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ABSTRACT 
The task of developing, tuning, and debugging compiler 
optimizations is a difficult one which can be facilitated by 
software visualization.  There are many characteristics of the code 
which must be considered when studying the kinds of 
optimizations which can be performed.  Both static data collected 
at compile-time and dynamic runtime data can reveal 
opportunities for optimization and affect code transformations.  
Visualization of such complex systems must include as much 
information as possible, and accommodate the different sources 
from which this information is acquired. 

This paper presents a visualization framework designed to address 
these issues.  The framework is based on a new, extensible 
language called JIL which provides a common format for 
encapsulating intermediate representations and associating them 
with compile-time and runtime data.  Custom visualization 
interfaces can then combine JIL data from separate tools, 
exposing both static and dynamic characteristics of the underlying 
code. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – compilers, 
optimization. 

General Terms 
Performance, Design, Experimentation, Languages. 

Keywords 
Combining static and dynamic data, visualization, intermediate 
languages, profiling, software understanding. 

1. INTRODUCTION 
Software visualization is a well-explored research area which has 
been applied to several aspects of computing [7].  Visualization 
has been shown to improve efficiency and productivity, especially 
in complex systems which can span the work of several 
programmers over extended periods of time [1].  The object-
oriented languages found in such systems can easily obscure the 
original solution they were used to implement.  With such features 
as polymorphism and dynamic typing, it is important to consider 
both the compile-time and runtime characteristics of these 
languages during visualization [10]. 
The framework presented in this paper permits the visualization of 
intermediate representations of Java used by an optimizing 
compiler.  In this environment, the scope of the visualization 
covers both static information about the software (Java code) and 

dynamic information about the execution of the program (Java 
Virtual Machine).  This data can be extracted from different 
intermediate languages and other representations, as well as 
sources of runtime data. 
Specifically, we present the following: 

•  A common intermediate language called JIL, capable of 
encapsulating Java intermediate representations and 
associating both static and dynamic data with individual code 
elements. 

•  Extensions to existing software tools which allow static 
characteristics and analysis results, as well as dynamic 
runtime data, to be exported as JIL documents. 

•  A new visualization implementation using JIL as a data 
source, allowing data from the multiple tools to be combined 
in a customizable interface. 

2. VISUALIZATION FRAMEWORK 
In Figure 1 we present a visualization framework which is 
designed to be customizable and scalable.  The foundation of this 
system is the new Java Intermediate Language (JIL) which can 
encapsulate existing intermediate languages, including both static 
and dynamic program characteristics obscured within the 
compiled code and the execution platform (a). In the following 
sections we discuss the design of this language and present two 
tools (b) which provide suitable sources of both static and 
dynamic characteristics of the code (c).  We then present an 
example visualization interface which combines these 
characteristics with minimal implementation by using JIL as a 
data source (d).  Finally, we discuss some of the data management 
details and present our conclusions. 
 

 
 

Figure 1. Overview of the visualization framework. 
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2.1 Intermediate Language Design 
Intermediate languages are used by optimizing compilers to give 
the separate modules a representation to work with which is 
independent of the code being generated.  This encourages 
modularity throughout the compiler, and allows the code 
generator to be retargeted towards another platform without 
having to re-implement any analyses or optimizations.  Java itself 
has been described as an ideal intermediate language, providing 
strong types and other language features which help debug a new 
language compiler [6].  However, when developing optimizations, 
transformations and analyses typically operate on a lower-level 
language which is closer to the target representation.  Three-
address code and other kinds of intermediate languages can 
represent control flow graphs and reveal optimizations which 
would be obscured or much more complicated in a higher-level or 
stack-based language.  These lower-level intermediate languages 
are typically designed for a single process or operation, creating 
variations which complicate the development of supporting tools 
and visualizers. 

