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Abstract
In aspect-oriented programming, one can intercept events by writ-
ing patterns calledpointcuts. The pointcut language of the most
popular aspect-oriented programming language, AspectJ, allows
the expression of highly complex properties of the static program
structure.

We present the first rigorous semantics of the AspectJ point-
cut language, by translating static patterns into safe (i.e. range-
restricted and stratified) Datalog queries. Safe Datalog isa logic
language like Prolog, but it does not have data structures; con-
sequently it has a straightforward least fixpoint semanticsand all
queries terminate.

The translation from pointcuts to safe Datalog consists of aset
of simple conditional rewrite rules, implemented using theStratego
system. The resulting queries are themselves executable with the
CodeQuest system. We present experiments indicating that direct
execution of our semantics is not prohibitively expensive.

Categories and Subject DescriptorsF.3 [Logics and Meanings of
Programs]: Semantics of Programming Languages

General Terms Design, Experimentation, Languages

Keywords Aspect-oriented programming, pointcuts, logic pro-
gramming, Datalog, term rewriting

1. Introduction
Aspect-oriented programming enables one to intercept events at
runtime by writing patterns calledpointcuts. The intercepted events
are namedjoinpoints. Whenever a pointcut matches a joinpoint,
extra code (calledadvice) is run. The most popular language that
embodies these ideas is AspectJ, an extension of Java [28]; there
is also a modern aspect-oriented version of C#, named Eos-U [36].
Typical applications include runtime verification of system-wide
invariants, the implementation of authentication and authorisation
mechanisms, as well as various caching and pooling strategies [30].

With the growing popularity of aspect-orientation, numerous
researchers have started to investigate the semantics of aspect-
oriented languages (e.g. [2, 3, 10, 13, 14, 24, 26, 27, 32, 40, 43, 45–
47]). All such studies have focused on the operational semantics
of advice, taking a very simple pointcut language. For instance, in
[43], the core language identifies program points for instrumenta-
tion through explicit labels, and pointcuts are sets of suchlabels.
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Yet in AspectJ itself, the pointcut language is very complex,
allowing the programmer to capture intricate properties related to
the static structure of the program. This complexity is a continuing
source of serious bugs in AspectJ compilers (cf. the discussion in
Section 6). Nevertheless the AspectJ user community continues to
make requests for a yet more expressive pattern language, only
exacerbating the problem.

In this paper, we bridge the gap between existing operational
semantics of advice and current practice, by giving a complete
semantics of the static matching of AspectJ 1.2.1 pointcuts. In
particular, our semantics can be used to reduce complex pointcuts
to sets of labels that refer to source locations, and then thedynamic
part of the story is told by an operational semantics in the style of
[43].

Our semantics consists of a translation from AspectJ pointcuts
into Datalog queries over relations defined in the object program.
Datalog is a logic query language that originated in the theoretical
database community [17]. We restrict ourselves to thesafe frag-
ment that has a straightforward least-fixpoint semantics; further-
more all safe Datalog queries terminate. The translation from point-
cuts to Datalog takes the form of about 90 conditional rewrite rules.
The full definition is thus quite short and elegant. It is available for
download as an accompanying technical report [6].

This semantics is put to work in three ways. First, it serves as
a crisp definition to discuss tricky points in the language design,
and has enabled us to lay bare several long-standing bugs in As-
pectJ implementations. Second, the semantics is executable, and we
present comparative experiments with an industrial-strength com-
piler to show the costs of directly executing the semantics are not
prohibitive. Finally, our semantics provides a framework for the de-
sign and discussion of further language extensions that theAspectJ
user community is clamouring for [7, 8, 11, 23].

It is not possible to prove a correspondence result with previous
semantics, as the only existing definition of AspectJ is an informal
description on the web [4]. However, our testing with respect to the
standard implementation, and subsequent discussion of discrepan-
cies with the AspectJ designers, provide ample confidence that our
formal semantics captures the intended meaning.

Many previous works have suggested the use of logic program-
ming for writing pointcuts in aspect-oriented programming, but in-
variably they use Prolog [16, 20, 29]. In the present setting, that
would be inappropriate because the semantics of Prolog itself is
quite complex, even with tabled resolution to give better termina-
tion behaviour. Furthermore, we tried to run our experiments with
(a tabled variant of) Prolog, but found that execution timesprohibit
its application in practice.

In summary, this paper makes the following contributions:

• The identification of safe Datalog as a suitable intermediate
form for pointcuts in aspect-oriented programming.



• The use of term rewriting to reduce complex pattern-based
pointcuts to Datalog queries.

• The first rigorous semantics of the AspectJ 1.2.1 pointcut lan-
guage.

• Experimental evidence that it is feasible to directly execute our
semantics, on AspectJ programs of up to 100KSLOC.

The structure of the paper is as follows. In Section 2, we pro-
vide a brief introduction to AspectJ, focussing on the pointcut
language. We then proceed to discuss existing semantics forthe
aspect-oriented paradigm in Section 3. In particular, we enunci-
ate the difference betweenstaticanddynamicpointcuts. Dynamic
pointcuts refer to runtime properties such as the call stack— they
are matched at runtime, and their semantics is by now well un-
derstood (e.g. [43, 45]). By contrast, static pointcuts are matched
against the static structure of the program, and they are thefocus of
the present paper. Next, we provide a brief introduction to safe Dat-
alog in Section 4. We then explain informally how static pointcuts
can be mapped to Datalog queries in Section 5. The heart of the
paper is Section 6, which shows how a simple set of rewrite rules
suffices to translate AspectJ’s static pointcuts into Datalog. Rather
than presenting a shallow overview of the complete semantics, we
detail the most complex issues in AspectJ’s design where a rigorous
approach is indispensable. In Section 7 it is demonstrated that this
semantics directly leads to a viable implementation strategy. We
then briefly speculate on the use of Datalog to directly express new
forms of pointcut in Section 8. A brief roadmap of related work is
provided in Section 9 before concluding in Section 10.

2. AspectJ pointcuts
AspectJ is a variant of Java, extended with aspect-orientedfeatures
[28]. These features allow a programmer to write a single piece of
code that consistently affects the behaviour of multiple modules in
a program.

The novel contribution of aspect-oriented languages, which was
not present in previous work on class composition (e.g. [39]), is
known as “pointcut and advice”. Apointcut is a predicate over
events that occur during the execution of a program. These events
(calledjoinpoints) are composite — they have duration and may be
nested. A piece of advice is a block of code that is executed when a
pointcut matches a joinpoint. Advice can be run before the matched
joinpoint, after it, or instead of it.

We will introduce the pointcut notation of AspectJ with the aid
of an example, taken from the textbook by Laddad [30]. The task in
hand is to automatically enforce the following requirementof the
Swing GUI library:

“Once a component is visible, the event-dispatching
thread (sometimes called the AWT thread) is the only thread
that can safely access or update the state of the realized com-
ponent. The rule exempts certain methods, allowing them to
be safely called from any thread.” [30]

Laddad’s solution works by intercepting calls to methods that
would update the state of a component from the wrong thread, and
then queueing them for execution in the event-dispatching thread.
The pointcutroutedMethods, shown in Figure 1, matches calls to
just those methods that would violate the invariant. It relies on five
other programmer-defined named pointcuts — each one is defined
in terms of pointcut primitives, using the Boolean connectivesand
(&& ), or (||), andnot (!). Three built-in primitives are also used:

if takes a boolean-valued Java expression as an argument; it
matches a joinpoint if the expression evaluates to true before
(or after, depending on the kind of advice) the joinpoint occurs.

