community is clamouring for [7, 8,11, 23].

It is not possible to prove a correspondence result withipuesv
semantics, as the only existing definition of AspectJ is éorimal
description on the web [4]. However, our testing with respethe
standard implementation, and subsequent discussion aegan-
cies with the AspectJ designers, provide ample confiderateotir
formal semantics captures the intended meaning.

Many previous works have suggested the use of logic program-
ming for writing pointcuts in aspect-oriented programmibgt in-
variably they use Prolog [16, 20, 29]. In the present settthgt
would be inappropriate because the semantics of Prololj isse
quite complex, even with tabled resolution to give bettemiaa-
tion behaviour. Furthermore, we tried to run our experiraerith
(a tabled variant of) Prolog, but found that execution timeshibit
its application in practice.

In summary, this paper makes the following contributions:

e The identification of safe Datalog as a suitable intermediat
form for pointcuts in aspect-oriented programming.



e The use of term rewriting to reduce complex pattern-baseq
pointcuts to Datalog queries.

e The first rigorous semantics of the AspectJ 1.2.1 pointawt la
guage.
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e Experimental evidence that it is feasible to directly exeaur
semantics, on AspectJ programs of up to 100KSLOC. 7
The structure of the paper is as follows. In Section 2, we prog
vide a brief introduction to AspectJ, focussing on the pmint
language. We then proceed to discuss existing semantiahdor
aspect-oriented paradigm in Section 3. In particular, wenen
ate the difference betweestatic and dynamicpointcuts. Dynamic
pointcuts refer to runtime properties such as the call stackey
are matched at runtime, and their semantics is by now well ur2
derstood €.g.[43, 45]). By contrast, static pointcuts are matched®
against the static structure of the program, and they arfothes of 1;
the present paper. Next, we provide a brief introductiorafe ®at-
alog in Section 4. We then explain informally how static poirts 5
can be mapped to Datalog queries in Section 5. The heart of the
paper is Section 6, which shows how a simple set of rewritesrul 22
suffices to translate AspectJ’s static pointcuts into @ataRather 23
than presenting a shallow overview of the complete senmntie
detail the most complex issues in AspectJ’s design whegoaaus
approach is indispensable. In Section 7 it is demonstréticthis
semantics directly leads to a viable implementation sgsaté/e
then briefly speculate on the use of Datalog to directly esprew
forms of pointcut in Section 8. A brief roadmap of related kvisr
provided in Section 9 before concluding in Section 10.
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2. Aspect] pointcuts

Aspect] is a variant of Java, extended with aspect-oridetadres
[28]. These features allow a programmer to write a singlegix
code that consistently affects the behaviour of multipleloies in
a program.

The novel contribution of aspect-oriented languages, vhias
not present in previous work on class compositierg([39]), is
known as “pointcut and advice”. Aointcutis a predicate over
events that occur during the execution of a program. Thesetgv
(calledjoinpointg are composite — they have duration and may be
nested. A piece of advice is a block of code that is executezhveh
pointcut matches a joinpoint. Advice can be run before thieeheal
joinpoint, after it, or instead of it.

We will introduce the pointcut notation of AspectJ with thd a
of an example, taken from the textbook by Laddad [30]. Thieitas
hand is to automatically enforce the following requiremehthe
Swing GUI library:

“Once a component is visible, the event-dispatching
thread (sometimes called the AWT thread) is the only thread
that can safely access or update the state of the realized com
ponent. The rule exempts certain methods, allowing them to
be safely called from any thread.” [30]

Laddad’s solution works by intercepting calls to methodat th
would update the state of a component from the wrong threatl, a
then queueing them for execution in the event-dispatcHingat.
The pointcutroutedMethods shown in Figure 1, matches calls to
just those methods that would violate the invariant. Itagln five
other programmer-defined named pointcuts — each one is define
in terms of pointcut primitives, using the Boolean connexgand
(&&), or (|]), andnot (!). Three built-in primitives are also used:

pointcut viewMethodCalls() :
call(x javax..JComponent#(..));

pointcut modelMethodCalls() :
call(x javax.xModel+x(..))
|| call(x javax.swing.text. Documents..));

pointcut uiMethodCalls() :
viewMethodCalls ()| modelMethodCalls();

pointcut threadSafeCalls() :
call(void JComponent.revalidate())
|| call(void JComponent.repaint(..))
|| call(void addListener(EventListener))
|| call(void removexListener(EventListener));

pointcut excludedJoinpoints() :
threadSafeCalls()
|| within (SwingThreadSafetyAspect)
|| if (EventQueue.isDispatchThread());

pointcut routedMethods() :
uiMethodCalls() && !excludedJoinpoints();

Figure 1. Pointcuts for Swing thread-safety enforcement

within takes a pattern ranging over types as an argument; it
matches any joinpoint that was caused by executing code lexi
cally within a type that matches the pattern.

call also takes a pattern as an argument, which ranges over method
or constructor signatures; it matches any call-joinpomtat
method or constructor that has a signature matching therpatt

There are several wildcards used in Aspect] patterns. The
first is x: it matches any series of characters that can appear in
a Java identifier (not ‘). So, for example, Line 14 of Figure
matches call-joinpoints to any method with a name thatstaith
“add”, ends with “Listener”, and takes a single argumentygfet
EventListener

A +wildcard can only appear in a pattern that ranges over types.
It means ‘match any subtype’. It appears in Line 2 of Figure 1,
which matches any call to a method on a type matching therpatte
javax..JComponerar any subtype of such a type.

The wildcard.. matches any sequence of full-stops and Java
identifiers that begins and ends with a full-stop. For exanpl
javax.xModel matches “javax.swing.AbstractListModel”, but it
would not if the pattern werjvax..Model

Note that the. wildcard has a special meaning when used in the
formal parameter list of a method pattern, as seen at thefdnde
2 — in that case it matches an arbitrary number of paramefers o
arbitrary type.

3. Existing AOP semantics

There is alarge amount of work on the semantics of aspeetved
programming, e.g. [2, 3,10, 13, 14, 24, 26,27, 32, 40, 43, 45-47].
None of these works involve a pointcut language that apjesmc
the complexity of the pointcut language of AspectJ. We cuthte
however, that it is possible to understand the semanticsspegtJ
by following the framework introduced in [43].

A key idea of [43] is to make the semantics a two-step process,
involving a surface language and a core language. The sudae
guage in our case is AspectJ. It has the rich notation fortpois
that allows programmers to alter the behaviour of the maéntiro-
gram without modifying the program text directly. That peoly is

if takes a boolean-valued Java expression as an argument; itsometimes calledbliviousnessn the literature on aspect-oriented

matches a joinpoint if the expression evaluates to truerbefo
(or after, depending on the kind of advice) the joinpointuwsc

programming. The core language, by contrast, augments die m
line program with explicit labelled instrumentation pa@nPoint-



public classX {
void fi(int n) { }
void f2(int n) { f1(n); }
void f3(int n) { f2(n); }

public static void main(String[Jargs) {
X x = new X();
x.f3(0);
x.f2(2);
} 10
} 1

aspectA {
pointcut a (nt n) :
call(x fx(..))
&& args(n)
&& cflowbelow(execution(x f3(..)));

before(int n) : a(n){
System.out.printlrthisJoinPoint + ”: _n="+n);

public classX {
void f1(int n) { L1: {} }
void f2(int n) { L2 : { L3: {f1(n);} } }
void f3(int n) { L4 : { L5: {f2(n);} } }

public static void main(String[Jargs) {
L6: { Xx=(L7: {newX()});
L8 : {x.f3(0)};
L9 : {x.f2(1)}; }
}
}

aspectA {
pointcut a (int n) :
label(L3,L5,L8,L9)
&& args(n)
&& cflowbelow(label(L4));

before(int n) : a(n){
System.out.printlrthisJoinPoint + ": _n="+n);

Figure 2. Example AspectJ program.

cuts refer directly to sets of such instrumentation poifitee op-
erational semantics of the core language observes thetexecd
labelled instrumentation points and executes advice whesds in
pointcuts match labels at runtime.