2.1.1 Java Intermediate Language 
In order to combine the information which can be associated with 
these low-level languages, a common format was required which 
could act as metadata for code.  We designed the Java 
Intermediate Language (JIL) for this purpose of encapsulating 
intermediate representations of Java source code.  Although 
strictly defined, JIL remains extensible and able to support 
extensions which might not have been envisioned yet.  Its use 
differs from traditional intermediate languages in that its content 
is independent of the tools which use it.  JIL is not designed to be 
manipulated or decompiled into bytecode, but provides a bridge 
between visualization interfaces and tools which use traditional 
intermediate languages.  We only describe the relevant highlights 
of JIL in this document, but a complete specification is available 
separately as a technical report [5]. 
JIL is based on the Extensible Markup Language (XML) and 
benefits from many of the features of this well established format, 
including a growing number of tools and APIs as well as support 
coming from a large community of developers [2].  Like XML, 
JIL documents are portable across platforms and networks, with 
native support in most modern web servers and clients.  
Compatibility is achieved by defining language semantics and 
restrictions using document type definitions (DTDs).  DTDs are 
simple to extend, and provide a strict method of enforcing 
compatibility between JIL tools; applications which use this 
standard XML schema for validating their input can identify 
which extensions to expect from a JIL document. 
JIL documents are composed of a hierarchy of nested tags which 
describe the layout of a Java class.  This includes enumerations of 
the fields and methods of the class, including elements which are 
only found in lower-level intermediate languages, such as labels.  
This basic skeleton of code elements provides a framework upon 
which language extensions can be added.  These extensions can 
include both static and dynamic characteristics of the code, and 
allow such information to be associated directly with each code 
element. 
In order to demonstrate the kinds of extensions supported by JIL, 
we consider virtual method polymorphism throughout this paper 
as a characteristic of the code with both static and dynamic 

properties. Figure 2a shows a fragment of Java code where 
polymorphism can be explored at compile-time by analyzing the 
potential targets of call sites, while the runtime behavior of these 
sites can reveal which targets are actually being invoked.  The 
following sections continue this example and describe two tools 
capable of expressing the results of such analyses as JIL 
extensions. 

2.2 Static Code Elements 
All JIL documents are required to contain some basic elements of 
a Java class file.  These elements make up the fundamental 
structure of the document, to which annotations are added.  Most 
common code annotations are analysis results which can be 
calculated by inspecting bytecode or intermediate representations.  
These are static characteristics of the code which are known once 
the Java source is compiled. 

2.2.1 Generating static data 
The top portion of Figure 1b shows a code tool capable of 
performing static analyses on Java bytecode being passed a 
compiled class file.  These results are then exported as extensions 
in the JIL documents it produces.  These extensions are defined in 
an accompanying DTD, allowing tools to validate and identify the 
JIL documents being produced.  By associating extensions with 
the tools that generate them, several tools can annotate the same 
code elements independently.  Redundant or related extensions 
may also be compared or combined by tools which support them. 
As part of the framework presented in this paper, we added 
support for the output of JIL to SOOT, an existing optimization 
framework which uses intermediate languages to perform static 
analysis and transformations on Java bytecode [11] [12] [13].  
Most of these analyses are performed on Jimple, an intermediate 
language where some basic optimizations can be applied before 
generating bytecode [14].  For example, analysis of which 
variables are live at each statement can be used to perform copy 
propagation and simple aggregation, where unneeded variable 
definitions can be collapsed.  With the addition of JIL as an 
output format and the associated DTD specifying the supported 
extensions, SOOT provides an ideal source of static data. 
Continuing our running example of polymorphism as a code 
characteristic, SOOT supports several types of static analyses 
which can associate call sites with potential targets.  Call sites 
within the JIL documents produced by SOOT can be easily 
identified as monomorphic or potentially polymorphic by 
extending each site with these analysis results.  Figure 2b shows a 
simplified example of JIL describing a call site extended with the 
results of class hierarchy (CHA) [4] and variable type (VTA) 
analysis [8]. 