1 pointcut viewMethodCalls() :
2 call(∗ javax..JComponent+.∗(..));
3

4 pointcut modelMethodCalls() :
5 call(∗ javax..∗Model+.∗(..))
6 || call(∗ javax.swing.text.Document+.∗(..));
7

8 pointcut uiMethodCalls() :
9 viewMethodCalls()||modelMethodCalls();

10

11 pointcut threadSafeCalls() :
12 call(void JComponent.revalidate())
13 || call(void JComponent.repaint(..))
14 || call(void add∗Listener(EventListener))
15 || call(void remove∗Listener(EventListener));
16

17 pointcut excludedJoinpoints() :
18 threadSafeCalls()
19 || within (SwingThreadSafetyAspect)
20 || if (EventQueue.isDispatchThread());
21

22 pointcut routedMethods() :
23 uiMethodCalls() && !excludedJoinpoints();

Figure 1. Pointcuts for Swing thread-safety enforcement

within takes a pattern ranging over types as an argument; it
matches any joinpoint that was caused by executing code lexi-
cally within a type that matches the pattern.

call also takes a pattern as an argument, which ranges over method
or constructor signatures; it matches any call-joinpoint to a
method or constructor that has a signature matching the pattern.

There are several wildcards used in AspectJ patterns. The
first is ∗: it matches any series of characters that can appear in
a Java identifier (not ‘.’). So, for example, Line 14 of Figure1
matches call-joinpoints to any method with a name that starts with
“add”, ends with “Listener”, and takes a single argument of type
EventListener.

A + wildcard can only appear in a pattern that ranges over types.
It means ‘match any subtype’. It appears in Line 2 of Figure 1,
which matches any call to a method on a type matching the pattern
javax..JComponentor any subtype of such a type.

The wildcard.. matches any sequence of full-stops and Java
identifiers that begins and ends with a full-stop. For example,
javax..∗Model matches “javax.swing.AbstractListModel”, but it
would not if the pattern werejavax..Model.

Note that the.. wildcard has a special meaning when used in the
formal parameter list of a method pattern, as seen at the end of Line
2 — in that case it matches an arbitrary number of parameters of
arbitrary type.

3. Existing AOP semantics
There is a large amount of work on the semantics of aspect-oriented
programming, e.g. [2, 3, 10, 13, 14, 24, 26, 27, 32, 40, 43, 45–47].
None of these works involve a pointcut language that approaches
the complexity of the pointcut language of AspectJ. We contend,
however, that it is possible to understand the semantics of AspectJ
by following the framework introduced in [43].

A key idea of [43] is to make the semantics a two-step process,
involving a surface language and a core language. The surface lan-
guage in our case is AspectJ. It has the rich notation for pointcuts
that allows programmers to alter the behaviour of the mainline pro-
gram without modifying the program text directly. That property is
sometimes calledobliviousnessin the literature on aspect-oriented
programming. The core language, by contrast, augments the main-
line program with explicit labelled instrumentation points. Point-



1 public classX {
2 void f1(int n) { }
3 void f2(int n) { f1(n); }
4 void f3(int n) { f2(n); }
5

6 public static void main(String[]args) {
7 X x = new X();
8 x.f3(0);
9 x.f2(1);

10 }
11 }
12

13 aspectA {
14 pointcut a (int n) :
15 call(∗ f∗(..))
16 && args(n)
17 && cflowbelow(execution(∗ f3(..)));
18

19 before(int n) : a(n){
20 System.out.println(thisJoinPoint + ”: n=”+n);
21 }
22 }

Figure 2. Example AspectJ program.

cuts refer directly to sets of such instrumentation points.The op-
erational semantics of the core language observes the execution of
labelled instrumentation points and executes advice wherelabels in
pointcuts match labels at runtime.

In most of the papers that have built on [43], the translation
from surface to core is quite simple [13, 14]. Wanget al. consider
a slightly more complex translation, which involves doing more
of the instrumentation at compile-time [46, 47]. The current paper
continues that trend by offering a translation from the AspectJ
surface language to a suitable core language, replacing therich
pointcuts by labelled instrumentation points. We do not offer an
operational semantics with it, as that would require augmenting a
complete operational semantics of Java.

In the literature on compiling aspect-oriented programs [22, 33],
instrumentation points in the static program are calledshadows,
whereas their runtime counterparts are namedjoinpoints. We shall
follow that terminology below.

To illustrate, consider the AspectJ program in Figure 2. It con-
tains a pointcut definition (Lines 14–17), and a piece of advice (ex-
tra code) that is triggered by that pointcut (Lines 19–21). The point-
cut a(n)makes use of thecflowbelow(p) primitive: conceptually this
matches if a joinpoint is properly nested inside any joinpoint that
matchesp. Pointcut primitives such ascflowbeloware inherently dy-
namic, and in general they cannot be resolved by static matching of
shadows (in the example, the call tof1 from f2 is advised or not
depending on whetherf2 was called fromf3). The same holds true
for args, which exposes the actual value of an argument at runtime.
Apart from these two primitives, the pointcuts are entirelystatic
and could thus be replaced by sets of shadows in the program. This
is illustrated in the translated program in Figure 3. Here the main-
line program has been augmented with explicit labels for shadows
(there are actually more shadows than shown here, for instance for
class initialisation). Accordingly, the static pointcutshave been re-
placed by sets of labels.

The purpose of the remainder of the paper is to pin down
the process by which AspectJ pointcuts are reduced to this form.
We shall show how each static pointcut is defined in terms of a
relational query; by running those queries on a mainline program,
one obtains the sets of labels as in Figure 3.

1 public classX {
2 void f1(int n) { L1 : {} }
3 void f2(int n) { L2 : { L3 : {f1(n);} } }
4 void f3(int n) { L4 : { L5 : {f2(n);} } }
5

6 public static void main(String[]args) {
7 L6 : { X x = (L7 : {new X()});
8 L8 : {x.f3(0)};
9 L9 : {x.f2(1)}; }

10 }
11 }
12

13 aspectA {
14 pointcut a (int n) :
15 label(L3,L5,L8,L9)
16 && args(n)
17 && cflowbelow(label(L4));
18

19 before(int n) : a(n){
20 System.out.println(thisJoinPoint + ”: n=”+n);
21 }
22 }

Figure 3. Translated program.

4. Datalog
We shall use the Datalog query language to express the semantics
of AspectJ pointcuts. Datalog is similar to Prolog, and syntactically
is a subset of Prolog, but excludes the ability to construct new data
type values such as lists. While we give a brief introductionto
Datalog, we refer to the reader to [17] for more details. A Datalog
program is a set of clauses (backward implications) of the form:

p(X1, . . . , Xn)← q1(Y1, . . . , Ym1
), . . . , qk(Y1, . . . , Ymk

).

where eachXi is a variable, and eachYj is either a variable or a
constant. Eachqj is a positive or negated occurrence of either a
predicate or atestsuch asX < Y . A variable occurspositivelyin
a clause if it occurs in a positive predicate on the right-hand side of
the clause, but not if it only occurs in a test. Intuitively, atest such
asX < Y cannot be used to generate values ofX andY making
the test true, unlike a predicatep(X,Y ).

The semantics of Datalog programs, at least in the absence
of negation, are straightforward. Each predicatep(X1, . . . , Xn)
defines ann-ary relation, and clauses are interpreted as inclusions
between relations. The meaning of the program is then the least
solution of this set of inclusions. For instance, the Datalog program
p(X) ← p(X), while non-terminating as a Prolog program, is a
bona fidedefinition of the empty relation in Datalog.

4.1 Safe Datalog

The use of negation in Datalog programs is more problematic,as
negation is not a monotonic operator, and so the fixpoint neednot
exist. Concretely, a program such asp(X) ← ¬p(X) does not
define a relationp, and indeedp(X) is neither true nor false for any
X. SafeDatalog is a subset of Datalog that provides a sufficient
(but not necessary) condition that guarantees that every program
can be evaluated to a set of relations. Safe Datalog imposes two
conditions: range restriction and stratification.