In most of the papers that have built on [43], the translation
from surface to core is quite simple [13, 14]. Waetgal. consider
a slightly more complex translation, which involves doingrem
of the instrumentation at compile-time [46, 47]. The cutneaper
continues that trend by offering a translation from the Aspe
surface language to a suitable core language, replacingiche
pointcuts by labelled instrumentation points. We do noeiofin
operational semantics with it, as that would require augingra
complete operational semantics of Java.

In the literature on compiling aspect-oriented progran2s 33],
instrumentation points in the static program are caeddows
whereas their runtime counterparts are najoatpoints We shall
follow that terminology below.

To illustrate, consider the AspectJ program in Figure 2ott-c
tains a pointcut definition (Lines 14-17), and a piece of e&l{ex-
tra code) that is triggered by that pointcut (Lines 19-2hk Point-
cuta(n) makes use of theflowbelow(p) primitive: conceptually this
matches if a joinpoint is properly nested inside any joinpdhat
matchegp. Pointcut primitives such aslowbeloware inherently dy-
namic, and in general they cannot be resolved by static rimafci
shadows (in the example, the call fiofrom 2 is advised or not
depending on whethd? was called front3). The same holds true
for args, which exposes the actual value of an argument at runtime.
Apart from these two primitives, the pointcuts are entirstgtic
and could thus be replaced by sets of shadows in the prograis1. T
is illustrated in the translated program in Figure 3. Heeerttain-
line program has been augmented with explicit labels fodeiva
(there are actually more shadows than shown here, for icestzmn
class initialisation). Accordingly, the static pointciisve been re-
placed by sets of labels.

The purpose of the remainder of the paper is to pin down
the process by which AspectJ pointcuts are reduced to this. fo
We shall show how each static pointcut is defined in terms of a
relational query; by running those queries on a mainlingynm,
one obtains the sets of labels as in Figure 3.

Figure 3. Translated program.
4. Datalog

We shall use the Datalog query language to express the semant
of AspectJ pointcuts. Datalog is similar to Prolog, and agtitally

is a subset of Prolog, but excludes the ability to constreet data
type values such as lists. While we give a brief introduction
Datalog, we refer to the reader to [17] for more details. Adbzg
program is a set of clauses (backward implications) of thefo

p(Xl,...,Xn) <_q1()/17--~7Ym1)7--~7Qk(Yl7-~~7Ymk)-

where eachX; is a variable, and eacl; is either a variable or a
constant. Eacly; is a positive or negated occurrence of either a
predicate or destsuch asX < Y. A variable occurgositivelyin
a clause if it occurs in a positive predicate on the rightehside of
the clause, but not if it only occurs in a test. Intuitivelyteat such
asX < Y cannot be used to generate valuesXondY making
the test true, unlike a predicapéX,Y").

The semantics of Datalog programs, at least in the absence
of negation, are straightforward. Each predicate(, ..., X,)
defines am-ary relation, and clauses are interpreted as inclusions
between relations. The meaning of the program is then thst lea
solution of this set of inclusions. For instance, the Dajgdmgram
p(X) < p(X), while non-terminating as a Prolog program, is a
bona fidedefinition of the empty relation in Datalog.

4.1 Safe Datalog

The use of negation in Datalog programs is more problemasic,
negation is not a monotonic operator, and so the fixpoint me¢d
exist. Concretely, a program such g&X) «— —p(X) does not
define a relatiom, and indeegh(X) is neither true nor false for any
X. SafeDatalog is a subset of Datalog that provides a sufficient
(but not necessary) condition that guarantees that evergram
can be evaluated to a set of relations. Safe Datalog impeses t
conditions: range restriction and stratification.

Range Restriction In a range-restrictedDatalog program, each
variable in the headi.g. left-hand side) of a clause must appear
positively on the right-hand side. Furthermore, each téeian the
right-hand side must appear positively at least once. Téssic-
tion rules out programs such ag$X,Y) «— ¢(X), asY is left
unconstrained. Programs such as:

r(X) « —q(X), regexpmatctia.*", X).



where regexpmatdtP, X) is a regular expression pattern match-
ing test, are likewise disallowed. Both the above queriesum-
desirable as the relations defined cannot directly be cozdptite
p(X,Y) relation may be infinite (any value df can be used),
while evaluating the (X) relation may require evaluating infinitely
many regular expression matches.

Stratification Furthermore, in atratifiedDatalog program, nega-
tion may not be used in recursive cycles. A program is steatifi
there is some strict partial order on predicates such that when-
everp depends negatively ap thenp > ¢. Thatis, a predicate may
never depend negatively on itself. This prohibits such @mo as
p(X) < q(X), ~p(X).

Any safe Datalog program defines a set of relations as the leas
fixpoint of the recursive inclusions in the program. Furthere,
this solution may be effectively computed, and efficientalhms
are known for evaluating safe Datalog programs. Finallyrex
lations evaluated are finite, provided themitive predicates (un-
defined predicates providing access to the database) démni¢e
relations.

These properties of safe Datalog are highly desirable in our
setting. First, Datalog has a clear and straightforwardasgics,
unlike Prolog, in which the operational and declarative aetics
do not coincide. This guarantees that defining the semanfics
AspectJ pointcuts by translation to Datalog is valid. Beypure
semantics, the efficiency of Datalog allows our translategett]
pointcuts to be evaluated — leading to a directly implemigieta
semantics.

4.2 Extensions

For convenience, we shall make use of a number of extensions t
pure Datalog. These are just syntactic sugar, and may bnetiead

in a translation back to pure Datalog (which we omit for space
reasons).

¢ We use a variant of Datalog in which each variable is anndtate
with atype In any clause, the type of the variables defined in
the head are given explicitly, as follows:

p(X1:p1,..., Xn :pn) — E.

where thep; are predicates anfl' is any Datalog expression.
This is equivalent to the untyped clause:

(X1, Xn) = pr(Xa), . pn(Xn), B

Furthermore, we insist that any free variable appearinghen t
right-hand side be introduced by an existential quantiéigain
giving its type. We use the syntax: p ~ E to represent the
existential quantificatiordX (p(X) A E). A typed Datalog
program is necessarily range-restricted.

Datalog expressions can use negation arbitrarily, sawhidi)
is an expression whenevéris.

¢ We allow the use of disjunction, represented by a semicolon.

5. Pointcuts are queries

We now aim to show how pointcuts in AspectJ can be regarded as

Datalog queries over a relational representation of thgrara. The
correspondence presented here is informal, and it is otéynded
to help the reader build an intuition before diving into tleenfial
details in the next section.