2.3 Dynamic Code Elements 
Data and code characteristics discovered at runtime provide 
insight when studying the optimization of object-oriented 
programs.  Languages such as Java include many expensive 
features, such as  polymorphism and garbage collection, which 
can drastically affect performance.  The most effective 
optimizations target the bytecodes which are generated by Java 
compilers to provide these expensive features.  However, these 
optimizations can not always be implemented based on static 
information alone.  



// myclass.java
...
myInterface myObject;
if( branch1 )
myObject = new A();

else if( branch2 )
myObject = new B();

else
myObject = new C();

myObject.myMethod();
...

<!-- JIL: STEP output for myclass -->
...
<statement>
<jimple>interfaceInvoke 48.myInterface:

void MyMethod()</jimple>
<step_callsite method=”myMethod”>
<targets count=”2”>
<target class=”A” invokecount=”55”/>
<target class=”B” invokecount=”45”/>
</targets>
</step_callsite>
...
</statement>
...

<!-- JIL: SOOT output of myclass -->
...
<statement>
<jimple>interfaceInvoke 48.myInterface:

void MyMethod()</jimple>
<soot_invoketargets method=”myMethod”>
<targets analysis=”CHA” count=”3”>
<target class=”A”/>
<target class=”B”/>
<target class=”C”/>
</targets>
<targets analysis=”VTA” count=”2”>
<target class=”A”/>
<target class=”B”/>
</targets>
</soot_invoketargets>
...
</statement>
...

c) 

b) 

a) 

d) 

 

Figure 2. a) A simple polymorphic Java fragment with an 
interface invoke; b) A JIL fragment produced by SOOT 
indicating the possible targets of the call site; c) A JIL 
fragment produced by a STEP profiling agent indicating the 
actual number of runtime invokes; d) A slice from the 
JIMPLEX interface focused on the call site, where the user 
can browse the extensions from b) and c). 

2.3.1 Collecting dynamic data 
The bottom portion of Figure 1b shows runtime data being 
collected by a profiling tool which supports JIL output.  
Annotating JIL with dynamic data works much like with static 
data.  In order to manage both static and dynamic extensions, each 
JIL document contains a history of all the tools and operations 
which have authored it.  This allows dynamic data from separate 
executions of the same tool to coexist in a single document.   
Tools which support JIL uniquely identify each execution with an 
entry in the document’s history, typically including the profiling 
or benchmarking agent which was used, a timestamp, and 
information about the execution environment.  This allows JIL 
tools to compare and process multiple runtime data sets. 
In order to collect dynamic data within our framework we 
extended a tool called STEP, a customizable profiling framework 
for evaluating the performance and behavior of object-oriented 
applications [3].  It helps developers build custom profiling agents 
to collect data on the runtime behavior of programs; this allows 
the rapid development of a variety of profilers which apply to 
both standard and unconventional profiling tasks. 
STEP provides its own event-based language and accompanying 
compilers.  Profiling agents define events using this language and 
pass them into an event pipe where the data is compressed and 
prepared for consumption.  We provided a backend to this event 
pipe which generates JIL documents.  The code elements within 
these documents are annotated with the runtime data collected by 
the profiling agents.  The JIL generator is an easily implemented 
example of an event pipe consumer, and the extensible nature of 
the profiling framework is well suited to preserve its output  in an 
extensible document format. 
We can now revisit our polymorphism example using STEP to 
generate JIL dynamic data.  The JIL fragment at the bottom of 
Figure 2c demonstrates how STEP associates actual runtime 
invocation targets to a particular call site.  Although our static 
class hierarchy analysis (CHA) indicated that this call site had 
three potential targets, according to the data collected from this 
execution run only two targets were invoked.  Runtime data must 
include some extra information describing the execution 
environment and any other details that are required to uniquely 
identify the data associated with it.  The separation and 
management of dynamic data is described in section 3. 

