
Combining Static and Dynamic Data in Code Visualization

David Eng

Sable Research Group
McGill University, Montreal

flynn@sable.mcgill.ca

ABSTRACT
The task of developing, tuning, and debugging compiler
optimizations is a difficult one which can be facilitated by
software visualization. There are many characteristics of the code
which must be considered when studying the kinds of
optimizations which can be performed. Both static data collected
at compile-time and dynamic runtime data can reveal
opportunities for optimization and affect code transformations.
Visualization of such complex systems must include as much
information as possible, and accommodate the different sources
from which this information is acquired.

This paper presents a visualization framework designed to address
these issues. The framework is based on a new, extensible
language called JIL which provides a common format for
encapsulating intermediate representations and associating them
with compile-time and runtime data. Custom visualization
interfaces can then combine JIL data from separate tools,
exposing both static and dynamic characteristics of the underlying
code.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – compilers,
optimization.

General Terms
Performance, Design, Experimentation, Languages.

Keywords
Combining static and dynamic data, visualization, intermediate
languages, profiling, software understanding.

1. INTRODUCTION
Software visualization is a well-explored research area which has
been applied to several aspects of computing [7]. Visualization
has been shown to improve efficiency and productivity, especially
in complex systems which can span the work of several
programmers over extended periods of time [1]. The object-
oriented languages found in such systems can easily obscure the
original solution they were used to implement. With such features
as polymorphism and dynamic typing, it is important to consider
both the compile-time and runtime characteristics of these
languages during visualization [10].
The framework presented in this paper permits the visualization of
intermediate representations of Java used by an optimizing
compiler. In this environment, the scope of the visualization
covers both static information about the software (Java code) and

dynamic information about the execution of the program (Java
Virtual Machine). This data can be extracted from different
intermediate languages and other representations, as well as
sources of runtime data.
Specifically, we present the following:

• A common intermediate language called JIL, capable of
encapsulating Java intermediate representations and
associating both static and dynamic data with individual code
elements.

• Extensions to existing software tools which allow static
characteristics and analysis results, as well as dynamic
runtime data, to be exported as JIL documents.

• A new visualization implementation using JIL as a data
source, allowing data from the multiple tools to be combined
in a customizable interface.

2. VISUALIZATION FRAMEWORK
In Figure 1 we present a visualization framework which is
designed to be customizable and scalable. The foundation of this
system is the new Java Intermediate Language (JIL) which can
encapsulate existing intermediate languages, including both static
and dynamic program characteristics obscured within the
compiled code and the execution platform (a). In the following
sections we discuss the design of this language and present two
tools (b) which provide suitable sources of both static and
dynamic characteristics of the code (c). We then present an
example visualization interface which combines these
characteristics with minimal implementation by using JIL as a
data source (d). Finally, we discuss some of the data management
details and present our conclusions.

Figure 1. Overview of the visualization framework.

Java class files

MyClass.class

 JVM/JVMPI
(execution

profile)

Tools with JIL
support

Visualizers with JIL
support JIL documents

SOOT

STEP

static data
(JIL)

dynamic data
(JIL)

JIMPLEX
(XSL/HTML)

MyVisualizer
(my language)

DTD

DTD

(a) (b) (c) (d)

2.1 Intermediate Language Design
Intermediate languages are used by optimizing compilers to give
the separate modules a representation to work with which is
independent of the code being generated. This encourages
modularity throughout the compiler, and allows the code
generator to be retargeted towards another platform without
having to re-implement any analyses or optimizations. Java itself
has been described as an ideal intermediate language, providing
strong types and other language features which help debug a new
language compiler [6]. However, when developing optimizations,
transformations and analyses typically operate on a lower-level
language which is closer to the target representation. Three-
address code and other kinds of intermediate languages can
represent control flow graphs and reveal optimizations which
would be obscured or much more complicated in a higher-level or
stack-based language. These lower-level intermediate languages
are typically designed for a single process or operation, creating
variations which complicate the development of supporting tools
and visualizers.