Range Restriction In a range-restrictedDatalog program, each
variable in the head (i.e. left-hand side) of a clause must appear
positively on the right-hand side. Furthermore, each variable on the
right-hand side must appear positively at least once. This restric-
tion rules out programs such asp(X, Y ) ← q(X), asY is left
unconstrained. Programs such as:

r(X)← ¬q(X), regexpmatch(“a.*” , X).



where regexpmatch(P, X) is a regular expression pattern match-
ing test, are likewise disallowed. Both the above queries are un-
desirable as the relations defined cannot directly be computed: the
p(X, Y ) relation may be infinite (any value ofY can be used),
while evaluating ther(X) relation may require evaluating infinitely
many regular expression matches.

Stratification Furthermore, in astratifiedDatalog program, nega-
tion may not be used in recursive cycles. A program is stratified if
there is some strict partial order< on predicates such that when-
everp depends negatively onq, thenp > q. That is, a predicate may
never depend negatively on itself. This prohibits such programs as
p(X)← q(X),¬p(X).

Any safe Datalog program defines a set of relations as the least
fixpoint of the recursive inclusions in the program. Furthermore,
this solution may be effectively computed, and efficient algorithms
are known for evaluating safe Datalog programs. Finally, all re-
lations evaluated are finite, provided theprimitive predicates (un-
defined predicates providing access to the database) denotefinite
relations.

These properties of safe Datalog are highly desirable in our
setting. First, Datalog has a clear and straightforward semantics,
unlike Prolog, in which the operational and declarative semantics
do not coincide. This guarantees that defining the semanticsof
AspectJ pointcuts by translation to Datalog is valid. Beyond pure
semantics, the efficiency of Datalog allows our translated AspectJ
pointcuts to be evaluated — leading to a directly implementable
semantics.

4.2 Extensions

For convenience, we shall make use of a number of extensions to
pure Datalog. These are just syntactic sugar, and may be eliminated
in a translation back to pure Datalog (which we omit for space
reasons).

• We use a variant of Datalog in which each variable is annotated
with a type. In any clause, the type of the variables defined in
the head are given explicitly, as follows:

p(X1 : p1, . . . , Xn : pn)← E.

where thepi are predicates andE is any Datalog expression.
This is equivalent to the untyped clause:

p(X1, . . . , Xn)← p1(X1), . . . , pn(Xn), E.

Furthermore, we insist that any free variable appearing on the
right-hand side be introduced by an existential quantifier,again
giving its type. We use the syntaxX : p ˆ E to represent the
existential quantification∃X(p(X) ∧ E). A typed Datalog
program is necessarily range-restricted.

• Datalog expressions can use negation arbitrarily, so thatnot(E)
is an expression wheneverE is.

• We allow the use of disjunction, represented by a semicolon.

5. Pointcuts are queries
We now aim to show how pointcuts in AspectJ can be regarded as
Datalog queries over a relational representation of the program. The
correspondence presented here is informal, and it is only intended
to help the reader build an intuition before diving into the formal
details in the next section.

Consider the example translation from Figure 2 to Figure 3. The
program of Figure 2 is stored as a set of primitive relations.That set
includes, for example, a relation for recording method declarations:

methodDecl(MethodId,Name,Sig,DeclaringType,ReturnType).

The first field is theidentifier: this can be thought of as the identity
of the corresponding node in the abstract syntax tree. The primitive
relations also recordshadowsin the program: these are the labels
shown in Figure 3. For instance, we have a relation

callShadow(ShadowId,Method,RecvType)

This relates the identity of a shadow (labelled instrumentation
points likeL1, L2 in Figure 3) to a method called at that shadow, and
the static type of the receiver. Furthermore, there is an extensional
relation that records method bodies, as these are also joinpoints in
AspectJ:

executionShadow(ShadowId,Method)

We are now ready to express the static pointcuts of Figure 2 as
Datalog predicates. We first consider

call(∗ f∗(..))

This pointcut corresponds to the following Datalog predicate:

pc1(S : shadow) :− M : method ˆ N : name ˆ
callShadow(S,M,),
methodDecl(M,N,, , ),
regexpmatch(’f.∗’,N) .

Evaluatingpc1 will yield the following set of solutions forS: {
L3,L5,L8,L9} – precisely the translation in Figure 3.

The other static pointcut in Figure 2 is

execution(∗ f3(..))

It is easy to give a naı̈ve translation into Datalog, namely

pc2(S : shadow) :− M : method ˆ N : name ˆ
executionShadow(S,M),
methodDecl(M,N,, , ),
regexpmatch(’f3’,N) .

This time evaluation yields only one solution, namelyS: { L4 }.
In order to extend this intuitive correspondence to a full for-

mal semantics, we need to decide exactly on the set of primitive
relations. Furthermore, the above translation is naı̈ve, because in
fact we need to take into account where a pointcut is declared, as
the context determines how names in the pointcut are resolved. For
that reason, in the formal semantics,pc1andpc2would need to take
an additional parameter.

6. Semantics of static pointcuts
6.1 Overall structure

As described above, our goal is to determine, for each staticpoint-
cut, which set of labelled instrumentation points it denotes, as this
will pin down its semantics. We achieve this by giving a set of
rewrite rules that translate the static pointcuts in AspectJ to Dat-
alog predicates. The resulting predicate corresponding toa given
pointcut has two free variables — the first denotes the Java type
in which the pointcut is being evaluated (this parameter is used to
handle name lookup), and the second ranges over shadow labels;
the values of that variable making the predicate true are precisely
those labels which the pointcut denotes.

The rewriting rules are split up into contexts such as point-
cuts, method patterns and name patterns. For each such context
we introduce a different term constructor (aj2dl for pointcuts,
methconstrpat2dl for method patterns,etc.), and the purpose of
the rewriting process is to eliminate these constructors. When they
have all been eliminated, the translation process is complete.

In our rules we adopt the conventions that both left- and right-
hand side of the rewrite rule are enclosed in brackets ([[..]]) to make
reading easier. Identifiers shown inbold font are term constructors,



[[ aj2dl (pc1 && pc2, C, S) ]] → [[ (aj2dl (pc1, C, S), aj2dl (pc2, C, S)) ]]
[[ aj2dl (pc1 || pc2, C, S) ]] → [[ (aj2dl (pc1, C, S)); (aj2dl (pc2, C, S)) ]]
[[ aj2dl (! pc, C, S) ]] → [[ not(aj2dl (pc, C, S)) ]]

Figure 4. Rewrite rules for Boolean combinations of pointcuts

identifiers initalics are metavariables that capture subexpressions
of the current term.

The aj2dl constructor is used to rewrite an AspectJ pointcut to
Datalog. More precisely,aj2dl (pc, C, S) should be interpreted as
a Datalog expression with free variablesC and S, such that the
expression is true iffS is a shadow (instrumentation label) in the
denotation ofpc, and C is the class in which the pointcutpc is
located. The context information provided by the class parameter
C is necessary, as the class in which a pointcut is located affects its
semantics (through the use of Java name lookup in pointcuts).

An expression of the formaj2dl (pc, C, S) is rewritten to a pure
Datalog expression, in a syntax-directed fashion. The rules in Fig-
ure 4 show how logical operators may be eliminated from pointcuts,
and converted into the equivalent Datalog logical operators.

6.2 Primitive predicates

In order to express pointcuts in Datalog, a set of primitive pred-
icates (also referred to asextensional predicatesin the deductive
databases literature) must be supplied to query the structure of the
program. The set of primitive predicates must at least encode as
much of that structure as is required to evaluate AspectJ pointcuts.
An extreme viewpoint would be to just store the abstract syntax
tree of the mainline program, and write queries over that structure.
However, we shall need quite complex derived notions, such as the
type hierarchy (represented by a relationhasSubtype). While this
information could be defined purely in terms of the syntax of the
program, it would clutter our semantics of pointcuts to do so. We
therefore abstract away from this irrelevant detail, and use the set
of primitive predicates in Figure 5. This set captures just enough
information about the structure of the program to evaluate AspectJ
pointcuts.

