
Soot phase options

Patrick Lam (plam@sable.mcgill.ca)
Feng Qian (fqian@sable.mcgill.ca)

Ondřej Lhoták (olhotak@sable.mcgill.ca)
John Jorgensen

January 22, 2012

Soot supports the powerful—but initially confusing—notion of “phase options”. This document aims to
clear up the confusion so you can exploit the power of phase options.

Soot’s execution is divided into a number of phases. For example, JimpleBodys are built by a phase
called jb, which is itself comprised of subphases, such as the aggregation of local variables (jb.a).

Phase options provide a way for you to change the behaviour of a phase from the Soot command-line.
They take the form -p phase.name option:value. For instance, to instruct Soot to use original names in
Jimple, we would invoke Soot like this:

java soot.Main foo -p jb use-original-names:true

Multiple option-value pairs may be specified in a single -p option separated by commas. For example,

java soot.Main foo -p cg.spark verbose:true,on-fly-cg:true

There are five types of phase options:

1. Boolean options take the values “true” and “false”; if you specify the name of a boolean option without
adding a value for it, “true” is assumed.

2. Multi-valued options take a value from a set of allowed values specific to that option.

3. Integer options take an integer value.

4. Floating point options take a floating point number as their value.

5. String options take an arbitrary string as their value.

Each option has a default value which is used if the option is not specified on the command line.
All phases and subphases accept the option “enabled”, which must be “true” for the phase or subphase

to execute. To save you some typing, the pseudo-options “on” and “off” are equivalent to “enabled:true”
and “enabled:false”, respectively. In addition, specifying any options for a phase automatically enables
that phase.

Adding your own subphases
Within Soot, each phase is implemented by a Pack. The Pack is a collection of transformers, each

corresponding to a subphase of the phase implemented by the Pack. When the Pack is called, it executes
each of its transformers in order.

Soot transformers are usually instances of classes that extend BodyTransformer or SceneTransformer.
In either case, the transformer class must override the internalTransformmethod, providing an implemen-
tation which carries out some transformation on the code being analyzed.

1

To add a transformer to some Pack without modifying Soot itself, create your own class which changes
the contents of the Packs to meet your requirements and then calls soot.Main.

The remainder of this document describes the transformations belonging to Soot’s various Packs and
their corresponding phase options.

Contents

1 Jimple Body Creation (jb) 4
1.1 Local Splitter (jb.ls) . 5
1.2 Jimple Local Aggregator (jb.a) . 5
1.3 Unused Local Eliminator (jb.ule) . 5
1.4 Type Assigner (jb.tr) . 5
1.5 Unsplit-originals Local Packer (jb.ulp) . 6
1.6 Local Name Standardizer (jb.lns) . 6
1.7 Copy Propagator (jb.cp) . 7
1.8 Dead Assignment Eliminator (jb.dae) . 7
1.9 Post-copy propagation Unused Local Eliminator (jb.cp-ule) 7
1.10 Local Packer (jb.lp) . 7
1.11 Nop Eliminator (jb.ne) . 8
1.12 Unreachable Code Eliminator (jb.uce) . 8
1.13 Trap Tightener (jb.tt) . 8

2 Java To Jimple Body Creation (jj) 8
2.1 Local Splitter (jj.ls) . 9
2.2 Jimple Local Aggregator (jj.a) . 9
2.3 Unused Local Eliminator (jj.ule) . 9
2.4 Type Assigner (jj.tr) . 9
2.5 Unsplit-originals Local Packer (jj.ulp) . 9
2.6 Local Name Standardizer (jj.lns) . 10
2.7 Copy Propagator (jj.cp) . 10
2.8 Dead Assignment Eliminator (jj.dae) . 10
2.9 Post-copy propagation Unused Local Eliminator (jj.cp-ule) 11
2.10 Local Packer (jj.lp) . 11
2.11 Nop Eliminator (jj.ne) . 11
2.12 Unreachable Code Eliminator (jj.uce) . 11

3 Whole Jimple Pre-processing Pack (wjpp) 11

4 Whole Shimple Pre-processing Pack (wspp) 11

5 Call Graph Constructor (cg) 12
5.1 Class Hierarchy Analysis (cg.cha) . 13
5.2 Spark (cg.spark) . 13

5.2.1 Spark General Options . 13
5.2.2 Spark Pointer Assignment Graph Building Options . 14
5.2.3 Spark Pointer Assignment Graph Simplification Options 15
5.2.4 Spark Points-To Set Flowing Options . 15
5.2.5 Spark Output Options . 17
5.2.6 Context-sensitive refinement . 18
5.2.7 Geometric context-sensitive analysis from ISSTA 2011 18

2

5.3 Paddle (cg.paddle) . 20
5.3.1 Paddle General Options . 20
5.3.2 Paddle Context Sensitivity Options . 22
5.3.3 Paddle Pointer Assignment Graph Building Options 22
5.3.4 Paddle Points-To Set Flowing Options . 23
5.3.5 Paddle Output Options . 26

6 Whole Shimple Transformation Pack (wstp) 27

7 Whole Shimple Optimization Pack (wsop) 27

8 Whole-Jimple Transformation Pack (wjtp) 27
8.1 May Happen in Parallel Analyses (wjtp.mhp) . 27
8.2 Lock Allocator (wjtp.tn) . 27