2.1.1 Java Intermediate Language
In order to combine the information which can be associated with
these low-level languages, a common format was required which
could act as metadata for code. We designed the Java
Intermediate Language (JIL) for this purpose of encapsulating
intermediate representations of Java source code. Although
strictly defined, JIL remains extensible and able to support
extensions which might not have been envisioned yet. Its use
differs from traditional intermediate languages in that its content
is independent of the tools which use it. JIL is not designed to be
manipulated or decompiled into bytecode, but provides a bridge
between visualization interfaces and tools which use traditional
intermediate languages. We only describe the relevant highlights
of JIL in this document, but a complete specification is available
separately as a technical report [5].
JIL is based on the Extensible Markup Language (XML) and
benefits from many of the features of this well established format,
including a growing number of tools and APIs as well as support
coming from a large community of developers [2]. Like XML,
JIL documents are portable across platforms and networks, with
native support in most modern web servers and clients.
Compatibility is achieved by defining language semantics and
restrictions using document type definitions (DTDs). DTDs are
simple to extend, and provide a strict method of enforcing
compatibility between JIL tools; applications which use this
standard XML schema for validating their input can identify
which extensions to expect from a JIL document.
JIL documents are composed of a hierarchy of nested tags which
describe the layout of a Java class. This includes enumerations of
the fields and methods of the class, including elements which are
only found in lower-level intermediate languages, such as labels.
This basic skeleton of code elements provides a framework upon
which language extensions can be added. These extensions can
include both static and dynamic characteristics of the code, and
allow such information to be associated directly with each code
element.
In order to demonstrate the kinds of extensions supported by JIL,
we consider virtual method polymorphism throughout this paper
as a characteristic of the code with both static and dynamic

properties. Figure 2a shows a fragment of Java code where
polymorphism can be explored at compile-time by analyzing the
potential targets of call sites, while the runtime behavior of these
sites can reveal which targets are actually being invoked. The
following sections continue this example and describe two tools
capable of expressing the results of such analyses as JIL
extensions.

2.2 Static Code Elements
All JIL documents are required to contain some basic elements of
a Java class file. These elements make up the fundamental
structure of the document, to which annotations are added. Most
common code annotations are analysis results which can be
calculated by inspecting bytecode or intermediate representations.
These are static characteristics of the code which are known once
the Java source is compiled.

2.2.1 Generating static data
The top portion of Figure 1b shows a code tool capable of
performing static analyses on Java bytecode being passed a
compiled class file. These results are then exported as extensions
in the JIL documents it produces. These extensions are defined in
an accompanying DTD, allowing tools to validate and identify the
JIL documents being produced. By associating extensions with
the tools that generate them, several tools can annotate the same
code elements independently. Redundant or related extensions
may also be compared or combined by tools which support them.
As part of the framework presented in this paper, we added
support for the output of JIL to SOOT, an existing optimization
framework which uses intermediate languages to perform static
analysis and transformations on Java bytecode [11] [12] [13].
Most of these analyses are performed on Jimple, an intermediate
language where some basic optimizations can be applied before
generating bytecode [14]. For example, analysis of which
variables are live at each statement can be used to perform copy
propagation and simple aggregation, where unneeded variable
definitions can be collapsed. With the addition of JIL as an
output format and the associated DTD specifying the supported
extensions, SOOT provides an ideal source of static data.
Continuing our running example of polymorphism as a code
characteristic, SOOT supports several types of static analyses
which can associate call sites with potential targets. Call sites
within the JIL documents produced by SOOT can be easily
identified as monomorphic or potentially polymorphic by
extending each site with these analysis results. Figure 2b shows a
simplified example of JIL describing a call site extended with the
results of class hierarchy (CHA) [4] and variable type (VTA)
analysis [8].

2.3 Dynamic Code Elements
Data and code characteristics discovered at runtime provide
insight when studying the optimization of object-oriented
programs. Languages such as Java include many expensive
features, such as polymorphism and garbage collection, which
can drastically affect performance. The most effective
optimizations target the bytecodes which are generated by Java
compilers to provide these expensive features. However, these
optimizations can not always be implemented based on static
information alone.

// myclass.java
...
myInterface myObject;
if(branch1)
myObject = new A();

else if(branch2)
myObject = new B();

else
myObject = new C();

myObject.myMethod();
...