While the use of Datalog usually allows a simple and direct ex-
pression of queries, our treatment of method parameters shows that
an encoding may sometimes be necessary. ThemethodParamTypes
predicate is used to obtain, for each method, the list of types of
formal parameters. As Datalog does not allow the use of data struc-
tures such as lists, or indeed arithmetic, this cannot be expressed
directly. Instead, we define a relation:

methodParamTypes(Method, Type, Pos, NextPos)

that holds if the formal parameter ofMethodat positionPoshas type
Type. TheNextPosfield records the position of thenextparameter
of M (i.e. Pos + 1), or 0 if there is no next parameter. This field is
needed because arbitrary arithmetic is not available in Datalog, and
is used to iterate over parameter types.

In addition to the primitive database predicates describing the
structure of the program, we include predicates listing theshadows
in the program. Shadows represent the static instrumentation points
recognised by the AspectJ language; as such, pointcuts denote sets
of shadows. Again, because our focus is on the matching behaviour
of pointcuts, we have chosen to represent shadows directly as prim-
itive predicates. In the terms of Section 3, this amounts to abstract-
ing from the details of inserting labels at every instrumentation
point of the mainline program. Figure 6 lists the relevant primitive
predicates. Each of these corresponds to a kind of shadow defined
by the AspectJ language — for instance, thecallShadowpredicate
describes method or constructor call shadows. The type stored for
each call shadow should be interpreted as the receiver type for vir-

tual method calls, while for static method calls and constructor calls
this is just the declaring type of the callee.

It is worth noting that no part of the matching semantics is
preempted by these predicates. Picking out all call shadows, for
example, is a simple mechanical task that can be achieved by case
analysis on the program AST: we just have to collect all method
calls. We are concerned with the matching of pointcuts,i.e. the
process by which the set of all method calls is constrained tojust
those which are matched by a given pointcut. We can think of the
predicates in Figure 6 simply as a way of bounding the domain of
the Datalog variableS.

6.3 Pre-defined derived predicates

Below we shall make use of some pre-defined derived predicates
(also calledintensional predicatesin the deductive databases liter-
ature), as a convenient shorthand in defining the semantics of point-
cuts.

The simplest examples are those predicates that are used as
types, such asconstructor, method, field, type. Most of these are self-
explanatory, but there are some exceptions:callable (M)holds when
M is a method or a constructor; similarlypackageOrType(T)is the
union of thepackageandtypepredicates.

Other pre-defined predicates includehasName(X,N), which is
true whenX is an entity (method, type, package, . . . ) that has name
N. All of these are obtained via simple projections of the primitive
relations.

A more complex class of pre-defined predicates are those used
for traversing hierarchical data. A typical example is the reflexive
transitive closure of the immediatehasSubtyperelation:

hasSubtypeStar (T : type, T : type).
hasSubtypeStar (T : type, S : type)←

U : type ˆ ( hasSubtype(T,U), hasSubtypeStar (U,S) ).

The final category of pre-defined predicates concerns the lookup
of type names in Java. The most important of these is predicate
simpleTypeLookup(C,N,T). It relates a typeC, a nameN and a typeT
precisely when insideC, looking up a type by nameN would result
in T according to the Java Language Specification. FurthermoreN
is assumed to be a simple name, not containing dots.

For space reasons, we do not include a list of the pre-defined
derived predicates in this paper. The companion technical report
contains the details of these predicates.

6.4 Rewrite rules

As explained above, we aim to give a semantics to the AspectJ
pointcut language by rewriting it to Datalog in a term-based, purely
syntactic fashion. The complete set of rewrite rules for doing that
consists of about 90 rules. While it is pleasing that so few rules suf-
fice to pin down the whole pointcut language, space forbids a thor-
ough description of all rules in this paper (full details canbe found
in the companion report [6]). Rather than give a cursory overview
of all rules, we present an in-depth discussion of two particular fea-
tures of the AspectJ pointcut language. The specific choice of con-
structs we describe is significant, as we focus on language features
that have been a source both of confusion among AspectJ usersand
implementation bugs. This illustrates the necessity for a precise se-
mantics to clarify the pointcut language.



Predicate Description
packageDecl(P, N) P denotes a package with nameN.
typeDecl(T, N, IsInt, P) T denotes a type with nameN, declared in packageP. IsInt is true ifT is an interface.
primitiveDecl(T, N) T denotes a primitive type with nameN.
arrayDecl(T, ET, N) T denotes an array type with element typeET and nameN.
methodDecl(M, N, S, DT, RT) M denotes a method with nameN, signatureS, return typeRT and declared in typeDT.
constructorDecl(C, S, Cls) C denotes a constructor with signatureS for classCls.
fieldDecl(F, DT, T, N) F denotes a field with nameN, of typeT, declared in typeDT.
compilationUnit(CU, P) CU denotes a compilation unit in packageP.
singleImportDecl(I, N) I denotes an import declaration, importing the type with nameN.
onDemandImportDecl(I, N) I is an on-demand import declaration, for all types in the typeor package with nameN.
methodModifiers(M, Mod) MethodM has the modifierMod.
fieldModifiers(F, Mod) FieldF has the modifierMod.
modifiers(Mod, N) Modifier Mod has string representationN.
methodThrows(M, T) MethodM declares throwing exceptionT
methodParamTypes(M, T, Pos, Next)MethodM has a parameter of typeT at positionPos. Next is the next position afterPos.
hasChild(A, B) Syntactic elementB is a directly lexically enclosed byA.
hasSubtype(T1, T2) T2 is a direct subtype ofT1.

Figure 5. Primitive Predicates: Program Structure

Predicate Description
callShadow(S, M, Recv) Call to a method or constructorM with receiver typeRecv.
executionShadow(S, M) Execution of a methodM.
initializationShadow(S, C) Initialisation of an object (body ofC after parent constructor calls).
preinitializationShadow(S, C) Pre-initialisation of an object (body ofC before parent constructor calls).
staticinitializationShadow(S, T) Initialisation of the static members of a classT.
getShadow(S, F, Recv) Read access to a fieldF, on an object of static typeRecv.
setShadow(S, F, Recv) Write access to a fieldF, on an object of static typeRecv.
handlerShadow(S, Exn) Execution of a handler for exceptionExn.
adviceexecutionShadow(S) Execution of advice.

isWithinClass(S, Cls) ShadowS is contained in classCls.
isWithinShadow(S1, S2) ShadowS1 is contained within shadowS2.

Figure 6. Primitive Predicates: Shadows

In developing our semantics, we felt it was important that the
rewrite rules are directly executable, so they can be easilytested on
tricky examples. At first we developed the rules by directly rewrit-
ing abstract syntax trees that represent pointcuts, but in this form
the rules quickly became unreadable. We therefore implemented
them using the Stratego system of Visseret al.; its main attraction
is that rewrite rules can be specified in a concrete syntax [41] —
in our case, concrete AspectJ pattern syntax on the left-hand side
of rules, and concrete Datalog syntax on the right-hand side. Fur-
thermore, Bravenboeret al.have developed a grammar for AspectJ
that we adopted for this project [9]. The rules shown in this paper
are slight typographical modifications of their implementation in
Stratego.

6.4.1 Call and execution pointcuts

AspectJ offers two ways to intercept method invocations: one for
intercepting at the call site, and another for interceptingthe execu-
tion of a method body in the defining class. For the first alternative,
one uses thecall pointcut, and for the secondexecution. The seem-
ingly different matching behaviours ofcall andexecution have led
to considerable confusion, and a comprehensive discussioncan be
found in [7] (although it is now somewhat dated, since it deals with
AspectJ 1.1.1 and the language semantics has evolved). To illus-

trate the difference betweencall andexecution, consider the follow-
ing type hierarchy:

class A { void m() {} }
class B extendsA {}
class C extendsB { void m() {} }

along with the pointcuts

pointcut c() : call (∗ B.m(..));
pointcut e() : execution(∗ B.m(..));

and the sequence of calls

(new A()).m(); (new B()). m(); (new C()). m();

The call pointcutc() will match the latter two calls, whereas the
execution pointcute() only matches the definition ofm() in C. The
situation is further complicated in the presence of static methods: if
both definitions ofm() are declared static in the above example,c()
only matches the second call, ande() does not match at all.