9 Whole-Jimple Optimization Pack (wjop) 28
9.1 Static Method Binder (wjop.smb) . 29
9.2 Static Inliner (wjop.si) . 29

10 Whole-Jimple Annotation Pack (wjap) 30
10.1 Rectangular Array Finder (wjap.ra) . 31
10.2 Unreachable Method Tagger (wjap.umt) . 31
10.3 Unreachable Fields Tagger (wjap.uft) . 31
10.4 Tightest Qualifiers Tagger (wjap.tqt) . 31
10.5 Call Graph Grapher (wjap.cgg) . 31
10.6 Purity Analysis [AM] (wjap.purity) . 32

11 Shimple Control (shimple) 32

12 Shimple Transformation Pack (stp) 32

13 Shimple Optimization Pack (sop) 33
13.1 Shimple Constant Propagator and Folder (sop.cpf) . 33

14 Jimple Transformation Pack (jtp) 33

15 Jimple Optimization Pack (jop) 33
15.1 Common Subexpression Eliminator (jop.cse) . 33
15.2 Busy Code Motion (jop.bcm) . 34
15.3 Lazy Code Motion (jop.lcm) . 34
15.4 Copy Propagator (jop.cp) . 35
15.5 Jimple Constant Propagator and Folder (jop.cpf) . 35
15.6 Conditional Branch Folder (jop.cbf) . 36
15.7 Dead Assignment Eliminator (jop.dae) . 36
15.8 Null Check Eliminator (jop.nce) . 36
15.9 Unreachable Code Eliminator 1 (jop.uce1) . 36
15.10Unconditional Branch Folder 1 (jop.ubf1) . 37
15.11Unreachable Code Eliminator 2 (jop.uce2) . 37
15.12Unconditional Branch Folder 2 (jop.ubf2) . 37
15.13Unused Local Eliminator (jop.ule) . 37

3

16 Jimple Annotation Pack (jap) 37
16.1 Null Pointer Checker (jap.npc) . 38
16.2 Null Pointer Colourer (jap.npcolorer) . 38
16.3 Array Bound Checker (jap.abc) . 38
16.4 Profiling Generator (jap.profiling) . 39
16.5 Side Effect tagger (jap.sea) . 39
16.6 Field Read/Write Tagger (jap.fieldrw) . 40
16.7 Call Graph Tagger (jap.cgtagger) . 40
16.8 Parity Tagger (jap.parity) . 40
16.9 Parameter Alias Tagger (jap.pat) . 40
16.10Live Variables Tagger (jap.lvtagger) . 40
16.11Reaching Defs Tagger (jap.rdtagger) . 40
16.12Cast Elimination Check Tagger (jap.che) . 41
16.13Unreachable Method Transformer (jap.umt) . 41
16.14Loop Invariant Tagger (jap.lit) . 41
16.15Available Expressions Tagger (jap.aet) . 41
16.16Dominators Tagger (jap.dmt) . 41

17 Grimp Body Creation (gb) 42
17.1 Grimp Pre-folding Aggregator (gb.a1) . 42
17.2 Grimp Constructor Folder (gb.cf) . 42
17.3 Grimp Post-folding Aggregator (gb.a2) . 42
17.4 Grimp Unused Local Eliminator (gb.ule) . 43

18 Grimp Optimization (gop) 43

19 Baf Body Creation (bb) 43
19.1 Load Store Optimizer (bb.lso) . 44
19.2 Peephole Optimizer (bb.pho) . 44
19.3 Unused Local Eliminator (bb.ule) . 45
19.4 Local Packer (bb.lp) . 45

20 Baf Optimization (bop) 45

21 Tag Aggregator (tag) 45
21.1 Line Number Tag Aggregator (tag.ln) . 45
21.2 Array Bounds and Null Pointer Check Tag Aggregator (tag.an) 46
21.3 Dependence Tag Aggregator (tag.dep) . 46
21.4 Field Read/Write Tag Aggregator (tag.fieldrw) . 46

22 Dava Body Creation (db) 46
22.1 Transformations (db.transformations) . 46
22.2 Renamer (db.renamer) . 46
22.3 De-obfuscate (db.deobfuscate) . 47
22.4 Force Recompilability (db.force-recompile) . 47

1 Jimple Body Creation (jb)

Jimple Body Creation creates a JimpleBody for each input method, using either coffi, to read .class files,
or the jimple parser, to read .jimple files.

4

Accepted phase options:

Enabled (enabled) (default value: true)

Use Original Names (use-original-names) (default value: false)

Retain the original names for local variables when the source includes those names. Otherwise, Soot
gives variables generic names based on their types.

Preserve source-level annotations (preserve-source-annotations) (default value: false)

Preserves annotations of retention type SOURCE. (for everything but package and local variable an-
notations)

1.1 Local Splitter (jb.ls)

The Local Splitter identifies DU-UD webs for local variables and introduces new variables so that each
disjoint web is associated with a single local.

Accepted phase options:

Enabled (enabled) (default value: true)

1.2 Jimple Local Aggregator (jb.a)

The Jimple Local Aggregator removes some unnecessary copies by combining local variables. Essentially, it
finds definitions which have only a single use and, if it is safe to do so, removes the original definition after
replacing the use with the definition’s right-hand side.

At this stage in JimpleBody construction, local aggregation serves largely to remove the copies to and
from stack variables which simulate load and store instructions in the original bytecode.

Accepted phase options:

Enabled (enabled) (default value: true)

Only Stack Locals (only-stack-locals) (default value: true)

Only aggregate locals that represent stack locations in the original bytecode. (Stack locals can be
distinguished in Jimple by the $ character with which their names begin.)

1.3 Unused Local Eliminator (jb.ule)

The Unused Local Eliminator removes any unused locals from the method.