2.4 Visualization of Static and Dynamic Data 
We have demonstrated how JIL documents can combine static and 
dynamic data, and how existing tools can be extended to produce 
JIL documents as shown in Figure 1c.  These documents provide 
versatile data sources which are easily merged and accessed, 
facilitating the creation of a variety of visualization interfaces. 

2.4.1 JIMPLEX 
Developers working with SOOT and Jimple required a tool which 
would allow them to develop and debug optimizations.  Once we 
had extended SOOT and STEP to produce JIL documents, we 
developed a visualization implementation called JIMPLEX with 
the goal of providing a customizable visualization framework for 
browsing Jimple.  JIMPLEX is an XML application which uses 
XSLT to stylize and transform JIL documents, delivering 
visualization interfaces as HTML to common web browsers.  
XML transformations can be performed on the fly in modern 



browsers, allowing the interface to be customized without having 
to recompile code or learn a complex API.  These technologies 
also encourage collaboration, allowing both the data sources and 
the visualization interface to be shared between platforms and 
devices across the Internet.   
By using the JIL documents produced by SOOT and STEP as data 
sources (seen in Figures 2b and 2c), JIMPLEX can browse Jimple 
annotated with data from both tools.  Figure 2d is a screenshot of 
the JIMPLEX interface, where the user is focused on the Jimple 

statement containing the polymorphic call site.  By comparing the 
results of static analyses to the actual runtime behavior we can 
verify that the variable type analysis (VTA) performed by SOOT 
was accurate in eliminating the potential target from class C, 
based on the last profiling run. 
Figure 3 is a screenshot of JIMPLEX visualizing a Java class in a 
web browser.  Two JIL documents are used as data sources to 
dynamically generate the interface.  Static information, such as the 
relative number of statements per method or label is derived from 

Figure 3. Screenshot of JIMPLEX browsing an intermediate representation of a Java class; the interface 
is generated dynamically from separate JIL data sources.  Enumerations of the methods and fields of the 
class include runtime data, such as method invokes and field accesses.  The statement listings for each 
method expose static analysis results to the user, such as variable liveness and flow information. 



the JIL document produced by SOOT.  The runtime data, such as 
the cumulative number of method invokes and field accesses, is 
extracted from another document produced by a STEP profiling 
agent.  By exposing both kinds of data in the same interface the 
user can identify possible optimization targets, such as the 
relatively small method isInteger, which was executed the most 
frequently. 

3. MANAGING JIL DOCUMENTS 
The framework presented here encourages interoperability 
between code tools, regardless of their implementation or 
supported languages.  Any number of tools can contribute to a JIL 
document, allowing collaboration and modularity between tools 
which would normally be difficult to achieve.  Adding support to 
existing tools requires very little implementation, and many APIs 
exist which can already validate, parse, and generate compliant 
JIL.  The following sections discuss the non-trivial task of 
providing this kind of interoperability in more detail. 

3.1 Document Structure 
JIL documents use the nesting structure of XML to represent the 
hierarchy of code elements in a Java class.  The current JIL 
definition requires that documents contain a base structure 
consisting of several required elements.  These describe the basic 
code elements which all classes contain, such as enumerations of 
fields and methods.  By nesting elements, JIL can contain optional 
extensions to these base elements which will not break the 
underlying structure of the document when removed.  This makes 
document extensions easier to manage, since they can be swapped 
in or out, and new extensions can be introduced while maintaining 
backwards compatibility with previous versions of the same 
document. 
JIL documents achieve this kind of manageability by strictly 
defining the grammar of their contents and self-describing any 
included extensions.  A DTD is used to define the restrictions on 
which elements and attributes can and must be included.  This 
DTD can also be extended with references to extension 
definitions, allowing the base JIL grammar to evolve 
independently of any extensions.  Definitions are also 
independently versioned, so that validation can indicate which 
generation of JIL to expect or which extensions are available.  
Following the trend of other XML technologies, DTDs can be 
referenced locally or across the internet during validation. 