This potentially surprising matching behaviour is caused by the
difference between call and execution shadows. Any call statement
gives rise to a call shadow, irrespective of where the calledmethod
is actually declared. An execution shadow, on the other hand, spans
an entire method body, and as such by definition can only be present
in those classes that contain a (re-)definition of the method. In the
example above, the different behaviour is caused byB having no



definition of m(), not any difference in the interpretation of the
pattern.

The precise semantics is easily brought out by writing both
pointcutsc() and e() as Datalog queries. We shall first do that by
hand, to give the reader a sense of what needs to be generated;
once the goal is clear, we shall present the rewrite rules to achieve
it. Consider first the call pointcutc():

c(Context : type, Shadow : shadow)←
M : method ˆ Recv : type ˆ MReal : method
( matchpat(Context, M,Recv) ,

overrides (MReal,M) ,
callShadow(Shadow,MReal,Recv) ).

matchpat(Context : type, M : method, Recv : type)←
T : type ˆ MD : type ˆ
( simpleTypeLookup(Context,’B’,T),

hasSubtypeStar (T,Recv),
methodDecl(M,’m’,,MD, ),
( ( hasStrModifier (M,static ),

equals (MD,T) )
;
( not(hasStrModifier (M,static )),

hasSubtypeStar (MD,T) ) ) ) .

In words, this query consists of two parts: one that matches the
method pattern to find a candidate methodM with a matching
signature, and another that picks out an appropriate call shadow
Shadow.

The subsidiary predicatematchpatfirst finds the definitionT of a
type named‘B’ , as well as a methodM named‘m’ that is declared
in some typeMD. In order to correctly combine these two results,
matchpatmust ensure thatT has an implementation ofM. According
to the AspectJ rules, “has an implementation of” means “declares,
overrides, or inherits” for virtual methods; for static methods it just
means “declares”. Therefore, if the method is static,MD andT must
be equal; if the method is not static,T can also be a subtype ofMD.
Note that this picks out all more general methodsm of B.m() and
their declaring classesMD — they are our representation of the set
of signatures that the method pattern matches.

The parameterRecv of matchpatis intended to bind the static
receiver type of the shadow — that is, the static type of the receiver
for virtual calls, and the declaring type for static calls. At this stage,
the only requirement is thatRecv is T or a subtype ofT, the type
mentioned in the pointcut.

The second part of the query is simple in comparison: We find
all methodsM Real overriding the more general definitionM that
we retrieved inmatchpat, and pick out any call shadows that refer
to M Realand have a suitable static receiver typeRecv. It is worth
stressing that theoverrides ()predicate we use is reflexive, as a
method could be its own most general definition.

Now contrast the above queryc with the Datalog definition of
theexecutionpointcut:

e(Context : type, Shadow : shadow)←
M : method ˆ Recv : type ˆ MReal : method ˆ
( matchpat(Context, M,Recv),

overrides (MReal,M),
hasChild(Recv,MReal), // crucial difference
executionShadow(Shadow,MReal) ) .

It is remarkably similar to our earlier pointcut forexecution: Again,
we find overriding methodsM Real for the result ofmatchpat, but
now we also assert that the receiver type of the shadow (which, for
execution pointcuts, is just the type containing the methodbody)
contains a definition ofM Real; if it didn’t, there would be no
execution shadow. Finally, we pick out all shadows forM Real as
matched by the pointcut.

We can now conclude that the seemingly different matching be-
haviour is based purely on the difference between call and exe-

cution shadows; the method pattern in either case is matchedin
exactly the same way, but execution shadows only arise if a class
declares a method, whereas for a call shadow it is sufficient to sim-
ply inherit it.

We are ready, therefore, to present the rewrite rules that give the
semantics ofcall and execution in full generality. The rules (Fig-
ure 7) follow the argument above: one rule picks out acallShadow,
and the other anexecutionShadow(with the side condition that there
needs to be an actual declaration of the method in the receiver), but
the method or constructor pattern is treated uniformly.

That pattern is further rewritten using themethconstrpat2dl term
constructor. Rewrite rules are given in Figure 8 (those shown are for
method patterns — constructor patterns are very similar). We see
that the method pattern is further broken down into its constituent
parts: a modifier pattern, a type pattern for the return type,a pattern
matching class members, and a formals-pattern (i.e. a pattern over
the method’s formal parameters), as well as an optional pattern
on thethrows clause of the method. Each of these is rewritten to
Datalog using the appropriate term constructor, and the resulting
Datalog expressions are conjoined in the natural way.

We refrain from listing all the auxiliary term constructor rewrite
rules here, the interested reader may find our full set of rules in
our technical report [6]. For now, we just note that out of theaddi-
tional constructors,mmodpat2dl andformals2dl are implemented in
the natural fashion,i.e. they define a set of predicates asserting that
the method has a certain modifier (or a certain formal parameter),
recursively working through the list of modifier (or formal param-
eter) patterns.typepat2dl and methmembpat2dl ultimately rely on
name patterns, and the implementation of those proved unexpect-
edly challenging. We discuss it in Section 6.4.2.

Thus, the last remaining term constructor isthrows2dl, and there
is a subtlety that can easily be missed when perusing the AspectJ
documentation, but which appears clearly in our semantics.The
rewrite rules are given in Figure 9. They are an illustrationof the
kind of recursive rewriting that is also employed withmmodpat2dl
andformals2dl. An empty exception pattern is rewritten to a dummy
predicate that is later eliminated. In the remaining two clauses,
when rewriting exception patterns we differentiate between the
case when the first character of the pattern is a ‘!’, and when it
is not. According to the AspectJ documentation, in the former case
the pattern matches if none of the declared exceptions of a method
match the rest of the pattern, and in the latter case we match if there
is someexception in the throws clause that matches the pattern.
So !Ex is an exception pattern that starts with a ‘!’, whereas ‘!’ in
the (! Ex) pattern is a part of the class name pattern and not of the
exception pattern and therefore the third clause of thethrows2dl rule
will be applied.

While the authors are of the opinion that it is bad language
design to put substantial meaning into parentheses (the throws
pattern!Ex has a different meaning from(! Ex), as shown above), it
poses no problems for our method of pinning down the semantics.
We hope that by giving a crisp semantics, issues such as thesewill
become easier to discuss and rectify.

6.4.2 Type name patterns

Type name patterns in AspectJ pointcuts allow sets of types to
be concisely denoted, and are invaluable in expressing many
commonly-used pointcuts. However, the semantics of type name
patterns is surprisingly subtle, and as such it is useful to examine it
more closely.

Type patterns allow the use of wildcards to denote sets of types.
Examples of type patterns include:Foo, a∗..B (read: any name start-
ing with a, followed by a dot-separated list of identifiers, followed
by B) and∗. While it is quite clear what set ofstringsis represented
by a name pattern, the subtlety lies in the interpretation ofthese as



[[ aj2dl (call (methconstrpat), C, S) ]] → [[ X : callable ˆ Y : callable ˆ R : type ˆ (methconstrpat2dl(methconstrpat, C, R, X),
overrides (Y, X), callShadow(S,Y,R))]]

[[ aj2dl (execution (methconstrpat), C, S) ]] → [[ X : callable ˆ Y : callable ˆ R : type ˆ (methconstrpat2dl(methconstrpat, C, R, X),
overrides (Y, X), hasChild(R, Y), executionShadow(S,Y))]]

Figure 7. Top-level rewrite rules for call and execution pointcuts

[[ methconstrpat2dl(mmodpat typepat membpat(formalspat), C, R, X) ]]
→ [[ T : type ˆ(mmodpat2dl([mmodpat], X), typepat2dl(typepat, C, T),

methmembpat2dl(membpat, C, R, X),formals2dl([formalspat], C, X, 1), returns (X, T)) ]]

[[ methconstrpat2dl(mmodpat typepat membpat(formalspat) throws throwspat, C, R, X) ]]
→ [[ methconstrpat2dl(mmodpat typepat membpat(formalspat), C, R, X), throws2dl(throwspat, C, X) ]]

Figure 8. Rewriting for method patterns — constructor patterns are similar

[[ throws2dl([], C, M) ]] → [[ true (M) ]]

[[ throws2dl([! classnamepat, throwspat], C, M) ]] → [[ not(E : type ˆ(classnamepat2dl(classnamepat, C, E), throwsException(M, E))),
throws2dl(throwspat, C, M) ]]

[[ throws2dl([classnamepat, throwspat], C, M) ]] → [[ E : type ˆ(classnamepat2dl(classnamepat, C, E), throwsException(M, E)),
throws2dl(throwspat, C, M) ]]

Figure 9. Rewrite rules forthrows2dl

names. This has been a source of confusion in the AspectJ commu-
nity, and indeed theajc [4] and abc [1] compilers for AspectJ do
not implement the same rules. Furthermore, this is the causeof a
substantial bug in the reference AspectJ implementation [25].