Accepted phase options:

Enabled (enabled) (default value: true)

1.4 Type Assigner (jb.tr)

The Type Assigner gives local variables types which will accommodate the values stored in them over the
course of the method.

5

Accepted phase options:

Enabled (enabled) (default value: true)

Ignore wrong static-ness (ignore-wrong-staticness) (default value: false)

Some projects have been shown to contain invalid bytecode that tries to access a static field or method
in a non-static way or the other way around. The VM’s bytecode verifier will reject such bytecode
when loaded into the VM. This option, when enabled, causes to create Jimple bodies in such cases
nontheless, ignoring the error.

Use older type assigner (use-older-type-assigner) (default value: false)

This enables the older type assigner that was in use until May 2008. The current type assigner is a
reimplementation by Ben Bellamy that uses an entirely new and faster algorithm which always assigns
the most narrow type possible. If compare-type-assigners is on, this option causes the older type
assigner to execute first. (Otherwise the newer one is executed first.)

Compare type assigners (compare-type-assigners) (default value: false)

Enables comparison (both runtime and results) of Ben Bellamy’s type assigner with the older type
assigner that was in Soot.

1.5 Unsplit-originals Local Packer (jb.ulp)

The Unsplit-originals Local Packer executes only when the ‘use-original-names’ option is chosen for the
‘jb’ phase. The Local Packer attempts to minimize the number of local variables required in a method by
reusing the same variable for disjoint DU-UD webs. Conceptually, it is the inverse of the Local Splitter.

Accepted phase options:

Enabled (enabled) (default value: true)

Unsplit Original Locals (unsplit-original-locals) (default value: true)

Use the variable names in the original source as a guide when determining how to share local variables
among non-interfering variable usages. This recombines named locals which were split by the Local
Splitter.

1.6 Local Name Standardizer (jb.lns)

The Local Name Standardizer assigns generic names to local variables.

Accepted phase options:

Enabled (enabled) (default value: true)

Only Stack Locals (only-stack-locals) (default value: false)

Only standardizes the names of variables that represent stack locations in the original bytecode. This
becomes the default when the ‘use-original-names’ option is specified for the ‘jb’ phase.

6

1.7 Copy Propagator (jb.cp)

This phase performs cascaded copy propagation.
If the propagator encounters situations of the form:

A: a = ...;

...

B: x = a;

...

C: ... = ... x;

where a and x are each defined only once (at A and B, respectively), then it can propagate immediately
without checking between B and C for redefinitions of a. In this case the propagator is global.

Otherwise, if a has multiple definitions then the propagator checks for redefinitions and propagates copies
only within extended basic blocks.

Accepted phase options:

Enabled (enabled) (default value: true)

Only Regular Locals (only-regular-locals) (default value: false)

Only propagate copies through “regular” locals, that is, those declared in the source bytecode.

Only Stack Locals (only-stack-locals) (default value: true)

Only propagate copies through locals that represent stack locations in the original bytecode.

1.8 Dead Assignment Eliminator (jb.dae)

The Dead Assignment Eliminator eliminates assignment statements to locals whose values are not subse-
quently used, unless evaluating the right-hand side of the assignment may cause side-effects.

Accepted phase options:

Enabled (enabled) (default value: true)

Only Stack Locals (only-stack-locals) (default value: true)

Only eliminate dead assignments to locals that represent stack locations in the original bytecode.

1.9 Post-copy propagation Unused Local Eliminator (jb.cp-ule)

This phase removes any locals that are unused after copy propagation.

Accepted phase options:

Enabled (enabled) (default value: true)

1.10 Local Packer (jb.lp)

The Local Packer attempts to minimize the number of local variables required in a method by reusing the
same variable for disjoint DU-UD webs. Conceptually, it is the inverse of the Local Splitter.

7

Accepted phase options:

Enabled (enabled) (default value: false)

Unsplit Original Locals (unsplit-original-locals) (default value: false)

Use the variable names in the original source as a guide when determining how to share local variables
across non-interfering variable usages. This recombines named locals which were split by the Local
Splitter.

1.11 Nop Eliminator (jb.ne)

The Nop Eliminator removes nop statements from the method.

Accepted phase options:

Enabled (enabled) (default value: true)

1.12 Unreachable Code Eliminator (jb.uce)

The Unreachable Code Eliminator removes unreachable code and traps whose catch blocks are empty.

Accepted phase options:

Enabled (enabled) (default value: true)

Remove unreachable traps (remove-unreachable-traps) (default value: false)

Remove exception table entries when none of the protected instructions can throw the exception being
caught.

1.13 Trap Tightener (jb.tt)

The Trap Tightener changes the area protected by each exception handler, so that it begins with the first
instruction in the old protected area which is actually capable of throwing an exception caught by the
handler, and ends just after the last instruction in the old protected area which can throw an exception
caught by the handler. This reduces the chance of producing unverifiable code as a byproduct of pruning
exceptional control flow within CFGs.

Accepted phase options:

Enabled (enabled) (default value: false)

2 Java To Jimple Body Creation (jj)

Jimple Body Creation creates a JimpleBody for each input method, using polyglot, to read .java files.

Accepted phase options:

Enabled (enabled) (default value: true)

Use Original Names (use-original-names) (default value: true)

Retain the original names for local variables when the source includes those names. Otherwise, Soot
gives variables generic names based on their types.

8

2.1 Local Splitter (jj.ls)

The Local Splitter identifies DU-UD webs for local variables and introduces new variables so that each
disjoint web is associated with a single local.