Consider the example translation from Figure 2 to Figureig@ T
program of Figure 2 is stored as a set of primitive relatidimat set
includes, for example, a relation for recording method aletions:

methodDecl(Methodld,Name,Sig,DeclaringType,Retupely

The first field is thedentifier. this can be thought of as the identity
of the corresponding node in the abstract syntax tree. Tih@tjme
relations also recordhadowsn the program: these are the labels
shown in Figure 3. For instance, we have a relation

callShadow(Shadowld,Method,RecvType)

This relates the identity of a shadow (labelled instrumigora
points likeL1, L2 in Figure 3) to a method called at that shadow, and
the static type of the receiver. Furthermore, there is aensxonal
relation that records method bodies, as these are alsajaisgn
AspectJ:

executionShadow (Shadowld,Method)

We are now ready to express the static pointcuts of Figure 2 as
Datalog predicates. We first consider

call(x fx(..))
This pointcut corresponds to the following Datalog pretiica

pcl(S : shadow): M : method "N : name ~
callShadow(S,M),
methodDecl(M,N,,-,-),
regexpmatch(#’,N) .

Evaluatingpc1 will yield the following set of solutions fois: {
L3,L5,L8,L9 } — precisely the translation in Figure 3.
The other static pointcut in Figure 2 is

execution(x f3(..))
It is easy to give a naive translation into Datalog, namely

pc2(S : shadow)+ M : method "~ N : name ~
executionShadow(S,M),
methodDecl(M,N,,_,_),
regexpmatch('f3’,N) .

This time evaluation yields only one solution, namsly{ L4 }.

In order to extend this intuitive correspondence to a fuil fo
mal semantics, we need to decide exactly on the set of pveniti
relations. Furthermore, the above translation is naieeabse in
fact we need to take into account where a pointcut is declasd
the context determines how names in the pointcut are rechaRar
that reason, in the formal semantips1andpc2would need to take
an additional parameter.

6. Semantics of static pointcuts
6.1 Overall structure

As described above, our goal is to determine, for each giatitt-

cut, which set of labelled instrumentation points it desptes this
will pin down its semantics. We achieve this by giving a set of
rewrite rules that translate the static pointcuts in AspectDat-
alog predicates. The resulting predicate correspondireg dwen
pointcut has two free variables — the first denotes the Jagva ty
in which the pointcut is being evaluated (this parameteiseduo
handle name lookup), and the second ranges over shadows;label
the values of that variable making the predicate true areigely
those labels which the pointcut denotes.

The rewriting rules are split up into contexts such as point-
cuts, method patterns and name patterns. For each suchxiconte
we introduce a different term constructasjXdl for pointcuts,
methconstrpat2dl for method patternsetc), and the purpose of
the rewriting process is to eliminate these constructorsef\they
have all been eliminated, the translation process is cdmple

In our rules we adopt the conventions that both left- andtrigh
hand side of the rewrite rule are enclosed in bracKefs tb make
reading easier. Identifiers showntiold font are term constructors,



[ aj2di(pcl && pc2 C, S)] — [ (aj2di(pcl C, S), aj2di(pc2 C, 9)) ]

[ aj2di(pcl|| pc2 C, S)] — [ (aj2di(pcL C, S)): (@j2di(pc2 C, S))]

[ a2di(!pc, C, S)] — [ not(aj2di(pc, C, S))]

Figure 4. Rewrite rules for Boolean combinations of pointcuts

identifiers initalics are metavariables that capture subexpressions tual method calls, while for static method calls and cortstnucalls

of the current term.

Theaj2dl constructor is used to rewrite an AspectJ pointcut to
Datalog. More preciselyj2di(pc, C, S)should be interpreted as
a Datalog expression with free variablesand S, such that the
expression is true if§ is a shadow (instrumentation label) in the
denotation ofpc, and C is the class in which the pointcyic is
located. The context information provided by the class patar
Cis necessary, as the class in which a pointcut is locatedtaffis
semantics (through the use of Java name lookup in pointcuts)

An expression of the formj2di(pc, C, S)is rewritten to a pure
Datalog expression, in a syntax-directed fashion. Thesrud=ig-
ure 4 show how logical operators may be eliminated from poitst,
and converted into the equivalent Datalog logical opesator

6.2 Primitive predicates

In order to express pointcuts in Datalog, a set of primitivedp
icates (also referred to axtensional predicatei the deductive
databases literature) must be supplied to query the stauofithe
program. The set of primitive predicates must at least emasd
much of that structure as is required to evaluate Aspectitqds.
An extreme viewpoint would be to just store the abstractaynt
tree of the mainline program, and write queries over thaicstire.
However, we shall need quite complex derived notions, sathe
type hierarchy (represented by a relatissSubtype While this
information could be defined purely in terms of the syntaxhef t
program, it would clutter our semantics of pointcuts to do\sfe
therefore abstract away from this irrelevant detail, anel the set
of primitive predicates in Figure 5. This set captures jusiugh
information about the structure of the program to evaluatpektJ
pointcuts.

While the use of Datalog usually allows a simple and direet ex
pression of queries, our treatment of method parametersssttat
an encoding may sometimes be necessary. niétaodParamTypes
predicate is used to obtain, for each method, the list of syqfe
formal parameters. As Datalog does not allow the use of date-s
tures such as lists, or indeed arithmetic, this cannot beeszpd
directly. Instead, we define a relation:

methodParamTypes(Method, Type, Pos, NextPos)

that holds if the formal parameter Bethodat positionPoshas type
Type. The NextPosfield records the position of theextparameter
of M (i.e. Pos + 3, or 0 if there is no next parameter. This field is
needed because arbitrary arithmetic is not available ialbgf and
is used to iterate over parameter types.

In addition to the primitive database predicates desayilire
structure of the program, we include predicates listingstiedows
in the program. Shadows represent the static instrumentpaints
recognised by the AspectJ language; as such, pointcutseleeis
of shadows. Again, because our focus is on the matching mhrav
of pointcuts, we have chosen to represent shadows direcfyim-
itive predicates. In the terms of Section 3, this amountdgiract-
ing from the details of inserting labels at every instrunagioh
point of the mainline program. Figure 6 lists the relevarntive
predicates. Each of these corresponds to a kind of shadonedefi
by the AspectJ language — for instance, th#Shadowpredicate
describes method or constructor call shadows. The typedfor
each call shadow should be interpreted as the receiver typerf

this is just the declaring type of the callee.

It is worth noting that no part of the matching semantics is
preempted by these predicates. Picking out all call shadtoaws
example, is a simple mechanical task that can be achieveddsy c
analysis on the program AST: we just have to collect all métho
calls. We are concerned with the matching of pointcuts,the
process by which the set of all method calls is constraingdsio
those which are matched by a given pointcut. We can thinkef th
predicates in Figure 6 simply as a way of bounding the domfin o
the Datalog variables.

6.3 Pre-defined derived predicates

Below we shall make use of some pre-defined derived predicate
(also calledntensional predicates the deductive databases liter-
ature), as a convenient shorthand in defining the semaritpesrd-
cuts.

The simplest examples are those predicates that are used as
types, such asonstructoy method field, type. Most of these are self-
explanatory, but there are some exceptieatable (M)holds when
M is a method or a constructor; similanhackageOrType(T)s the
union of thepackageandtype predicates.