To see how this issue arises, consider a name pattern, for def-
initeness saya∗..B. There are two possible interpretations of this
pattern. The first possibility is that this should range overfully qual-
ified names. In this case, classesa.B andaa.c.Bwould be matched,
but notd.a.B (we use the convention that lowercase identifiers de-
note packages).

Alternatively, the name pattern might denote any class thatcan
be referred to by a name of the forma∗..B from the aspect. That is,
in this view the normal Java name lookup rules are used to interpret
names. This matches any type matched in the previous way (any
type can be referred to by its fully qualified name), but may match
more types. For instance, the simple patternB would match any
classB in the same package as the aspect.

In fact, the semantics of AspectJ use either form of matching,
depending on context. The key is the presence or absence of the
wildcards∗ and.. in the pattern. If a wildcard appears anywhere in
the pattern, then the pattern should be interpreted as ranging over
fully qualified names, and no name lookup is performed. However,
if there are no wildcards in the pattern, then it is interpreted as a
Java name, and denotes whichever types (if any) can be referred to
by the given name from the context of the aspect. Finally, thename
pattern∗ (a single asterisk) is treated as a special case. This matches
any type, including anonymous types such as anonymous inner
classes, which otherwise would be matched by no name pattern.

We shall now give the semantics of type name patterns in more
detail.

Type patterns in AspectJ are built up from the following. A
simple name pattern, representing an identifier, is just a literal
possibly containing the wildcard∗. A general name pattern is a
sequence of simple name patterns, separated by either. or .., where
the latter is a wildcard denoting any sequence of Java identifiers and
full-stops beginning and ending with a full-stop. Given anyname

patternpat, bothpat andpat+ (representing any subtype ofpat) are
type name patterns, and type name patterns are closed under logical
connectives. Finally, given a type name patterntpat, tpat [] is a type
name pattern representing an array with element type matching tpat.

Type name patterns are translated using thetypepat2dl term
constructor. The top-level rules (excluding logical connectives)
are shown in Figure 10. The name pattern is translatedvia the
namepat2dl, and the appropriate type (exact match, subtype or ar-
ray type) is selected.

The namepat2dl rewrite context defines the semantics of name
patterns. As discussed above, the AspectJ semantics separates out
the cases of name patterns containing wildcards from exact name
patterns. This is achieved innamepat2dl(Figure 11) using an auxil-
iary testcontains−wildcard that checks the presence of wildcards in
a pattern. Note that thenamepat2dlpredicates match by name only,
and in particular can match either packages or types. The endresult
is constrained to a type intypepat2dl.

The semantics of simple name patterns and wildcard name
patterns are defined in Figure 12. Such a name pattern is matched
(including wildcards) to the fully qualified name of an element.

Finally, the rules for wildcard-free name patterns are shown in
Figure 13. These are rather more involved, reflecting the com-
plexity of name lookup in Java. Two predicates are defined:
exactnamepat2dlmatches a name pattern against type or package
names, whilepnamepat2dl matches package names only. In ac-
cordance with the Java specification, when a name is looked up
in a context where it is unknown whether a package or type is
denoted, the name should be interpreted as a type whenever pos-
sible, and only interpreted as a package if no type of that name
exists. Finally, name lookup for simple names is performed by the
simpleTypeLookuppredicate discussed earlier.

7. Experimental results
The Datalog queries we produce in the semantics are executable,
and so it is natural to ask whether that semantics can be used



[[ typepat2dl(namepat, C, T) ]] → [[ namepat2dl(namepat, C, T), type(T) ]]
[[ typepat2dl(namepat+, C, T) ]] → [[ T1 : type ˆ(namepat2dl(namepat, C, T1), hasSubtypeStar (T1, T))]]
[[ typepat2dl(typepat[], C, T) ]] → [[ T1 : type ˆ(typepat2dl(typepat, C, T1), arrayDecl (T, T1, )) ]]

Figure 10. Type Patterns: Subtypes and Array Types

[[ namepat2dl(∗, C, T) ]] → [[ true (T) ]]
[[ namepat2dl(namepat, C, T) ]] → [[ wcnamepat2dl(namepat, T) ]]

wherecontains−wildcard(namepat) ; fqname(namepat) 6=”∗”
[[ namepat2dl(namepat, C, T) ]] → [[ exactnamepat2dl(namepat, C, T) ]]

where not(contains−wildcard(namepat)); fqname(namepat) 6=”∗”

Figure 11. Name Patterns: Testing for Wildcards

[[ snamepat2dl(∗, S) ]] → [[ true (S) ]]
[[ snamepat2dl(snamepat, S) ]] → [[ N : name ˆ(hasName(S, N), regexpmatch(snamepat, N)) ]]

wheresnamepat6=”∗”

[[ wcnamepat2dl(snamepat, T) ]]→ [[ P : package ˆ (defaultPackage (P), hasChild(P, T),snamepat2dl(snamepat, T)) ]]
[[ wcnamepat2dl(namepat.snamepat, T)]]→ [[ E : packageOrType ˆ(wcnamepat2dl(namepat, E), hasChild(E, T),snamepat2dl(snamepat, T)) ]]
[[ wcnamepat2dl(namepat..snamepat, T)]] → [[ E : packageOrType ˆ(wcnamepat2dl(namepat, E), hasChildPlus(E, T),snamepat2dl(snamepat, T)) ]]

Figure 12. Name Patterns: Simple Name Patterns and Wildcards

[[ exactnamepat2dl(snamepat, C, T) ]] → [[
(simpleTypeLookup(C,snamepat, T));
(not(T1 : type ˆ( simpleTypeLookup(C,str, T1))), pnamepat2dl(snamepat, T)) ]]

[[ exactnamepat2dl(namepat.snamepat, C, T)]] → [[
Pot : packageOrType ˆ((exactnamepat2dl(namepat, C, Pot), type(T), hasChild(Pot, T), hasName(T,snamepat)) ;
(not(T1 : typeˆ(exactnamepat2dl(namepat, C, Pot), hasChild(Pot, T1), hasName(T1,snamepat))), pnamepat2dl(namepat.snamepat, T)))]]

[[ pnamepat2dl(snamepat, P) ]] → [[ package(P), hasName(P,snamepat), topLevelPackage(P)]]
[[ pnamepat2dl(namepat.snamepat, P)]] → [[ P1 : package ˆ (pnamepat2dl(namepat, P1), hasChild(P1,P), package(P), hasName(P,snamepat)) ]]

Figure 13. Name Patterns: Exact Name Patterns

directly as the basis of an AspectJ implementation. In this section,
we seek to determine whether that is at all feasible in practice,
by running queries that correspond to some realistic pointcuts on
sizable mainline programs.