Accepted phase options:

Enabled (enabled) (default value: false)

2.2 Jimple Local Aggregator (jj.a)

The Jimple Local Aggregator removes some unnecessary copies by combining local variables. Essentially, it
finds definitions which have only a single use and, if it is safe to do so, removes the original definition after
replacing the use with the definition’s right-hand side.

At this stage in JimpleBody construction, local aggregation serves largely to remove the copies to and
from stack variables which simulate load and store instructions in the original bytecode.

Accepted phase options:

Enabled (enabled) (default value: true)

Only Stack Locals (only-stack-locals) (default value: true)

Only aggregate locals that represent stack locations in the original bytecode. (Stack locals can be
distinguished in Jimple by the $ character with which their names begin.)

2.3 Unused Local Eliminator (jj.ule)

The Unused Local Eliminator removes any unused locals from the method.

Accepted phase options:

Enabled (enabled) (default value: true)

2.4 Type Assigner (jj.tr)

The Type Assigner gives local variables types which will accommodate the values stored in them over the
course of the method.

Accepted phase options:

Enabled (enabled) (default value: false)

2.5 Unsplit-originals Local Packer (jj.ulp)

The Unsplit-originals Local Packer executes only when the ‘use-original-names’ option is chosen for the
‘jb’ phase. The Local Packer attempts to minimize the number of local variables required in a method by
reusing the same variable for disjoint DU-UD webs. Conceptually, it is the inverse of the Local Splitter.

Accepted phase options:

Enabled (enabled) (default value: false)

Unsplit Original Locals (unsplit-original-locals) (default value: false)

Use the variable names in the original source as a guide when determining how to share local variables
among non-interfering variable usages. This recombines named locals which were split by the Local
Splitter.

9

2.6 Local Name Standardizer (jj.lns)

The Local Name Standardizer assigns generic names to local variables.

Accepted phase options:

Enabled (enabled) (default value: true)

Only Stack Locals (only-stack-locals) (default value: false)

Only standardizes the names of variables that represent stack locations in the original bytecode. This
becomes the default when the ‘use-original-names’ option is specified for the ‘jb’ phase.

2.7 Copy Propagator (jj.cp)

This phase performs cascaded copy propagation.
If the propagator encounters situations of the form:

A: a = ...;

...

B: x = a;

...

C: ... = ... x;

where a and x are each defined only once (at A and B, respectively), then it can propagate immediately
without checking between B and C for redefinitions of a. In this case the propagator is global.

Otherwise, if a has multiple definitions then the propagator checks for redefinitions and propagates copies
only within extended basic blocks.

Accepted phase options:

Enabled (enabled) (default value: true)

Only Regular Locals (only-regular-locals) (default value: false)

Only propagate copies through “regular” locals, that is, those declared in the source bytecode.

Only Stack Locals (only-stack-locals) (default value: true)

Only propagate copies through locals that represent stack locations in the original bytecode.

2.8 Dead Assignment Eliminator (jj.dae)

The Dead Assignment Eliminator eliminates assignment statements to locals whose values are not subse-
quently used, unless evaluating the right-hand side of the assignment may cause side-effects.

Accepted phase options:

Enabled (enabled) (default value: true)

Only Stack Locals (only-stack-locals) (default value: true)

Only eliminate dead assignments to locals that represent stack locations in the original bytecode.

10

2.9 Post-copy propagation Unused Local Eliminator (jj.cp-ule)

This phase removes any locals that are unused after copy propagation.

Accepted phase options:

Enabled (enabled) (default value: true)

2.10 Local Packer (jj.lp)

The Local Packer attempts to minimize the number of local variables required in a method by reusing the
same variable for disjoint DU-UD webs. Conceptually, it is the inverse of the Local Splitter.

Accepted phase options:

Enabled (enabled) (default value: false)

Unsplit Original Locals (unsplit-original-locals) (default value: false)

Use the variable names in the original source as a guide when determining how to share local variables
across non-interfering variable usages. This recombines named locals which were split by the Local
Splitter.

2.11 Nop Eliminator (jj.ne)

The Nop Eliminator removes nop statements from the method.

Accepted phase options:

Enabled (enabled) (default value: true)

2.12 Unreachable Code Eliminator (jj.uce)

The Unreachable Code Eliminator removes unreachable code and traps whose catch blocks are empty.

Accepted phase options:

Enabled (enabled) (default value: true)

3 Whole Jimple Pre-processing Pack (wjpp)

This pack allows you to insert pre-processors that are run before call-graph construction. Only enabled in
whole-program mode.

In an unmodified copy of Soot, this pack is empty.

Accepted phase options:

Enabled (enabled) (default value: true)

4 Whole Shimple Pre-processing Pack (wspp)

This pack allows you to insert pre-processors that are run before call-graph construction. Only enabled in
whole-program Shimple mode.

In an unmodified copy of Soot, this pack is empty.

11

Accepted phase options:

Enabled (enabled) (default value: true)

5 Call Graph Constructor (cg)

The Call Graph Constructor computes a call graph for whole program analysis. When this pack finishes, a
call graph is available in the Scene. The different phases in this pack are different ways to construct the call
graph. Exactly one phase in this pack must be enabled; Soot will raise an error otherwise.

Accepted phase options:

Enabled (enabled) (default value: true)

Safe forName (safe-forname) (default value: false)

When a program calls Class.forName(), the named class is resolved, and its static initializer executed.
In many cases, it cannot be determined statically which class will be loaded, and which static initializer
executed. When this option is set to true, Soot will conservatively assume that any static initializer
could be executed. This may make the call graph very large. When this option is set to false, any calls
to Class.forName() for which the class cannot be determined statically are assumed to call no static
initializers.