Other pre-defined predicates includasName(X,N) which is
true whenx is an entity (method, type, package, ...) that has name
N. All of these are obtained via simple projections of the fitiira
relations.

A more complex class of pre-defined predicates are those used
for traversing hierarchical data. A typical example is te#exive
transitive closure of the immediabasSubtypeelation:

hasSubtypeStar(T : type, T : type).
hasSubtypeStar(T : type,S : type)
U: type ~ ( hasSubtype(T,U), hasSubtypeStar(U,S) ).

The final category of pre-defined predicates concerns theifpo
of type names in Java. The most important of these is predicat
simpleTypeLookup(C,N,T)lt relates a typ&, a nameN and a typer
precisely when inside, looking up a type by nami would result
in T according to the Java Language Specification. Furthermore
is assumed to be a simple name, not containing dots.

For space reasons, we do not include a list of the pre-defined
derived predicates in this paper. The companion technayabrt
contains the details of these predicates.

6.4 Rewrite rules

As explained above, we aim to give a semantics to the AspectJ
pointcut language by rewriting it to Datalog in a term-bagrdely
syntactic fashion. The complete set of rewrite rules fonddhat
consists of about 90 rules. While it is pleasing that so féessuf-
fice to pin down the whole pointcut language, space forbid®e t
ough description of all rules in this paper (full details ¢csnfound
in the companion report [6]). Rather than give a cursory \cegr
of all rules, we present an in-depth discussion of two paldicfea-
tures of the AspectJ pointcut language. The specific chdicero
structs we describe is significant, as we focus on languagarkes
that have been a source both of confusion among AspectJarsers
implementation bugs. This illustrates the necessity faegipe se-
mantics to clarify the pointcut language.



Predicate

Description

packageDecl(P, N)

P denotes a package with name

typeDecl(T, N, IsInt, P)

T denotes a type with nam¢ declared in package Isintis true if T is an interface.

primitiveDecl(T, N)

T denotes a primitive type with name

arrayDecl(T, ET, N)

T denotes an array type with element typeand nameN.

methodDecI(M, N, S, DT, RT)

M denotes a method with narhe signatures, return typeRT and declared in typBT.

constructorDecl(C, S, CIs)

C denotes a constructor with signat@éor classCls.

fieldDecl(F, DT, T, N)

F denotes a field with name, of typeT, declared in typ®T.

compilationUnit(CU, P)

CU denotes a compilation unit in packape

singlelmportDecl(l, N)

I denotes an import declaration, importing the type with name

onDemandImportDecl(l, N)

I is an on-demand import declaration, for all types in the typpackage with nams.

methodModifiers(M, Mod)

MethodM has the modifiemMod.

fieldModifiers(F, Mod)

Field F has the modifieMod.

modifiers(Mod, N)

Modifier Mod has string representation

methodThrows(M, T)

MethodM declares throwing exceptioh

methodParamTypes(M, T, Pos, Nex

t)MethodM has a parameter of typeat positionPos Nextis the next position aftePos

hasChIId(A, B)

Syntactic elemers is a directly lexically enclosed b.

hasSubtype(T1, T2)

T2is a direct subtype of1.

Figure 5. Primitive Predicates: Program Structure

Predicate Description

callShadow(S, M, Recv)

Call to a method or constructef with receiver typeRecv.

executionShadow(S, M)

Execution of a methow.

initializationShadow(S, C)

Initialisation of an object (body af after parent constructor calls).

preinitializationShadow(S, C)

Pre-initialisation of an object (body @af before parent constructor calls)).

staticinitializationShadow(S, T

Initialisation of the static members of a clags

getShadow(S, F, Recv)

Read access to a fiek] on an object of static typeecv.

setShadow(S, F, Recv)

Write access to a field, on an object of static typRecv

handlerShadow(S, Exn)

Execution of a handler for excepti@xn.

adviceexecutionShadow(S)

Execution of advice.

isWithinClass(S, Cls)

ShadowS is contained in clasSls.

isWithinShadow(S1, S2)

ShadowsS1is contained within shadow2

Figure 6. Primitive Predicates: Shadows

In developing our semantics, we felt it was important that th
rewrite rules are directly executable, so they can be etsted on
tricky examples. At first we developed the rules by directyrit-
ing abstract syntax trees that represent pointcuts, butisnform
the rules quickly became unreadable. We therefore implesden
them using the Stratego system of Viseeal,; its main attraction
is that rewrite rules can be specified in a concrete syntak-f41
in our case, concrete AspectJ pattern syntax on the lefi-bale
of rules, and concrete Datalog syntax on the right-hand &ide
thermore, Bravenboaeat al. have developed a grammar for AspectJ
that we adopted for this project [9]. The rules shown in tldper
are slight typographical modifications of their implemeiata in
Stratego.

6.4.1 Call and execution pointcuts

Aspect] offers two ways to intercept method invocationg fum
intercepting at the call site, and another for intercepthrgexecu-
tion of a method body in the defining class. For the first atitve,
one uses theall pointcut, and for the secorekecution The seem-
ingly different matching behaviours @il and execution have led
to considerable confusion, and a comprehensive discussiote
found in [7] (although it is now somewhat dated, since it dadth
Aspect] 1.1.1 and the language semantics has evolved)u$e il

trate the difference betweeall andexecution consider the follow-
ing type hierarchy:

class A { void m() {} }
class B extendsA {}
class CextendsB { void m() {} }

along with the pointcuts

. call (+ B.m(..));
: execution(* B.m(..));

pointcut c()
pointcut e()

and the sequence of calls

(newA().m();  (newB()).m();  (newC()).m();

The call pointcut() will match the latter two calls, whereas the
execution pointcug() only matches the definition afi() in C. The
situation is further complicated in the presence of stagthuods: if
both definitions ofn() are declared static in the above examp(g,
only matches the second call, asgldoes not match at all.

This potentially surprising matching behaviour is causgdthie
difference between call and execution shadows. Any cakistant
gives rise to a call shadow, irrespective of where the catiethod
is actually declared. An execution shadow, on the other hepahs
an entire method body, and as such by definition can only lsepte
in those classes that contain a (re-)definition of the methothe
example above, the different behaviour is caused thaving no



definition of m(), not any difference in the interpretation of the
pattern.

The precise semantics is easily brought out by writing both
pointcutsc() ande() as Datalog queries. We shall first do that by

cution shadows; the method pattern in either case is matiched
exactly the same way, but execution shadows only arise i&sscl
declares a method, whereas for a call shadow it is suffictesini-
ply inherit it.

hand, to give the reader a sense of what needs to be generated; We are ready, therefore, to present the rewrite rules thatthe

once the goal is clear, we shall present the rewrite ruleshiege
it. Consider first the call pointcut):

c(Context : type, Shadow : shadow)
M : method ~ Recv: type ~ MReal : method
( matchpat(Context, M,Recv) ,
overrides (MReal,M) ,
callShadow(Shadow,MReal,Recv) ).

matchpat(Context : type, M: method, Recv : type)
T: type ~ MD:type ~
( simpleTypeLookup(Context,’B’,T),
hasSubtypeStar (T,Recv),
methodDecl(M,'m’,,MD,_),
( ( hasStrModifier (M,static ),
equals (MD,T))

’( not(hasStrModifier (M,static )),
hasSubtypeStar(MD,T))) ) .