<!-- JIL: STEP output for myclass -->
...
<statement>
<jimple>interfaceInvoke 48.myInterface:

void MyMethod()</jimple>
<step_callsite method=”myMethod”>
<targets count=”2”>
<target class=”A” invokecount=”55”/>
<target class=”B” invokecount=”45”/>
</targets>
</step_callsite>
...
</statement>
...

<!-- JIL: SOOT output of myclass -->
...
<statement>
<jimple>interfaceInvoke 48.myInterface:

void MyMethod()</jimple>
<soot_invoketargets method=”myMethod”>
<targets analysis=”CHA” count=”3”>
<target class=”A”/>
<target class=”B”/>
<target class=”C”/>
</targets>
<targets analysis=”VTA” count=”2”>
<target class=”A”/>
<target class=”B”/>
</targets>
</soot_invoketargets>
...
</statement>
...

c)

b)

a)

d)

Figure 2. a) A simple polymorphic Java fragment with an
interface invoke; b) A JIL fragment produced by SOOT
indicating the possible targets of the call site; c) A JIL
fragment produced by a STEP profiling agent indicating the
actual number of runtime invokes; d) A slice from the
JIMPLEX interface focused on the call site, where the user
can browse the extensions from b) and c).

2.3.1 Collecting dynamic data
The bottom portion of Figure 1b shows runtime data being
collected by a profiling tool which supports JIL output.
Annotating JIL with dynamic data works much like with static
data. In order to manage both static and dynamic extensions, each
JIL document contains a history of all the tools and operations
which have authored it. This allows dynamic data from separate
executions of the same tool to coexist in a single document.
Tools which support JIL uniquely identify each execution with an
entry in the document’s history, typically including the profiling
or benchmarking agent which was used, a timestamp, and
information about the execution environment. This allows JIL
tools to compare and process multiple runtime data sets.
In order to collect dynamic data within our framework we
extended a tool called STEP, a customizable profiling framework
for evaluating the performance and behavior of object-oriented
applications [3]. It helps developers build custom profiling agents
to collect data on the runtime behavior of programs; this allows
the rapid development of a variety of profilers which apply to
both standard and unconventional profiling tasks.
STEP provides its own event-based language and accompanying
compilers. Profiling agents define events using this language and
pass them into an event pipe where the data is compressed and
prepared for consumption. We provided a backend to this event
pipe which generates JIL documents. The code elements within
these documents are annotated with the runtime data collected by
the profiling agents. The JIL generator is an easily implemented
example of an event pipe consumer, and the extensible nature of
the profiling framework is well suited to preserve its output in an
extensible document format.
We can now revisit our polymorphism example using STEP to
generate JIL dynamic data. The JIL fragment at the bottom of
Figure 2c demonstrates how STEP associates actual runtime
invocation targets to a particular call site. Although our static
class hierarchy analysis (CHA) indicated that this call site had
three potential targets, according to the data collected from this
execution run only two targets were invoked. Runtime data must
include some extra information describing the execution
environment and any other details that are required to uniquely
identify the data associated with it. The separation and
management of dynamic data is described in section 3.

2.4 Visualization of Static and Dynamic Data
We have demonstrated how JIL documents can combine static and
dynamic data, and how existing tools can be extended to produce
JIL documents as shown in Figure 1c. These documents provide
versatile data sources which are easily merged and accessed,
facilitating the creation of a variety of visualization interfaces.

2.4.1 JIMPLEX
Developers working with SOOT and Jimple required a tool which
would allow them to develop and debug optimizations. Once we
had extended SOOT and STEP to produce JIL documents, we
developed a visualization implementation called JIMPLEX with
the goal of providing a customizable visualization framework for
browsing Jimple. JIMPLEX is an XML application which uses
XSLT to stylize and transform JIL documents, delivering
visualization interfaces as HTML to common web browsers.
XML transformations can be performed on the fly in modern

browsers, allowing the interface to be customized without having
to recompile code or learn a complex API. These technologies
also encourage collaboration, allowing both the data sources and
the visualization interface to be shared between platforms and
devices across the Internet.
By using the JIL documents produced by SOOT and STEP as data
sources (seen in Figures 2b and 2c), JIMPLEX can browse Jimple
annotated with data from both tools. Figure 2d is a screenshot of
the JIMPLEX interface, where the user is focused on the Jimple

statement containing the polymorphic call site. By comparing the
results of static analyses to the actual runtime behavior we can
verify that the variable type analysis (VTA) performed by SOOT
was accurate in eliminating the potential target from class C,
based on the last profiling run.
Figure 3 is a screenshot of JIMPLEX visualizing a Java class in a
web browser. Two JIL documents are used as data sources to
dynamically generate the interface. Static information, such as the
relative number of statements per method or label is derived from