Safe newInstance (safe-newinstance) (default value: false)

When a program calls Class.newInstance(), a new object is created and its constructor executed. Soot
does not determine statically which type of object will be created, and which constructor executed.
When this option is set to true, Soot will conservatively assume that any constructor could be ex-
ecuted. This may make the call graph very large. When this option is set to false, any calls to
Class.newInstance() are assumed not to call the constructor of the created object.

Verbose (verbose) (default value: false)

Due to the effects of native methods and reflection, it may not always be possible to construct a fully
conservative call graph. Setting this option to true causes Soot to point out the parts of the call graph
that may be incomplete, so that they can be checked by hand.

JDK version (jdkver) (default value: 3)

This option sets the JDK version of the standard library being analyzed so that Soot can simulate the
native methods in the specific version of the library. The default, 3, refers to Java 1.3.x.

All Application Class Methods Reachable (all-reachable) (default value: false)

When this option is false, the call graph is built starting at a set of entry points, and only methods
reachable from those entry points are processed. Unreachable methods will not have any call graph
edges generated out of them. Setting this option to true makes Soot consider all methods of application
classes to be reachable, so call edges are generated for all of them. This leads to a larger call graph. For
program visualization purposes, it is sometimes desirable to include edges from unreachable methods;
although these methods are unreachable in the version being analyzed, they may become reachable if
the program is modified.

Implicit Entry Points (implicit-entry) (default value: true)

When this option is true, methods that are called implicitly by the VM are considered entry points of
the call graph. When it is false, these methods are not considered entry points, leading to a possibly
incomplete call graph.

12

Trim Static Initializer Edges (trim-clinit) (default value: true)

The call graph contains an edge from each statement that could trigger execution of a static initializer
to that static initializer. However, each static initializer is triggered only once. When this option is
enabled, after the call graph is built, an intra-procedural analysis is performed to detect static initializer
edges leading to methods that must have already been executed. Since these static initializers cannot
be executed again, the corresponding call graph edges are removed from the call graph.

Reflection Log (reflection-log) (default value: false)

Load a reflection log from the given file and use this log to resolve reflective call sites. Note that when
a log is given, the following other options have no effect: safe-forname, safe-newinstance.

Guarding strategy (guards) (default value: ignore)

Using a reflection log is only sound for method executions that were logged. Executing the program
differently may be unsound. Soot can insert guards at program points for which the reflection log
contains no information. When these points are reached (because the program is executed differently)
then the follwing will happen, depending on the value of this flag. ignore: no guard is inserted, the
program executes normally but under unsound assumptions. print: the program prints a stack trace
when reaching a porgram location that was not traced but continues to run. throw (default): the
program throws an Error instead.

5.1 Class Hierarchy Analysis (cg.cha)

This phase uses Class Hierarchy Analysis to generate a call graph.

Accepted phase options:

Enabled (enabled) (default value: true)

Verbose (verbose) (default value: false)

Setting this option to true causes Soot to print out statistics about the call graph computed by this
phase, such as the number of methods determined to be reachable.

5.2 Spark (cg.spark)

Spark is a flexible points-to analysis framework. Aside from building a call graph, it also generates informa-
tion about the targets of pointers. For details about Spark, please see Ondrej Lhotak’s M.Sc. thesis.

Accepted phase options:

Enabled (enabled) (default value: false)

5.2.1 Spark General Options

Accepted phase options:

Verbose (verbose) (default value: false)

When this option is set to true, Spark prints detailed information about its execution.

Ignore Types Entirely (ignore-types) (default value: false)

When this option is set to true, all parts of Spark completely ignore declared types of variables and
casts.

13

Force Garbage Collections (force-gc) (default value: false)

When this option is set to true, calls to System.gc() will be made at various points to allow memory
usage to be measured.

Pre Jimplify (pre-jimplify) (default value: false)

When this option is set to true, Spark converts all available methods to Jimple before starting the
points-to analysis. This allows the Jimplification time to be separated from the points-to time. How-
ever, it increases the total time and memory requirement, because all methods are Jimplified, rather
than only those deemed reachable by the points-to analysis.

5.2.2 Spark Pointer Assignment Graph Building Options

Accepted phase options:

VTA (vta) (default value: false)

Setting VTA to true has the effect of setting field-based, types-for-sites, and simplify-sccs to true, and
on-fly-cg to false, to simulate Variable Type Analysis, described in our OOPSLA 2000 paper. Note
that the algorithm differs from the original VTA in that it handles array elements more precisely.

RTA (rta) (default value: false)

Setting RTA to true sets types-for-sites to true, and causes Spark to use a single points-to set for all
variables, giving Rapid Type Analysis.

Field Based (field-based) (default value: false)

When this option is set to true, fields are represented by variable (Green) nodes, and the object
that the field belongs to is ignored (all objects are lumped together), giving a field-based analysis.
Otherwise, fields are represented by field reference (Red) nodes, and the objects that they belong to
are distinguished, giving a field-sensitive analysis.

Types For Sites (types-for-sites) (default value: false)

When this option is set to true, types rather than allocation sites are used as the elements of the
points-to sets.

Merge String Buffer (merge-stringbuffer) (default value: true)

When this option is set to true, all allocation sites creating java.lang.StringBuffer objects are
grouped together as a single allocation site.

Propagate All String Constants (string-constants) (default value: false)

When this option is set to false, Spark only distinguishes string constants that may be the name of
a class loaded dynamically using reflection, and all other string constants are lumped together into a
single string constant node. Setting this option to true causes all string constants to be propagated
individually.