There are a number of options for executing Datalog queries.
Perhaps the most obvious one is to capitalise on the fact thatDat-
alog is a subset of Prolog, so we could just use a Prolog inter-
preter. However, to stay true to the declarative semantics of Dat-
alog, such an interpreter must usetabled resolution, because oth-
erwise non-termination might occur. That consideration suggests
the use of XSB, the leading optimising, tabled implementation of
Prolog [38]. However, in a few preliminary experiments we found
that the queries corresponding to pointcuts can take several hours to
complete. Moreover, it took a considerable amount of optimisation
done by hand to reduce XSB run times to such a level. Clearly the
point of directly executing the semantics is lost if hand optimisation
is required.

We therefore decided to use CodeQuest [21], our own imple-
mentation of Datalog based on a relational database system.Code-
Quest first optimises Datalog rules to reduce the number of unnec-
essary computations (applying a specialised version of thewell-
knownmagic setstransformation). It then translates the optimised
Datalog queries into SQL to take the advantage of several decades
of research on RDBMS optimisations. For the measurements re-
ported below, we used Microsoft SQL Server Express 2005 as the
RDBMS backend of the CodeQuest system.

Figure 14. Experimental Setup

For each of the experiments, a customised version of theabc[5]
compiler collects the facts implied by the program’s structure,
which are used to populate CodeQuest’s primitive relations. The



Pointcut CodeQuest
WEKA1 4.68 s
WEKA2 5.91 s
WEKA3 5.24 s
JHOTDRAW1 11.36 s
JHOTDRAW2 7.83 s
JHOTDRAW3 7.53 s
REWEAVE1 9.61 s
REWEAVE2 9.62 s
REWEAVE3 13.29 s
REWEAVE4 17.45 s
REWEAVE5 7.50 s
JIGSAW1 36.93 s
JIGSAW2 31.34 s
JIGSAW3 31.03 s

Figure 16. Pointcut matching times with CodeQuest

database is then indexed in a straightforward manner, namely by
creating a separate index on each field of every table. Theabccom-
piler also collects information on the shadows in the program that
are matched by pointcuts, which is used to verify the correctness of
the result of CodeQuest’s evaluation of the Datalog pointcuts. The
overall architecture is shown in Figure 14.

The experiments themselves are run on four AspectJ software
projects of various sizes. WEKA [49] is a data mining tool written
in Java, consisting about 10KSLOC. It is instrumented with an as-
pect that checks for changes to an object’s hash code while itis in
a hash set. JHOTDRAW [18] is a popular open source Java drawing
program, with approximately 21KSLOC. It has been instrumented
with an aspect that checks for the safe use of Java enumerations,
similar to concurrent modification exception checks in Javacollec-
tions. REWEAVE is a set of diagnostic aspects applied to theabc
compiler itself, which has 51KSLOC. Finally, JIGSAW [42] is the
w3c’s leading-edge webserver, with approximately 101KSLOC,
and has been instrumented by an aspect that checks for the proper
sequence of resource locks. Figure 15 details the pointcutsin each
of the projects above that were used in the experiments. These are
representative of typical AspectJ usage.

Figure 16 summarises the results of the experiments, with the
matching time in CodeQuest for each of the pointcuts. It is inter-
esting to observe that the performance scales well with the project
size: from one project to the next, the size roughly doubles,and that
is reflected in query execution times. We should stress at this point
that CodeQuest is a research prototype, and it is easy to envisage
many optimisations that will improve performance.

Now that we have established that the pointcut matching times
are acceptable, it is natural to ask what penalty must be paid
for storing the program structure and the shadows in a relational
database, and for building indices on those primitive relations. We
compare the performance of matching in CodeQuest with that of
the industrial AspectJ compilerajc. CodeQuest matching times are
composed of two parts: the time it takes to populate and indexthe
facts into the database (PI), and the time to execute the aggregate
query for the project (AQ). The aggregate query for a each project
is the disjoint union of the Datalog equivalents of all of itspoint-
cuts. This is then compared to the total compile time for the project
in ajc. Figure 17 shows the results of this comparison.

The evaluation times of the aggregate queries are much lower
than the simple total of the individual pointcuts that comprise it due
to the large number of common terms in the Datalog equivalents of
those pointcuts. CodeQuest takes advantage of this during query
evaluation by computing the result of common terms only once.

The table also shows a ratio comparingajc’s total compile
time with that of a hypotheticalajc compiler that uses Datalog for

Project AJC

populate
+

index
(PI)

aggregate
query
(AQ)

Ratio

WEKA 5.49 s 7.79 s 9.15 s 4.09
JHOTDRAW 5.05 s 7.73 s 12.15 s 4.94
REWEAVE 19.89 s 9.94 s 26.58 s 2.84
JIGSAW 32.25 s 14.93 s 43.50 s 2.81

Figure 17. Comparison withajc

pointcut matching. The ratio itself is given by

AJC + PI + AQ

AJC

We compare the query evaluation time to the total compilation
time inajc as it is difficult to separate pointcut matching times in an
AspectJ compiler (as an example, name patterns can be evaluated
prior to matching pointcuts to shadows). The intent of this table
is to compare Datalog matching times with an actual industrial-
strength AspectJ compiler, and to show that the performancedegra-
dation will not be prohibitive if pointcut matching inajc were to be
replaced with Datalog in CodeQuest.

The results show that the matching times for Datalog queries
in CodeQuest compare favourably with the total compile timeof
theajc compiler: they do not exceed theajc compiler’s compilation
times by more than a factor of five. For a comparison,abc, which is
a research-oriented AspectJ compiler designed more for extensibil-
ity than speed, can be up to 30 times slower thanajc. Furthermore,
the gap does seem to narrow as the size of the project increases.

The times for loading the database are admittedly quite high.
An important property, however, is that this only needs to bedone
for each compilation unit separately, and thus when recompilation
occurs, we can incrementally update the relevant database facts. In
particular, library code would only be loaded once in the database.
Details of this process are described in [21].

In summary, the above experiments show that directly using our
semantics as a basis for an AspectJ compiler isfeasible. Whether
it is also possible to make it competitive with existing implemen-
tations remains to be seen. We believe that some penalty in com-
pile time may be acceptable: firstly, a direct implementation is eas-
ily kept in one-to-one correspondence with the semantics; but also,
Datalog is more expressive than the AspectJ pointcut language —
facilitating useful pointcuts that cannot be expressed in AspectJ.
We expound the latter point in the next section.

8. Directly expressing pointcuts in Datalog
Datalog, together with the primitive predicates describedabove, is
a richer language than the AspectJ pointcut language. It is possible
to write recursive pointcuts; bind types, members, and shadows;
and directly query the type and lexical hierarchies of a program.

As a result, it can be beneficial to write pointcuts directly in
Datalog. The richness of the language is useful because it allows a
programmer to express pointcuts in terms of semantic, rather than
syntactic, criteria — AspectJ pointcuts tend to fall into the second
category. The problems with syntactic criteria, and the uses of logic
languages in alleviating them, have been discussed in the literature
before [16, 20, 29]. However, they suggest using a computationally
complete logic language.

Related work has established the benefits of logic languages
for expressing pointcuts (cf. Section 9). In this section, we aim to
demonstrate that despite the restrictions of safe Datalog to enable
strong termination guarantees, many interesting examplescan still
be expressed.



Name Pointcut
WEKA1 ! within (RealHashtableNativeAspect) &&call(∗ Map.put(..))

WEKA2 ! within (RealHashtableNativeAspect) &&
(call (∗ Map.get(..)) || call (∗ Map.remove(..)) || call (∗ Map.containsKey(..)))

WEKA3 ! within (RealHashtableNativeAspect) &&call(∗ Map.remove(Object))

JHOTDRAW1
call (∗ Vector . add∗(..)) || call (∗ Vector . clear ()) || call (∗ Vector . insertElementAt (..)) ||

call (∗ Vector . remove∗(..)) || call (∗ Vector . retainAll (..)) || call (∗ Vector . set∗(..))
JHOTDRAW2 call (Object Enumeration.nextElement())
JHOTDRAW3 call (Enumeration+.new(..))