In words, this query consists of two parts: one that matches t
method pattern to find a candidate methadwith a matching
signature, and another that picks out an appropriate caticsh
Shadow

The subsidiary predicateatchpafirst finds the definitiorT of a
type namedB’, as well as a methosl namedm’ that is declared
in some typeviD. In order to correctly combine these two results,
matchpaimust ensure that has an implementation of. According
to the AspectJ rules, “has an implementation of” means ‘ates|,
overrides, or inherits” for virtual methods; for static medls it just
means “declares”. Therefore, if the method is statib,andT must
be equal; if the method is not statitcan also be a subtype BID.
Note that this picks out all more general methedsf B.m() and
their declaring classegD — they are our representation of the set
of signatures that the method pattern matches.

The parameteRecv of matchpatis intended to bind the static
receiver type of the shadow — that is, the static type of theiver
for virtual calls, and the declaring type for static call$ tiis stage,
the only requirement is thaecvis T or a subtype off, the type
mentioned in the pointcut.

The second part of the query is simple in comparison: We find
all methodsM_Real overriding the more general definition that
we retrieved inmatchpat and pick out any call shadows that refer
to M_Realand have a suitable static receiver typev. It is worth
stressing that theverrides ()predicate we use is reflexive, as a
method could be its own most general definition.

Now contrast the above quetywith the Datalog definition of
the executionpointcut:

e(Context : type, Shadow : shadow)
M : method " Recv: type ~ MReal : method *
( matchpat(Context, M,Recv),
overrides (MReal,M),
hasChild (Recv,MReal), /I crucial
executionShadow (Shadow,Real) ) .

difference

It is remarkably similar to our earlier pointcut fexecutiort Again,
we find overriding methods_Real for the result ofmatchpat but
now we also assert that the receiver type of the shadow (wfdch
execution pointcuts, is just the type containing the metbody)
contains a definition oM_Reat if it didn’t, there would be no
execution shadow. Finally, we pick out all shadows foReal as
matched by the pointcut.

We can now conclude that the seemingly different matching be
haviour is based purely on the difference between call amd ex

semantics otall and execution in full generality. The rules (Fig-
ure 7) follow the argument above: one rule picks outiéshadow
and the other aaxecutionShadowwith the side condition that there
needs to be an actual declaration of the method in the regde
the method or constructor pattern is treated uniformly.

That pattern is further rewritten using thethconstrpat2dl term
constructor. Rewrite rules are given in Figure 8 (those shang for
method patterns — constructor patterns are very similag).séé
that the method pattern is further broken down into its dtuestt
parts: a modifier pattern, a type pattern for the return tggeattern
matching class members, and a formals-patteend pattern over
the method’s formal parameters), as well as an optionakpatt
on thethrows clause of the method. Each of these is rewritten to
Datalog using the appropriate term constructor, and thatheg
Datalog expressions are conjoined in the natural way.

We refrain from listing all the auxiliary term construct@write
rules here, the interested reader may find our full set ofsruie
our technical report [6]. For now, we just note that out of dlaeli-
tional constructorspnmodpat2dl andformals2dl are implemented in
the natural fashion,e. they define a set of predicates asserting that
the method has a certain modifier (or a certain formal pamryet
recursively working through the list of modifier (or formadam-
eter) patternstypepat2dl and methmembpat2d! ultimately rely on
name patterns, and the implementation of those proved eséxp
edly challenging. We discuss it in Section 6.4.2.

Thus, the last remaining term constructothiews2dl, and there
is a subtlety that can easily be missed when perusing thecikpe
documentation, but which appears clearly in our semaniibs.
rewrite rules are given in Figure 9. They are an illustratiérthe
kind of recursive rewriting that is also employed witimodpat2dl
andformals2dl. An empty exception pattern is rewritten to a dummy
predicate that is later eliminated. In the remaining twousés,
when rewriting exception patterns we differentiate betwéee
case when the first character of the pattern is a ‘", and when i
is not. According to the AspectJ documentation, in the faroase
the pattern matches if none of the declared exceptions ofthade
match the rest of the pattern, and in the latter case we midtoére
is someexception in the throws clause that matches the pattern.
So!Ex is an exception pattern that starts with a ‘!, whereas ‘!’ in
the (! Ex) pattern is a part of the class name pattern and not of the
exception pattern and therefore the third clause ofttlogvs2di rule
will be applied.

While the authors are of the opinion that it is bad language
design to put substantial meaning into parentheses (tlmvshr
patterniEx has a different meaning frohEx), as shown above), it
poses no problems for our method of pinning down the sermsantic
We hope that by giving a crisp semantics, issues such ashikse
become easier to discuss and rectify.

6.4.2 Type name patterns

Type name patterns in AspectJ pointcuts allow sets of types t
be concisely denoted, and are invaluable in expressing many
commonly-used pointcuts. However, the semantics of typeena
patterns is surprisingly subtle, and as such it is usefuksmréne it
more closely.

Type patterns allow the use of wildcards to denote sets @ftyp
Examples of type patterns includeao, a+..B (read: any name start-
ing with a, followed by a dot-separated list of identifiers, followed
by B) andx. While it is quite clear what set atringsis represented
by a name pattern, the subtlety lies in the interpretatiothee as



[ aja2di(call (methconstrpa), C, S)] — [ X: callable " Y: callable "~ R: type " rhethconstrpat2di(methconstrpat C, R, X),
overrides (Y, X), callShadow(S,Y,R))

[ aj2dl(execution (nethconstrpat, C, S)] — [ X: callable " Y: callable "~ R: type " mhethconstrpat2di(methconstrpat C, R, X),
overrides (Y, X), hasChild(R, Y), executionShadow(S,Y))

Figure 7. Top-level rewrite rules for call and execution pointcuts

[ methconstrpat2di(mmodpat typepat membyfarmalspaj, C, R, X)]
— [ T: type “(mmodpat2di([mmodpal X), typepat2di(typepat C, T),
methmembpat2d(membpatC, R, X),formals2di([formalspa}, C, X, 1), returns (X, T))]

[ methconstrpat2di(mmodpat typepat membjiarmalspaj throws throwspat C, R, X)]
— [ methconstrpat2di(mmodpat typepat membgfarmalspa}, C, R, X), throws2dI(throwspat C, X)]

Figure 8. Rewriting for method patterns — constructor patterns arelar

[ throws2dI([], C, M)] — [ true (M)]

[ throws2dI([! classnamepatthrowspal, C, M)] — [ not(E : type “(classnamepat2diclassnamepatC, E), throwsException(M, E))),
throws2dl(throwspat C, M)]

[ throws2dl([classnamepatthrowspal, C, M)] — [ E: type “(classnamepat2diclassnamepatC, E), throwsException(M, E)),
throws2dl(throwspat C, M)]