Simulate Natives (simulate-natives) (default value: true)

When this option is set to true, the effects of native methods in the standard Java class library are
simulated.

Treat EMPTY as Alloc (empties-as-allocs) (default value: false)

When this option is set to true, Spark treats references to EMPTYSET, EMPTYMAP, and EMPTYLIST
as allocation sites for HashSet, HashMap and LinkedList objects respectively, and references to Hashtable.emptyIterator
as allocation sites for Hashtable.EmptyIterator. This enables subsequent analyses to differentiate dif-
ferent uses of Java’s immutable empty collections.

14

Simple Edges Bidirectional (simple-edges-bidirectional) (default value: false)

When this option is set to true, all edges connecting variable (Green) nodes are made bidirectional, as
in Steensgaard’s analysis.

On Fly Call Graph (on-fly-cg) (default value: true)

When this option is set to true, the call graph is computed on-the-fly as points-to information is
computed. Otherwise, an initial CHA approximation to the call graph is used.

5.2.3 Spark Pointer Assignment Graph Simplification Options

Accepted phase options:

Simplify Offline (simplify-offline) (default value: false)

When this option is set to true, variable (Green) nodes which form single-entry subgraphs (so they
must have the same points-to set) are merged before propagation begins.

Simplify SCCs (simplify-sccs) (default value: false)

When this option is set to true, variable (Green) nodes which form strongly-connected components (so
they must have the same points-to set) are merged before propagation begins.

Ignore Types For SCCs (ignore-types-for-sccs) (default value: false)

When this option is set to true, when collapsing strongly-connected components, nodes forming SCCs
are collapsed regardless of their declared type. The collapsed SCC is given the most general type of
all the nodes in the component.

When this option is set to false, only edges connecting nodes of the same type are considered when
detecting SCCs.

This option has no effect unless simplify-sccs is true.

5.2.4 Spark Points-To Set Flowing Options

Accepted phase options:

Propagator (propagator) (default value: worklist)

This option tells Spark which propagation algorithm to use.

Possible values:

iter Iter is a simple, iterative algorithm, which propagates everything
until the graph does not change.

worklist Worklist is a worklist-based algorithm that tries to do as little work
as possible. This is currently the fastest algorithm.

cycle This algorithm finds cycles in the PAG on-the-fly. It is not yet
finished.

merge Merge is an algorithm that merges all concrete field (yellow) nodes
with their corresponding field reference (red) nodes. This algorithm
is not yet finished.

alias Alias is an alias-edge based algorithm. This algorithm tends to
take the least memory for very large problems, because it does not
represent explicitly points-to sets of fields of heap objects.

none None means that propagation is not done; the graph is only built
and simplified. This is useful if an external solver is being used to
perform the propagation.

15

Set Implementation (set-impl) (default value: double)

Select an implementation of points-to sets for Spark to use.

Possible values:

hash Hash is an implementation based on Java’s built-in hash-set.
bit Bit is an implementation using a bit vector.
hybrid Hybrid is an implementation that keeps an explicit list of up to

16 elements, and switches to a bit-vector when the set gets larger
than this.

array Array is an implementation that keeps the elements of the points-to
set in a sorted array. Set membership is tested using binary search,
and set union and intersection are computed using an algorithm
based on the merge step from merge sort.

heintze Heintze’s representation has elements represented by a bit-vector
+ a small ’overflow’ list of some maximum number of elements.
The bit-vectors can be shared by multiple points-to sets, while the
overflow lists are not.

sharedlist Shared List stores its elements in a linked list, and might share its
tail with other similar points-to sets.

double Double is an implementation that itself uses a pair of sets for each
points-to set. The first set in the pair stores new pointed-to ob-
jects that have not yet been propagated, while the second set stores
old pointed-to objects that have been propagated and need not be
reconsidered. This allows the propagation algorithms to be incre-
mental, often speeding them up significantly.

Double Set Old (double-set-old) (default value: hybrid)

Select an implementation for sets of old objects in the double points-to set implementation.

This option has no effect unless Set Implementation is set to double.

Possible values:

hash Hash is an implementation based on Java’s built-in hash-set.
bit Bit is an implementation using a bit vector.
hybrid Hybrid is an implementation that keeps an explicit list of up to

16 elements, and switches to a bit-vector when the set gets larger
than this.

array Array is an implementation that keeps the elements of the points-to
set in a sorted array. Set membership is tested using binary search,
and set union and intersection are computed using an algorithm
based on the merge step from merge sort.

heintze Heintze’s representation has elements represented by a bit-vector
+ a small ’overflow’ list of some maximum number of elements.
The bit-vectors can be shared by multiple points-to sets, while the
overflow lists are not.

sharedlist Shared List stores its elements in a linked list, and might share its
tail with other similar points-to sets.

16

Double Set New (double-set-new) (default value: hybrid)

Select an implementation for sets of new objects in the double points-to set implementation.

This option has no effect unless Set Implementation is set to double.

Possible values:

hash Hash is an implementation based on Java’s built-in hash-set.
bit Bit is an implementation using a bit vector.
hybrid Hybrid is an implementation that keeps an explicit list of up to

16 elements, and switches to a bit-vector when the set gets larger
than this.

array Array is an implementation that keeps the elements of the points-to
set in a sorted array. Set membership is tested using binary search,
and set union and intersection are computed using an algorithm
based on the merge step from merge sort.

heintze Heintze’s representation has elements represented by a bit-vector
+ a small ’overflow’ list of some maximum number of elements.
The bit-vectors can be shared by multiple points-to sets, while the
overflow lists are not.

sharedlist Shared List stores its elements in a linked list, and might share its
tail with other similar points-to sets.