REWEAVE1 set(∗ ∗) && !( within (Aspect)|| within ( IdentityPair ) ||
within (org. aspectj ..∗) || within (org. aspectbench..∗))

REWEAVE2 get(∗ ∗) && !( within (Aspect)|| within ( IdentityPair ) ||
within (org. aspectj ..∗) || within (org. aspectbench..∗))

REWEAVE3 execution(∗ abc. weaving.weaver.Weaver.resetForReweaving())

REWEAVE4
execution(∗ abc. weaving.weaver.Weaver.weaveAdvice()) &&

!( within (Aspect) || within ( IdentityPair ) ||
within (org. aspectj ..∗) || within (org. aspectbench..∗))

REWEAVE5
adviceexecution() &&

within (Aspect) || within ( IdentityPair ) ||
within (org. aspectj ..∗) || within (org. aspectbench..∗)

JIGSAW1 execution(∗ ∗(..)) && ! within (CflowDepth|| LockUpdater|| LockChecker)
JIGSAW2 call (∗ org. w3c.tools . resources . ResourceReference+.lock())
JIGSAW3 call (∗ org. w3c.tools . resources . ResourceReference+.unlock())

Figure 15. Pointcuts used in experiments

1 aspect DisplayUpdating{
2 pointcut move():
3 call (void FigureElement.moveBy(int ,int )) ||
4 call (void Point . setX(int )) ||
5 call (void Point . setY(int )) ||
6 call (void Line. setP1(Point )) ||
7 call (void Line. setP2(Point ));
8

9 after () returning : move() && !cflowbelow(move()){
10 Display. needsRepaint();
11 }
12 }

Figure 18. A famous aspect for decoupling model and view

Figure 18 shows a well-known aspect for updating the view of
an application structured using the Model-View-Controller modu-
larisation. Themovepointcut defined on Lines 2–7 is syntactic in
nature: it enumerates all the methods that update the state of an el-
ement in the application-model. A more direct way of expressing
the intendedset of methods is:

All methods that may write to a field that could then be read
in the repainting routineDisplay. repaint ().

Translating this straight into Datalog yields:

1 needsDisplayUpdate(M)←
2 typeDecl(DC,’Display’, , ),
3 methodDecl(Repaint,’repaint ’ , DC,, ),
4 mayRead(Repaint,F),
5 mayWrite(M,F).

Of course, we must now define exactly what we mean bymayRead
andmayWrite. It is not enough to just consider what fields are read
(or written) in one particular method — we must also considerany
method that could be called transitively from it. When computing
this, we shall also keep in mind the fact that methods can be over-
ridden. The predicatemayCall, which contains caller-callee pairs
and takes into account overriding, is defined as follows.

1 mayCall(M,M2)←
2 containsShadow(M,Call),

3 callShadow(Call , M3),
4 overrides (M2,M3).

1 containsShadow(M,S)←
2 executionShadow(S2,M),
3 isWithinShadow(S,S2).

We are now able to definemayReadand mayWrite in terms of
mayCallStar.

1 mayRead(M,F)←
2 mayCallStar(M,M2),
3 containsShadow(M2,S),
4 getShadow(S,F,).
5

6 mayWrite(M,F)←
7 mayCallStar(M,M2),
8 containsShadow(M2,S),
9 setShadow(S,F,).

Just as in examples in previous sections, we use the convention
that, for any predicatepred, we writepredStarto denote its reflexive
transitive closure.

Finally, it only remains to specify theoverridespredicate. It is
well-known how to do that in a logic language, as demonstrated
for instance in JQuery [35]. These definitions carry over to Datalog
almost unchanged.

A common complaint about aspects is the lack of clear in-
terfaces between modules. To a large extent this is a language-
independent issue, and more a matter of software design [19]. It
appears, however, that using semantic pointcuts such as those sug-
gested above helps to decouple aspects from changeable implemen-
tation details.

9. Related Work
We have already made comprehensive references to previous work,
so this section provides just a roadmap of the main highlights. The
related work for this paper falls into four main categories:AOP
semantics, logic pointcuts, logic languages for static analysis, and
code queries.



AOP semanticsIn this paper, we have taken our cue from the
approach of Walkeret al [43]. The distinguishing characteristic
of that semantics is the use of a core language with labelled
instrumentation points. Arguably the semantics of Wandet al.
[45] is more in line with the spirit of aspect-orientation, as
all matching of events happens at runtime, thus foregoing that
intermediate level. The connection between the two styles of
semantics is given by partial evaluation: partially evaluating
Wand’s definitional interpreter yields a compiler in the style of
Walker [34]. It would have been possible for us to make [45]
our starting point, but as our focus are queries over the static
program structure, it would have been a detour.

Logic pointcuts There is a large amount of previous works, in-
cluding implemented systems, that propose a logic pointcutlan-
guage in lieu of the patterns in AspectJ, notably [20]. In our
opinion, the use of a Turing complete pointcut language has all
the pitfalls associated with undisciplined meta-programming,
for instance the potential of non-termination at compile time.
Furthermorejust using a logic language is syntactically very
cumbersome for simple pointcuts that merely refer to method
signatures. Finally, our experiments show that the use of Prolog
is simply too inefficient in practice.

Static analysisResearchers in static analysis have long acknowl-
edged that logic programming in general, and Datalog in par-
ticular, is a suitable notation for expressing static analyses; the
work by Reps [37] is an early example. More recently Dawson
et al revived that line of work, in [15]. Monica Lam and her stu-
dents have continued that tradition, adding the new twist ofan
implementation via binary decision diagrams [31, 48]. We feel
much is to be gained from combining those insights (mostly di-
rected at traditional applications of static analysis), and re-using
them in the context of aspect-oriented programming.

Code queriesThere is a rich and vast literature on ‘code queries’
in the software maintenance community, which makes connec-
tions to logic programming. It is in that context that the idea of
storing a program in relational form originated. It would take us
too far astray to review this field here; the interested reader is
referred to a companion paper [21] for a comprehensive discus-
sion of how that work influenced the design and implementation
of our CodeQuest system.

10. Conclusions
We have presented the first rigorous semantics of a practicalpoint-
cut language, building on the pioneering work of Walkeret al.[43].
In doing so, we have sorted out numerous subtle issues in the se-
mantics of AspectJ, in particular regarding the matching ofname
patterns.

Of independent interest is the framework that we chose for this
semantics, namely a translation to safe Datalog. Safe Datalog is a
pure logic programming language, and it is not Turing complete as
all queries are guaranteed to terminate. At the outset of this project
it was not clear to us that the whole AspectJ pointcut language can
be expressed in safe Datalog. The fact that this is indeed possible
provides strong evidence that safe Datalog is a suitable intermediate
form for pointcuts in aspect-oriented programming.

The translation took a pleasingly simple form, namely that of
conditional rewrite rules. We believe that this makes our semantics
accessible to a wide audience, including working AspectJ develop-
ers, as it requires no exotic mathematical machinery.

The semantics are executable, and our experiments provide
strong evidence that a direct implementation is feasible. At present
that still entails a considerable increase in compile time over an
industrial-strength AspectJ compiler, but bearing in mindthat we

used a straightforward research prototype to evaluate the Datalog
queries, we believe substantial further improvements are within
reach. The additional expressive power that Datalog affords, plus
the fact that the semanticsis the implementation, may well be worth
paying a penalty in compile time.

Finally, we have shown through an example that it is very useful
for developers to have the option of writing pointcuts directly
in Datalog. Clearly one would not wish to writeall pointcuts in
Datalog, as often AspectJ patterns are elegant and concise.Our
semantics as a simple set of rewrite rules offers the possibility of
a hybrid approach, where the two notations can be freely mixed
as desired. Indeed, it is easy to envisage a system where advanced
users can define new pointcuts of their own, via a set of rewrite
rules that reduce them to existing primitives, much in the style
of other extensible query languages [12]. Dean Wampler and Ron
Bodkin have argued for a ‘long form’ of pointcuts in AspectJ,and
our semantics provides precisely that [8, 44].
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