Figure 9. Rewrite rules forthrows2dl

names. This has been a source of confusion in the AspectJgomm patternpat, both pat andpat+ (representing any subtype péi are
nity, and indeed thajc [4] and abc [1] compilers for AspectJ do type name patterns, and type hame patterns are closed ogatel |
not implement the same rules. Furthermore, this is the cafiae connectives. Finally, given a type name pattgen tpat [] is a type
substantial bug in the reference AspectJ implementatibh [2 name pattern representing an array with element type nmat it
To see how this issue arises, consider a name pattern, for def  Type name patterns are translated using tifpepat2dl term
initeness sayx..B. There are two possible interpretations of this constructor. The top-level rules (excluding logical coctives)

pattern. The first possibility is that this should range dudly qual- are shown in Figure 10. The name pattern is translatathe

ified names. In this case, classeB andaa.c.Bwould be matched, namepat2dl, and the appropriate type (exact match, subtype or ar-

but notd.a.B(we use the convention that lowercase identifiers de- ray type) is selected.

note packages). The namepat2d! rewrite context defines the semantics of name
Alternatively, the name pattern might denote any classdhat patterns. As discussed above, the AspectJ semantics E=patd

be referred to by a name of the form.B from the aspectThat is, the cases of name patterns containing wildcards from exaoen

in this view the normal Java name lookup rules are used topiree patterns. This is achieved immepat2d| (Figure 11) using an auxil-
names. This matches any type matched in the previous way (anyiary testcontains-wildcard that checks the presence of wildcards in
type can be referred to by its fully qualified name), but mayamna a pattern. Note that theamepat2di predicates match by name only,
more types. For instance, the simple patt&mwould match any and in particular can match either packages or types. Theasndt
classB in the same package as the aspect. is constrained to a type igpepat2dl.

In fact, the semantics of AspectJ use either form of matching The semantics of simple name patterns and wildcard name
depending on context. The key is the presence or absence of th patterns are defined in Figure 12. Such a name pattern is aetatch
wildcardsx and.. in the pattern. If a wildcard appears anywhere in  (including wildcards) to the fully qualified name of an elamhe
the pattern, then the pattern should be interpreted asmamyier Finally, the rules for wildcard-free name patterns are show
fully qualified names, and no name lookup is performed. Hemev ~ Figure 13. These are rather more involved, reflecting the-com
if there are no wildcards in the pattern, then it is interpdeas a plexity of name lookup in Java. Two predicates are defined:
Java name, and denotes whichever types (if any) can beedferr exactnamepat2dimatches a name pattern against type or package
by the given name from the context of the aspect. Finallyntirae names, whilepnamepat2dl matches package names only. In ac-
pattern« (a single asterisk) is treated as a special case. This ngtche cordance with the Java specification, when a name is looked up
any type, including anonymous types such as anonymous innerin a context where it is unknown whether a package or type is
classes, which otherwise would be matched by no name pattern  denoted, the name should be interpreted as a type wheneser po

We shall now give the semantics of type name patterns in more sible, and only interpreted as a package if no type of thatenam
detail. exists. Finally, name lookup for simple names is performgthie

Type patterns in Aspectd are built up from the following. A simpleTypeLookugpredicate discussed earlier.
simple name patternrepresenting an identifier, is just a literal
possibly containing the wildcard. A general name pattern is a
sequence of simple name patterns, separated by eitheywhere 7. Experimental results

:Bﬁ-lsigerslig V;’:\'gif]ariggn:rmg a%tshegl:tﬁn_csio()f Jg\i/\?elﬁmlﬂang The Datalog queries we produce in the semantics are exdeutab
P 9 9 9 p- agm and so it is natural to ask whether that semantics can be used



[ typepat2di(namepat C, T)] — [ namepat2d(namepatC, T), type(T)]
| typepat2di(namepat, C, T)] — [ T1: type “(namepat2d(namepatC, T1), hasSubtypeStar(T1, T))
[ typepat2di(typepaf], C, T)] — [ T1l: type “(typepat2di(typepat, C, T1), arrayDecl(T, T1,)) |

Figure 10. Type Patterns: Subtypes and Array Types

namepat2d(x, C, T)] — [ true (T)]

namepat2d(namepatC, T)] — [ wcnamepat2d{namepatT)]
where contains-wildcard pamepa); fgnamefiamepal #"*"
namepat2d(namepatC, T)] — [ exactnamepat2d{namepatC, T)]
where not(contains-wildcard (namepa)); fgnamegamepa) #" +”

—_—

—_—

Figure 11. Name Patterns: Testing for Wildcards

[ snamepat2d(+, S)] — [ true (S)]
[ snamepat2d{snamepatS)] — [ N: name “(hasName(S, N), regexpmastigmepatN)) ]
where snamepatt” "

[ wenamepat2d(snamepatT)] — [ P : package ~ (defaultPackage (P), hasChild(P, sSHamepat2d{snamepatT)) |
[ wenamepat2d(namepat.snamepat, T}~ [ E : packageOrType i{cnamepat2d(namepatE), hasChild(E, T),snamepat2d(snamepatT)) |
[ wenamepat2d(namepat..snamepat, T}~ [ E : packageOrType Wicnamepat2d(namepatE), hasChildPlus(E, T)snamepat2d(snamepatT)) ]

Figure 12. Name Patterns: Simple Name Patterns and Wildcards

[ exactnamepat2d(snamepatC, T)] — [
(simpleTypeLookup(CsnamepatT));
(not(T1: type “(simpleTypeLookup(Gtr, T1))), pnamepat2d(snamepatT))]
[ exactnamepat2d(namepat.snamepat, C, T)— [
Pot : packageOrType ékactnamepat2d{namepatC, Pot), type(T), hasChild(Pot, T), hasNamegfamepd) ;
(not(T1: type“(exactnamepat2d{namepatC, Pot), hasChild(Pot, T1), hasName(¥hamepd)), pnamepat2d(namepat.snamepat, T})))

[ pnamepat2d(snamepatP)] — [ package(P), hasName@hamepat topLevelPackage (F)
| pnamepat2d(namepat.snamepat, P}~ [ P1: package " gnamepat2d(namepatP1), hasChild(P1,P), package(P), hasNam&{Bmep3) ]

Figure 13. Name Patterns: Exact Name Patterns

directly as the basis of an AspectJ implementation. In tdtisn,
we seek to determine whether that is at all feasible in precti Pointcut
by running queries that correspond to some realistic poiston rewriting
sizable mainline programs. rules

There are a number of options for executing Datalog queries. .
Perhaps the most obvious one is to capitalise on the facDia@t rules
alog is a subset of Prolog, so we could just use a Prolog inter-
preter. However, to stay true to the declarative semanfidsat- Stratego
alog, such an interpreter must usdled resolutionbecause oth- compiler
erwise non-termination might occur. That consideratioggests
the use of XSB, the leading optimising, tabled implemeatatf executable program
Prolog [38]. However, in a few preliminary experiments warid . Pointcut Datalog
that the queries corresponding to pointcuts can take déwaues to pws, to Datalog queries CodeQuest
complete. Moreover, it took a considerable amount of os@tion translator
done by hand to reduce XSB run times to such a level. Cleagly th Aspect] SQL queries | | results
point of directly executing the semantics is lost if handmgation source
is required. cource

We therefore decided to use CodeQuest [21], our own imple- ™ abe list of shadows |||Relational
mentation of Datalog based on a relational database sy§tede- type-hierarchy “||| database
Quest first optimises Datalog rules to reduce the number éen

essary computations (applying a specialised version ofubie
known magic setgransformation). It then translates the optimised
Datalog queries into SQL to take the advantage of severalddsc Figure 14. Experimental Setup

of research on RDBMS optimisations. For the measurements re For each of the experiments, a customised version cilticg5]
ported below, we used Microsoft SQL Server Express 2005as th compiler collects the facts implied by the program’s stouet