5.2.5 Spark Output Options

Accepted phase options:

Dump HTML (dump-html) (default value: false)

When this option is set to true, a browseable HTML representation of the pointer assignment graph is
output to a file called pag.jar after the analysis completes. Note that this representation is typically
very large.

Dump PAG (dump-pag) (default value: false)

When this option is set to true, a representation of the pointer assignment graph suitable for processing
with other solvers (such as the BDD-based solver) is output before the analysis begins.

Dump Solution (dump-solution) (default value: false)

When this option is set to true, a representation of the resulting points-to sets is dumped. The format
is similar to that of the Dump PAG option, and is therefore suitable for comparison with the results
of other solvers.

Topological Sort (topo-sort) (default value: false)

When this option is set to true, the representation dumped by the Dump PAG option is dumped with
the variable (green) nodes in (pseudo-)topological order.

This option has no effect unless Dump PAG is true.

Dump Types (dump-types) (default value: true)

When this option is set to true, the representation dumped by the Dump PAG option includes type
information for all nodes.

This option has no effect unless Dump PAG is true.

17

Class Method Var (class-method-var) (default value: true)

When this option is set to true, the representation dumped by the Dump PAG option represents nodes
by numbering each class, method, and variable within the method separately, rather than assigning a
single integer to each node.

This option has no effect unless Dump PAG is true. Setting Class Method Var to true has the effect
of setting Topological Sort to false.

Dump Answer (dump-answer) (default value: false)

When this option is set to true, the computed reaching types for each variable are dumped to a file,
so that they can be compared with the results of other analyses (such as the old VTA).

Add Tags (add-tags) (default value: false)

When this option is set to true, the results of the analysis are encoded within tags and printed with
the resulting Jimple code.

Calculate Set Mass (set-mass) (default value: false)

When this option is set to true, Spark computes and prints various cryptic statistics about the size of
the points-to sets computed.

5.2.6 Context-sensitive refinement

Accepted phase options:

Demand-driven refinement-based context-sensitive points-to analysis (cs-demand) (default value:
false)

When this option is set to true, Manu Sridharan’s demand-driven, refinement-based points-to analysis
(PLDI 06) is applied after Spark was run.

Create lazy points-to sets (lazy-pts) (default value: true)

When this option is disabled, context information is computed for every query to the reachingObjects
method. When it is enabled, a call to reachingObjects returns a lazy wrapper object that contains
a context-insensitive points-to set. This set is then automatically refined with context information
when necessary, i.e. when we try to determine the intersection with another points-to set and this
intersection seems to be non-empty.

Maximal traversal (traversal) (default value: 75000)

Make the analysis traverse at most this number of nodes per query. This quota is evenly shared between
multiple passes (see next option).

Maximal number of passes (passes) (default value: 10)

Perform at most this number of refinement iterations. Each iteration traverses at most (traverse /
passes) nodes.

5.2.7 Geometric context-sensitive analysis from ISSTA 2011

Accepted phase options:

Geometric, context-sensitive points-to analysis (geom-pta) (default value: false)

This switch enables/disables the geometric analysis.

18

Encoding methodology used (geom-encoding) (default value: Geom)

This switch specifies the encoding methodology used in the analysis. All possible options are: Geom,
HeapIns, PtIns. The efficiency order is (from slow to fast) Geom - HeapIns - PtIns, but the precision
order is the reverse.

Possible values:

Geom Geometric Encoding.
HeapIns Heap Insensitive Encoding. Omit the heap context range term in

the encoded representation, and in turn, we assume all the contexts
for this heap object are used.

PtIns Pointer Insensitive Encoding. Similar to HeapIns, but we omit the
pointer context range term.

Worklist type (geom-worklist) (default value: PQ)

Specifies the worklist used for selecting the next propagation pointer. All possible options are: PQ,
FIFO. They stand for the priority queue (sorted by the last fire time and topology order) and FIFO
queue.

Possible values:

PQ Priority Queue (sorted by the last fire time and topology order)
FIFO FIFO Queue

Verbose dump file (geom-dump-verbose) (default value:)

If you want to persist the detailed execution information for future analysis, please provide a file name.

Verification file (geom-verify-name) (default value:)

If you want to compare the precision of the points-to results with other solvers (e.g. Paddle), you can
use the ’verify-file’ to specify the list of methods (soot method signature format) that are reachable by
that solver. Then, in the internal evaluations (see the switch geom-eval), we only consider the methods
that are present to both solvers.

Precision evaluation methodologies (geom-eval) (default value: 0)

We internally provide some precision evaluation methodologies, and classify the evaluation strength
into three levels. If level is 0, we do nothing. If level is 1, we report the basic information about the
points-to result. If level is 2, we perform the virtual callsite resolution, static cast safety and all alias
pairs evaluations.

Transform to context-insensitive result (geom-trans) (default value: false)

If your work only concern the context insensitive points-to information, you can use this option to
transform the context sensitive result to insensitive result. Or, sometimes your code wants to directly
access to the points-to vector other than using the standard querying interface, you can use this option
to guarantee the correct behavior (because we clear the SPARK points-to result when running the
geom solver). After the transformation, the context sensitive points-to result is cleared in order to save
memory space for your other jobs.

Fractional parameter (geom-frac-base) (default value: 40)

This option specifies the fractional parameter, which is used to manually tune the precision and per-
formance trade-off. The smaller the value, the better the performance but the worse the precision.

19

Blocking strategy for recursive calls (geom-blocking) (default value: true)

When this option is on, we perform the blocking strategy to the recursive calls. This strategy signifi-
cantly improves the precision. The details are presented in our paper.