Figure 3. Screenshot of JIMPLEX browsing an intermediate representation of a Java class; the interface
is generated dynamically from separate JIL data sources. Enumerations of the methods and fields of the
class include runtime data, such as method invokes and field accesses. The statement listings for each
method expose static analysis results to the user, such as variable liveness and flow information.

the JIL document produced by SOOT. The runtime data, such as
the cumulative number of method invokes and field accesses, is
extracted from another document produced by a STEP profiling
agent. By exposing both kinds of data in the same interface the
user can identify possible optimization targets, such as the
relatively small method isInteger, which was executed the most
frequently.

3. MANAGING JIL DOCUMENTS
The framework presented here encourages interoperability
between code tools, regardless of their implementation or
supported languages. Any number of tools can contribute to a JIL
document, allowing collaboration and modularity between tools
which would normally be difficult to achieve. Adding support to
existing tools requires very little implementation, and many APIs
exist which can already validate, parse, and generate compliant
JIL. The following sections discuss the non-trivial task of
providing this kind of interoperability in more detail.

3.1 Document Structure
JIL documents use the nesting structure of XML to represent the
hierarchy of code elements in a Java class. The current JIL
definition requires that documents contain a base structure
consisting of several required elements. These describe the basic
code elements which all classes contain, such as enumerations of
fields and methods. By nesting elements, JIL can contain optional
extensions to these base elements which will not break the
underlying structure of the document when removed. This makes
document extensions easier to manage, since they can be swapped
in or out, and new extensions can be introduced while maintaining
backwards compatibility with previous versions of the same
document.
JIL documents achieve this kind of manageability by strictly
defining the grammar of their contents and self-describing any
included extensions. A DTD is used to define the restrictions on
which elements and attributes can and must be included. This
DTD can also be extended with references to extension
definitions, allowing the base JIL grammar to evolve
independently of any extensions. Definitions are also
independently versioned, so that validation can indicate which
generation of JIL to expect or which extensions are available.
Following the trend of other XML technologies, DTDs can be
referenced locally or across the internet during validation.

3.2 Merging
In some cases, an entire package of JIL documents might describe
a class to be visualized. A single class could also be represented
as separate JIL documents, and then later combined during
processing in order to improve performance or manageability.
This section describes the different types of merging which are
possible when combining data from multiple JIL documents.
The most straightforward merging involves JIL documents which
represent different classes; in this case there is no merging
required. Data in these documents does not intersect or conflict
since it is referring to an entirely separate class. Tools that want
to browse a complete package or compare the data collected on
separate classes can load each document and process them
independently. There are no notable caveats in this case, and the
details of how to handle each document is left up to the
implementation.