RDBMS backend of the CodeQuest system. which are used to populate CodeQuest's primitive relatidtmee




Pointcut CodeQuest]
WEKA1 4.68s
WEKA2 591s
WEKA3 5.24s
JHOTDRAWL 11.36s
JHOTDRAW?2 7.83s
JHOTDRAW3 7.53s
REWEAVE1 9.61s
REWEAVE2 9.62s
REWEAVE3 13.29 s
REWEAVE4 17.45s
REWEAVES 750s
JiGsAwW1 36.93s
JIGSAW2 31.34s
JIGSAW3 31.03s

Figure 16. Pointcut matching times with CodeQuest

database is then indexed in a straightforward manner, yabyel
creating a separate index on each field of every tableabbeom-

piler also collects information on the shadows in the progthat

are matched by pointcuts, which is used to verify the coness of
the result of CodeQuest’s evaluation of the Datalog poistcTihe

overall architecture is shown in Figure 14.

popflate aggregate
Project AJC index ?Ke;y Ratio
(1) Q
WEKA 549s 7.79s 9.15s| 4.09
JHOTDRAW 5.05s 7.73s 12.15s| 4.94
REWEAVE 19.89s 9.94s 26.58s| 2.84
JIGSAW 32.25s 1493 s 4350s| 2.81

Figure 17. Comparison withajc
pointcut matching. The ratio itself is given by

AJC+ PI+ AQ
AJC

We compare the query evaluation time to the total compitatio
time inajc as it is difficult to separate pointcut matching times in an
Aspectd compiler (as an example, name patterns can be ®lua
prior to matching pointcuts to shadows). The intent of thisle
is to compare Datalog matching times with an actual indaistri
strength AspectJ compiler, and to show that the performeegea-
dation will not be prohibitive if pointcut matching &jc were to be
replaced with Datalog in CodeQuest.

The results show that the matching times for Datalog queries

The experiments themselves are run on four AspectJ softwarein CodeQuest compare favourably with the total compile tofie

projects of various sizes. ¥KA [49] is a data mining tool written
in Java, consisting about 10KSLOC. It is instrumented witlag-
pect that checks for changes to an object’s hash code whdénit

a hash set. JBITDRAW [18] is a popular open source Java drawing
program, with approximately 21KSLOC. It has been instruredn
with an aspect that checks for the safe use of Java enumesatio
similar to concurrent modification exception checks in Jal&ec-
tions. REWEAVE is a set of diagnostic aspects applied to dhe
compiler itself, which has 51KSLOC. FinallyjcGlsaw [42] is the
w3c’s leading-edge webserver, with approximately 101K&!l O
and has been instrumented by an aspect that checks for therpro
sequence of resource locks. Figure 15 details the poinitci@ach

of the projects above that were used in the experiments.€Tdres
representative of typical AspectJ usage.

Figure 16 summarises the results of the experiments, with th
matching time in CodeQuest for each of the pointcuts. It ierin
esting to observe that the performance scales well with toet
size: from one project to the next, the size roughly doulzlad,that
is reflected in query execution times. We should stress siptbint
that CodeQuest is a research prototype, and it is easy teagwi
many optimisations that will improve performance.

Now that we have established that the pointcut matchinggime

are acceptable, it is natural to ask what penalty must be paid 8.

for storing the program structure and the shadows in a oglati
database, and for building indices on those primitive retet We
compare the performance of matching in CodeQuest with that o
the industrial AspectJ compilajc. CodeQuest matching times are
composed of two parts: the time it takes to populate and ilgiex
facts into the database (PI), and the time to execute theegaty
query for the project (AQ). The aggregate query for a eacfepto

is the disjoint union of the Datalog equivalents of all of fisint-
cuts. This is then compared to the total compile time for togget

in ajc. Figure 17 shows the results of this comparison.

theajc compiler: they do not exceed tlagc compiler’s compilation
times by more than a factor of five. For a comparisg which is
a research-oriented AspectJ compiler designed more fensiktil-
ity than speed, can be up to 30 times slower th@nFurthermore,
the gap does seem to narrow as the size of the project insrease

The times for loading the database are admittedly quite.high
An important property, however, is that this only needs talbee
for each compilation unit separately, and thus when reciatign
occurs, we can incrementally update the relevant database fn
particular, library code would only be loaded once in theatiase.
Details of this process are described in [21].

In summary, the above experiments show that directly usimg o
semantics as a basis for an AspectJ compiléeasible Whether
it is also possible to make it competitive with existing iplen-
tations remains to be seen. We believe that some penaltynin co
pile time may be acceptable: firstly, a direct implementattoeas-
ily kept in one-to-one correspondence with the semantigsalso,
Datalog is more expressive than the AspectJ pointcut laggua
facilitating useful pointcuts that cannot be expressed spektJ.
We expound the latter point in the next section.

Directly expressing pointcuts in Datalog

Datalog, together with the primitive predicates descriabdve, is
a richer language than the AspectJ pointcut language. tidsible
to write recursive pointcuts; bind types, members, and ahag
and directly query the type and lexical hierarchies of a oy
As a result, it can be beneficial to write pointcuts directly i

Datalog. The richness of the language is useful becausevtsah
programmer to express pointcuts in terms of semantic, rraltiag
syntactic, criteria — AspectJ pointcuts tend to fall inte gecond
category. The problems with syntactic criteria, and thes w$éogic
languages in alleviating them, have been discussed intdratiire

The evaluation times of the aggregate queries are much lower pefore [16, 20, 29]. However, they suggest using a commutaty

than the simple total of the individual pointcuts that cois@it due
to the large number of common terms in the Datalog equivaleht
those pointcuts. CodeQuest takes advantage of this dutiag/q
evaluation by computing the result of common terms only once
The table also shows a ratio compariag's total compile
time with that of a hypotheticajc compiler that uses Datalog for

complete logic language.

Related work has established the benefits of logic languages
for expressing pointcuts (cf. Section 9). In this sectiop, aim to
demonstrate that despite the restrictions of safe Datal@nable
strong termination guarantees, many interesting exantalestill
be expressed.
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Name Pointcut
WEKAL Iwithin (RealHashtableNativeAspect) &®&all(x Map.put(..))
Twithin (RealHashtableNativeAspect) &&

WEKA2 (call (+ Map.get(..)) || call (*x Map.remove(..))|| call (*x Map.containsKey(..)))

WEKA3 Twithin (RealHashtableNativeAspect) &8&all(x Map.remove(Object))

JHOTDRAWL call (+ Vector.ade(..)) || call (+ Vector.clear () || _call (* Vector.insertElementAt (..)) ]
call (+ Vector.remove(..)) || call (+ Vector.retainAll (..)) || call (+ Vector.set«(..))