3.2 Merging 
In some cases, an entire package of JIL documents might describe 
a class to be visualized.  A single class could also be represented 
as separate JIL documents, and then later combined during 
processing in order to improve performance or manageability.  
This section describes the different types of merging which are 
possible when combining data from multiple JIL documents.   
The most straightforward merging involves JIL documents which 
represent different classes; in this case there is no merging 
required.  Data in these documents does not intersect or conflict 
since it is referring to an entirely separate class.  Tools that want 
to browse a complete package or compare the data collected on 
separate classes can load each document and process them 
independently.  There are no notable caveats in this case, and the 
details of how to handle each document is left up to the 
implementation. 

When a tool merges JIL documents which refer to the same class, 
it can advantage of the object-oriented document model.  Such 
tools typically treat these documents as a single entity describing a 
Java class.  Each document’s extensions and data can then be 
associated with this common entity, and their interactions are left 
up to the implementation.  A simple union of all the data can be 
performed which presents the user with a single class 
representation which includes all the extensions from each 
document.  This is a common case when a tool is passed JIL 
documents from separate sources, each containing different 
extensions on the same class.  These extensions can be combined 
when loaded by the tool in order to hide their logical separation 
from the user.  This can be convenient when visualizing multiple 
documents from different remote sources, where their physical 
separation becomes more of a convenience.  For example, if one 
tool is still being developed and debugged, its extensions can be 
kept separate from those generated by other more stable tools.  
The ability to separate extensions in this way is also convenient 
for research groups working on different extensions independently 
across the Internet. 
In some cases tools can generate document extensions which 
intersect, meaning they describe the same characteristics of the 
code with different empirical data.  Such data is typically 
collected at runtime by profiling or benchmark tools.  Visualizers 
can display averages and other calculations by identifying and 
processing this intersecting data.  This process requires some 
basic algorithms used by the visualizer to decide how to combine 
the data and present the user with code characteristics of interest.   
The visualization framework presented in this paper separates the 
interface from the data.  An open data representation allows 
custom interfaces to define how the user visualizes intersecting 
data.  The format and structure of JIL is designed to give 
interfaces more flexibility when deciding how to interpret the 
data.  Simple interfaces can allow basic filtering of datasets where 
the user can browse the evolution of the code’s performance, 
while complex interfaces might use statistical operations and 
graphics in order to provide a more comprehensive representation.  
JIL tools which can offer some insight into the interpretation of 
multiple JIL documents can export any data they produce as 
additional JIL extensions.  For example, given a JIL document 
describing the local variables which are live at each statement, 
another tool could interpret this data and export an additional JIL 
document containing lists of variables which are unused and 
could be eliminated in each method.  By chaining the processing 
and interpretation of JIL documents, visualizations can become 
more complex and cover a larger scope of code characteristics.  
This also allows a many-to-one relationship between code tools 
and visualizers. 
The process of merging JIL document extensions is not trivial, but 
is facilitated by the wide array of libraries and APIs which can 
process and parse XML.  Many basic combinatory operations are 
supported by basic interface languages such as XSLT and PHP.  
Such interpreted languages can allow quick prototyping of new 
and experimental visualizations.  By using a scalable data format, 
JIL tools can process as many documents or extensions as 
required by the visualization.  Most APIs also support the loading 
of documents using the well established HTTP protocol for 
network transmission.  This encourages visualizers to support the 
visualization of remote JIL documents, allowing collaboration 



between tools which might exist on different machines or 
networks. 