When a tool merges JIL documents which refer to the same class,
it can advantage of the object-oriented document model. Such
tools typically treat these documents as a single entity describing a
Java class. Each document’s extensions and data can then be
associated with this common entity, and their interactions are left
up to the implementation. A simple union of all the data can be
performed which presents the user with a single class
representation which includes all the extensions from each
document. This is a common case when a tool is passed JIL
documents from separate sources, each containing different
extensions on the same class. These extensions can be combined
when loaded by the tool in order to hide their logical separation
from the user. This can be convenient when visualizing multiple
documents from different remote sources, where their physical
separation becomes more of a convenience. For example, if one
tool is still being developed and debugged, its extensions can be
kept separate from those generated by other more stable tools.
The ability to separate extensions in this way is also convenient
for research groups working on different extensions independently
across the Internet.
In some cases tools can generate document extensions which
intersect, meaning they describe the same characteristics of the
code with different empirical data. Such data is typically
collected at runtime by profiling or benchmark tools. Visualizers
can display averages and other calculations by identifying and
processing this intersecting data. This process requires some
basic algorithms used by the visualizer to decide how to combine
the data and present the user with code characteristics of interest.
The visualization framework presented in this paper separates the
interface from the data. An open data representation allows
custom interfaces to define how the user visualizes intersecting
data. The format and structure of JIL is designed to give
interfaces more flexibility when deciding how to interpret the
data. Simple interfaces can allow basic filtering of datasets where
the user can browse the evolution of the code’s performance,
while complex interfaces might use statistical operations and
graphics in order to provide a more comprehensive representation.
JIL tools which can offer some insight into the interpretation of
multiple JIL documents can export any data they produce as
additional JIL extensions. For example, given a JIL document
describing the local variables which are live at each statement,
another tool could interpret this data and export an additional JIL
document containing lists of variables which are unused and
could be eliminated in each method. By chaining the processing
and interpretation of JIL documents, visualizations can become
more complex and cover a larger scope of code characteristics.
This also allows a many-to-one relationship between code tools
and visualizers.
The process of merging JIL document extensions is not trivial, but
is facilitated by the wide array of libraries and APIs which can
process and parse XML. Many basic combinatory operations are
supported by basic interface languages such as XSLT and PHP.
Such interpreted languages can allow quick prototyping of new
and experimental visualizations. By using a scalable data format,
JIL tools can process as many documents or extensions as
required by the visualization. Most APIs also support the loading
of documents using the well established HTTP protocol for
network transmission. This encourages visualizers to support the
visualization of remote JIL documents, allowing collaboration

between tools which might exist on different machines or
networks.

3.3 Versioning
JIL documents are unambiguous descriptions of Java classes,
allowing tools to construct a hierarchical structure of code
elements. Document type definitions allow the format of these
elements to be recognized and validated using existing XML
parsers. DTDs can be referenced using a Uniform Resource
Locator (URL), allowing JIL tools to provide a unique
specification for the JIL they support online. Versioning of DTDs
allows tools to identify documents based on different versions of
JIL. Extensions are versioned independently of each other,
allowing JIL documents to be formed from any combination of
supported extensions.
Each JIL document contains a history of contributors. This
history is a list of tools with attributes which uniquely identify a
set of tags within the document. A JIL tool uses the document
history to describe the operation or command it performed when
generating the tags in the document. Version information is
usually associated with a history element, which indirectly
represents the output of a particular version of a tool. This allows
code elements and extensions to be traced back to a specific tool,
and then separated by a visualizer when parsing the document.
By maintaining this versioned history within each JIL document,
it allows tools to manage and separate both supported and
unsupported extensions.

4. CONCLUSIONS
We have presented an open framework for developing
visualization and software understanding interfaces. The key
features of the framework allow existing and future tools to
contribute both static and dynamic code elements to these
visualizations, allowing interfaces to be developed based on the
information the user wants to analyze rather than what
information is immediately available. Collaboration and
interoperability are facilitated by using an extensible and portable
document format for persisting and separating data.
This framework has been applied to both a static analysis and
profiling tool in order to combine the data they provide into a
single customizable visualization interface. With the addition of
JIL support, these tools have benefited from the addition of a
visualization backend and the ability to export and preserve the
code characteristics they can extract. The visualization interface
presented in this paper has demonstrated the interoperability and
customization that is possible when using JIL as a data source, as
well as the usefulness of exposing both static and dynamic data to
the user.

4.1 Current Progress
Current visualization tools are based on the JIL specification 1.0
available online as a Document Type Definition at:
http://www.sable.mcgill.ca/jil. The JIMPLEX visualization
framework is also available at this URL as a package of client and
server-side scripts to provide visualization interfaces supported by
common web browsers. The current release of SOOT, which
supports JIL as an output format, is available at:
http://www.sable.mcgill.ca/soot.