JHOTDRAW?2 | call (Object Enumeration.nextElement())
JHOTDRAW3 | call (Enumeration+ew(..))
set(x *) && !('within (Aspect)|| within (IdentityPair ) ||

REWEAVEL within (org. aspectj ) || within (org. aspectbench))
get(x *) && !('within (Aspect)|| within (IdentityPair ) ||
REWEAVE2 within (org. aspectj ) || within (org. aspectbench))
REWEAVE3 | execution* abc.weaving.weaver.Weaver.resetForReweaving())
execution(* abc.weaving.weaver.Weaver.weaveAdvice()) &&
REWEAVE4 I( within (Aspect) || within (IdentityPair ) ||

within (org. aspectj ) || within (org. aspectbench))
adviceexecutiorf) &&

REWEAVES within (Aspect) || within (IdentityPair ) ||
within (org. aspectj ) || within (org. aspectbenchs)
JiGsAawl execution(x *(..)) && 'within (CflowDepth|| LockUpdater|] LockChecker)
JIGsAaw?2 call (+ org.w3c.tools . resources . ResourceReference+.lock())
JiGsaw3 call (+ org. w3c.tools . resources . ResourceReference+.unjock()

Figure 15. Pointcuts used in experiments

3 callShadow(Call, M3),

asg;zttg:tsprls\gye[ziatmg{ 4 overrides (M2,M3).
call (void FigureElement. moveBirt,int)) ||
call (void Point. setX(nt )) [ 1 containsShadow(M,S)}-
call (void Point. setY(nt)) [l 2 executionShadow (S2,M),
call (void Line. setP1(Point)) [l 3 iswithinShadow(S,S2).
call (void Line. setP2(Point));
We are now able to definmayReadand mayWrite in terms of
after () returning: move() && !cflowbelow(move()){ mayCallStar
Display. needsRepaint();
mayRead(M,F)y—
} mayCallStar(M,M2),

1
2
3 containsShadow(M2,S),
4

Figure 18. A famous aspect for decoupling model and view getShadow(S,E).

Figure 18 shows a well-known aspect for updating the view ofz mayWrite(M,F)«—
an application structured using the Model-View-Contrmolfeodu- - mayCallStar(M,M2),
larisation. Themove pointcut defined on Lines 2—-7 is syntactic in s containsShadow(M2,S),
nature: it enumerates all the methods that update the dtateed- o setShadow(S,E).
ement in the application-model. A more direct way of express

theintendedset of methods is: Justasin examples In previous sections, we use the coamenti

that, for any predicatpred we writepredStarto denote its reflexive
All methods that may write to a field that could then be read transitive closure.

in the repainting routin®isplay. repaint () Finally, it only remains to specify theverridespredicate. It is
well-known how to do that in a logic language, as demongtrate

Translating this straight into Datalog yields: for instance in JQuery [35]. These definitions carry over &tdlbg

needsDisplayUpdate (M)- almost unchanged.
typeDecl(DC, Display’,., ), A common complaint about aspects is the lack of clear in-
methodDecl(Repaint, repaint ’, DC,), terfaces between modules. To a large extent this is a laeguag
mayRead(Repaint,F), independent issue, and more a matter of software design If19]
mayWrite(M,F). appears, however, that using semantic pointcuts such as thug-

gested above helps to decouple aspects from changeabkniep!

Of course, we must now define exactly what we meamhyRead ; y
tation details.

andmayWrite It is not enough to just consider what fields are read
(or written) in one particular method — we must also consater
method that could be called transitively from it. When cotimuy 9. Related Work
this, we shall also keep in mind the fact that methods can be ov
ridden. The predicateayCall which contains caller-callee pairs
and takes into account overriding, is defined as follows.

We have already made comprehensive references to previks w

so this section provides just a roadmap of the main higtdighte

related work for this paper falls into four main categorié©P

mayCall(M,M2) «— semantics_, logic pointcuts, logic languages for statidyesis® and
containsShadow(M,Call), code queries.



AOP semanticsin this paper, we have taken our cue from the
approach of Walkeet al [43]. The distinguishing characteristic
of that semantics is the use of a core language with labelled
instrumentation points. Arguably the semantics of Wahdl.
[45] is more in line with the spirit of aspect-orientatiors a
all matching of events happens at runtime, thus foregoiag th
intermediate level. The connection between the two styfes o
semantics is given by partial evaluation: partially evéh@
Wand's definitional interpreter yields a compiler in thelstyf
Walker [34]. It would have been possible for us to make [45]
our starting point, but as our focus are queries over thécstat
program structure, it would have been a detour.

Logic pointcuts There is a large amount of previous works, in-
cluding implemented systems, that propose a logic poitdcut
guage in lieu of the patterns in AspectJ, notably [20]. In our
opinion, the use of a Turing complete pointcut language Has a
the pitfalls associated with undisciplined meta-prograngn
for instance the potential of non-termination at compitedti
Furthermorejust using a logic language is syntactically very
cumbersome for simple pointcuts that merely refer to method
signatures. Finally, our experiments show that the useabBr
is simply too inefficient in practice.

Static analysis Researchers in static analysis have long acknowl-
edged that logic programming in general, and Datalog in par-
ticular, is a suitable notation for expressing static asedy the
work by Reps [37] is an early example. More recently Dawson
et alrevived that line of work, in [15]. Monica Lam and her stu-
dents have continued that tradition, adding the new twistrof
implementation via binary decision diagrams [31, 48]. Wl fe
much is to be gained from combining those insights (mostly di
rected at traditional applications of static analysisjl esrusing
them in the context of aspect-oriented programming.

Code queriesThere is a rich and vast literature on ‘code queries’
in the software maintenance community, which makes connec-
tions to logic programming. It is in that context that theads
storing a program in relational form originated. It woul#eaus
too far astray to review this field here; the interested re&le
referred to a companion paper [21] for a comprehensive giscu
sion of how that work influenced the design and implememtatio
of our CodeQuest system.

10. Conclusions

We have presented the first rigorous semantics of a pragiidad-

cut language, building on the pioneering work of Walkeal. [43].

In doing so, we have sorted out numerous subtle issues irethe s
mantics of AspectJ, in particular regarding the matchingarhe
patterns.

Of independent interest is the framework that we chose fer th
semantics, namely a translation to safe Datalog. Safe @atala
pure logic programming language, and it is not Turing corepées
all queries are guaranteed to terminate. At the outset sfttuject
it was not clear to us that the whole AspectJ pointcut languemn
be expressed in safe Datalog. The fact that this is indeesilpes
provides strong evidence that safe Datalog is a suital#eradiate
form for pointcuts in aspect-oriented programming.

The translation took a pleasingly simple form, namely that o
conditional rewrite rules. We believe that this makes ounagtics
accessible to a wide audience, including working Aspeci&ide-
ers, as it requires no exotic mathematical machinery.

used a straightforward research prototype to evaluate Hiel@y
queries, we believe substantial further improvements atkirw
reach. The additional expressive power that Datalog affoptls
the fact that the semantitsthe implementation, may well be worth
paying a penalty in compile time.

Finally, we have shown through an example that it is veryulsef
for developers to have the option of writing pointcuts dilec
in Datalog. Clearly one would not wish to writdl pointcuts in
Datalog, as often Aspect] patterns are elegant and cor@ise.
semantics as a simple set of rewrite rules offers the pdisgibf
a hybrid approach, where the two notations can be freely anixe
as desired. Indeed, it is easy to envisage a system wheracad/a
users can define new pointcuts of their own, via a set of rewrit
rules that reduce them to existing primitives, much in thdest
of other extensible query languages [12]. Dean Wampler amd R
Bodkin have argued for a ‘long form’ of pointcuts in Aspeadd
our semantics provides precisely that [8, 44].
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