3.3 Versioning 
JIL documents are unambiguous descriptions of Java classes, 
allowing tools to construct a hierarchical structure of code 
elements.  Document type definitions allow the format of these 
elements to be recognized and validated using existing XML 
parsers.  DTDs can be referenced using a Uniform Resource 
Locator (URL), allowing JIL tools to provide a unique 
specification for the JIL they support online.  Versioning of DTDs 
allows tools to identify documents based on different versions of 
JIL.  Extensions are versioned independently of each other, 
allowing JIL documents to be formed from any combination of 
supported extensions. 
Each JIL document contains a history of contributors.  This 
history is a list of tools with attributes which uniquely identify a 
set of tags within the document.  A JIL tool uses the document 
history to describe the operation or command it performed when 
generating the tags in the document.  Version information is 
usually associated with a history element, which indirectly 
represents the output of a particular version of a tool.  This allows 
code elements and extensions to be traced back to a specific tool, 
and then separated by a visualizer when parsing the document.  
By maintaining this versioned history within each JIL document, 
it allows tools to manage and separate both supported and 
unsupported extensions.  

4. CONCLUSIONS 
We have presented an open framework for developing 
visualization and software understanding interfaces.  The key 
features of the framework allow existing and future tools to 
contribute both static and dynamic code elements to these 
visualizations, allowing interfaces to be developed based on the 
information the user wants to analyze rather than what 
information is immediately available.  Collaboration and 
interoperability are facilitated by using an extensible and portable 
document format for persisting and separating data. 
This framework has been applied to both a static analysis and 
profiling tool in order to combine the data they provide into a 
single customizable visualization interface.  With the addition of 
JIL support, these tools have benefited from the addition of a 
visualization backend and the ability to export and preserve the 
code characteristics they can extract.  The visualization interface 
presented in this paper has demonstrated the interoperability and 
customization that is possible when using JIL as a data source, as 
well as the usefulness of exposing both static and dynamic data to 
the user. 

4.1 Current Progress 
Current visualization tools are based on the JIL specification 1.0 
available online as a Document Type Definition at: 
http://www.sable.mcgill.ca/jil.  The JIMPLEX visualization 
framework is also available at this URL as a package of client and 
server-side scripts to provide visualization interfaces supported by 
common web browsers.  The current release of SOOT, which 
supports JIL as an output format, is available at: 
http://www.sable.mcgill.ca/soot. 

4.2 Future Work 
As an open framework, there are many different areas for future 
work.  The JIL specification itself is in its infancy, and although 
only basic extensions are included, the specification is designed to 
be extended based on the tools that support it.  Current support is 
limited to SOOT and STEP, but any tool which can provide some 
insight into software understanding can extend the JIL definition 
and generate JIL data.  Both static and dynamic extensions are 
easily specified by DTDs or another form of XML schema.  When 
adding support to a tool for generating or modifying JIL 
documents with data extensions, supplying a DTD allows other 
tools to validate and recognize those extensions. 
Let us consider a user who wants to inspect some generated code 
in relation to its benchmarking data.  They should first decide 
what code elements would be associated with their benchmarking 
results, such as extending individual methods with timing 
information.  These extensions should be defined in a DTD, and 
support for JIL should be added to their benchmarking suite using 
a popular XML API in their favorite programming language.  The 
extension DTD should then be used by a visualization interface to 
validate JIL documents containing these dynamic extensions.  The 
visualizer could present the user with statistical information based 
on the benchmarking data recorded in the JIL documents.  Future 
improvements to the code generator could then be evaluated by 
comparing successive JIL documents containing the 
benchmarking extensions. 
Visualization is the current focus of this framework, however it is 
only one example of an application for JIL.  Future use of JIL 
could target any application where metadata is associated with 
code.  A JIL-aware Integrated Development Environment (IDE) 
might remind the user about methods which are called frequently 
or suggest the most effective strategy to modularize the code.  
Software development rarely involves the inspection of static 
analyses beyond compiler errors, and dynamic information is 
typically not available until changes to the code may be too costly.  
Much effort is spent debugging software during development, and 
most developers target a single problem or area of the code when 
debugging.  A debugger which supported JIL could preserve such 
information with the code allowing the developer to reference this 
data without having to execute another costly debugging run.  By 
combining static and dynamic data into an extensible document 
format, tools can provide a developer with information and insight 
normally obscured by the code. 
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