4.2 Future Work
As an open framework, there are many different areas for future
work. The JIL specification itself is in its infancy, and although
only basic extensions are included, the specification is designed to
be extended based on the tools that support it. Current support is
limited to SOOT and STEP, but any tool which can provide some
insight into software understanding can extend the JIL definition
and generate JIL data. Both static and dynamic extensions are
easily specified by DTDs or another form of XML schema. When
adding support to a tool for generating or modifying JIL
documents with data extensions, supplying a DTD allows other
tools to validate and recognize those extensions.
Let us consider a user who wants to inspect some generated code
in relation to its benchmarking data. They should first decide
what code elements would be associated with their benchmarking
results, such as extending individual methods with timing
information. These extensions should be defined in a DTD, and
support for JIL should be added to their benchmarking suite using
a popular XML API in their favorite programming language. The
extension DTD should then be used by a visualization interface to
validate JIL documents containing these dynamic extensions. The
visualizer could present the user with statistical information based
on the benchmarking data recorded in the JIL documents. Future
improvements to the code generator could then be evaluated by
comparing successive JIL documents containing the
benchmarking extensions.
Visualization is the current focus of this framework, however it is
only one example of an application for JIL. Future use of JIL
could target any application where metadata is associated with
code. A JIL-aware Integrated Development Environment (IDE)
might remind the user about methods which are called frequently
or suggest the most effective strategy to modularize the code.
Software development rarely involves the inspection of static
analyses beyond compiler errors, and dynamic information is
typically not available until changes to the code may be too costly.
Much effort is spent debugging software during development, and
most developers target a single problem or area of the code when
debugging. A debugger which supported JIL could preserve such
information with the code allowing the developer to reference this
data without having to execute another costly debugging run. By
combining static and dynamic data into an extensible document
format, tools can provide a developer with information and insight
normally obscured by the code.

5. ACKNOWLEDGMENTS
This work was supported by NSERC. Many thanks to Karel
Driesen, Laurie Hendren, John Jorgensen, Bruno Dufour, and the
Sable Research Group at McGill University for their help in
improving the quality of this paper.

6. REFERENCES
[1] T. Ball and S. G. Eick. Software Visualization in the Large.

IEEE Computer, Vol. 29, No. 4, pp. 33-43, 1996.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler.
Extensible Markup Language (XML) 1.0 (Second Edition).
http://www.w3.org/TR/REC-xml.

[3] R. Brown, K. Driesen, D. Eng, L. Hendren, J. Jorgensen, C.
Verbrugge, and Q. Wang. STOOP: The Sable Toolkit for

Object-Oriented Profiling. Sable Technical Report 2001-2,
McGill University, 2001.

[4] J. Dean, D. Grove, and C. Chambers. Optimizations of
object-oriented programs using static class hierarchy
analysis. Proceedings of ECOOP ’95, pp. 77-101, August
1995.

[5] D. Eng. JIL: an Extensible Intermediate Language. . Sable
Technical Report 2002-3, McGill University, March 2002.

[6] J.C. Hardwick and J. Sipelstein. Java as an Intermediate
Language. Technical Report CMU-CS-96-161, Carnegie
Mellon University, 1996.

[7] C. Knight and M. Munro. Visualising Software – A Key
Research Area. Proceedings of the IEEE International
Conference on Software Maintenance, Short paper,
September 1999.

[8] V. Sundaresan, L. Hendren, C. Razafimahera, R. Vallée-Rai,
P. Lam, E. Gagnon, and C. Godin. Practical virtual method
call resolution for Java. Proceedings of OOPSLA ’00, pp.
264-280, October 2000.

[9] T. Systa. On the Relationships between Static and Dynamic
Models in Reverse Engineering Java Software. Proceedings

of the Working Conference on Reverse Engineering, pp.
304-313, 1999.

[10] T. Systa. Understanding the Behaviour of Java Programs.
Proceedings of the Working Conference on Reverse
Engineering, pp. 35-44, 2000.

[11] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P.
Pominville, V. Sundaresan. Optimizing Java Bytecode using
the Soot Framework: is it Feasible? Proceedings of the
International Conference on Compiler Construction, pp 18-
34, March 2000.

[12] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E.
Gagnon, and P. Co. Soot - a Java Optimization Framework.
Proceedings of CASCON ’99, pp. 125-135, 1999.

[13] R. Vallée-Rai. Soot: A Java Bytecode Optimization
Framework. Master’s thesis, McGill University, July 2000.

[14] R. Vallée-Rai and L. Hendren. Jimple: Simplifying Java
Bytecode for Analyses and Transformations. Sable
Technical Report 1998-4, McGill University, July 1998.