Iterations (geom-runs) (default value: 1)

We can run multiple times of the geometric analysis to continuously improve the analysis precision.

5.3 Paddle (cg.paddle)

Paddle is a BDD-based interprocedural analysis framework. It includes points-to analysis, call graph con-
struction, and various client analyses.

Accepted phase options:

Enabled (enabled) (default value: false)

5.3.1 Paddle General Options

Accepted phase options:

Verbose (verbose) (default value: false)

When this option is set to true, Paddle prints detailed information about its execution.

Configuration (conf) (default value: ofcg)

Selects the configuration of points-to analysis and call graph construction to be used in Paddle.

Possible values:

ofcg Performs points-to analysis and builds call graph together, on-the-
fly.

cha Builds only a call graph using Class Hieararchy Analysis, and per-
forms no points-to analysis.

cha-aot First builds a call graph using CHA, then uses the call graph in a
fixed-call-graph points-to analysis.

ofcg-aot First builds a call graph on-the-fly during a points-to analysis, then
uses the resulting call graph to perform a second points-to analysis
with a fixed call graph.

cha-context-aot First builds a call graph using CHA, then makes it context-sensitive
using the technique described by Calman and Zhu in PLDI 04, then
uses the call graph in a fixed-call-graph points-to analysis.

ofcg-context-aotFirst builds a call graph on-the-fly during a points-to analysis, then
makes it context-sensitive using the technique described by Calman
and Zhu in PLDI 04, then uses the resulting call graph to perform
a second points-to analysis with a fixed call graph.

cha-context First builds a call graph using CHA, then makes it context-sensitive
using the technique described by Calman and Zhu in PLDI 04.
Does not produce points-to information.

ofcg-context First builds a call graph on-the-fly during a points-to analysis, then
makes it context-sensitive using the technique described by Calman
and Zhu in PLDI 04. Does not perform a subsequent points-to
analysis.

20

Use BDDs (bdd) (default value: false)

Causes Paddle to use BDD versions of its components

Variable ordering (order) (default value: 32)

Selects one of the BDD variable orderings hard-coded in Paddle.

Dynamic reordering (dynamic-order) (default value: false)

Allows the BDD package to perform dynamic variable ordering.

Profile (profile) (default value: false)

Turns on JeddProfiler for profiling BDD operations.

Verbose GC (verbosegc) (default value: false)

Print memory usage at each BDD garbage collection.

Worklist Implementation (q) (default value: auto)

Select the implementation of worklists to be used in Paddle.

Possible values:

auto When the bdd option is true, the BDD-based worklist implemen-
tation will be used. When the bdd option is false, the Traditional
worklist implementation will be used.

trad Normal worklist queue implementation
bdd BDD-based queue implementation
debug An implementation of worklists that includes both traditional and

BDD-based implementations, and signals an error whenever their
contents differ.

trace A worklist implementation that prints out all tuples added to every
worklist.

numtrace A worklist implementation that prints out the number of tuples
added to each worklist after each operation.

Backend (backend) (default value: auto)

This option tells Paddle which implementation of BDDs to use.

Possible values:

auto When the bdd option is true, the BuDDy backend will be used.
When the bdd option is false, the backend will be set to none, to
avoid loading any BDD backend.

buddy Use BuDDy implementation of BDDs.
cudd Use CUDD implementation of BDDs.
sable Use SableJBDD implementation of BDDs.
javabdd Use JavaBDD implementation of BDDs.
none Don’t use any BDD backend. Any attempted use of BDDs will

cause Paddle to crash.

BDD Nodes (bdd-nodes) (default value: 0)

This option specifies the number of BDD nodes to be used by the BDD backend. A value of 0 causes

21

the backend to start with one million nodes, and allocate more as required. A value other than zero
causes the backend to start with the specified size, and prevents it from ever allocating any more nodes.

Ignore Types Entirely (ignore-types) (default value: false)

When this option is set to true, all parts of Paddle completely ignore declared types of variables and
casts.

Pre Jimplify (pre-jimplify) (default value: false)

When this option is set to true, Paddle converts all available methods to Jimple before starting the
points-to analysis. This allows the Jimplification time to be separated from the points-to time. How-
ever, it increases the total time and memory requirement, because all methods are Jimplified, rather
than only those deemed reachable by the points-to analysis.

5.3.2 Paddle Context Sensitivity Options

Accepted phase options:

Context abstraction (context) (default value: insens)

This option tells Paddle which level of context-sensitivity to use in constructing the call graph.

Possible values:

insens Builds a context-insensitive call graph.
1cfa Builds a 1-CFA call graph.
kcfa Builds a k-CFA call graph.
objsens Builds an object-sensitive call graph.
kobjsens Builds a context-sensitive call graph where the context is a string

of up to k receiver objects.
uniqkobjsens Builds a context-sensitive call graph where the context is a string

of up to k unique receiver objects. If the receiver of a call already
appears in the context string, the context string is just reused as
is.

threadkobjsens Experimental option for thread-entry-point sensitivity.

Context length (k) (k) (default value: 2)

The maximum length of call string or receiver object string used as context.

Context-sensitive Heap Locations (context-heap) (default value: false)

When this option is set to true, the context-sensitivity level that is set for the context-sensitive call
graph and for pointer variables is also used to model heap locations context-sensitively. When this
option is false, heap locations are modelled context-insensitively regardless of the context-sensitivity
level.

5.3.3 Paddle Pointer Assignment Graph Building Options

Accepted phase options:

RTA (rta) (default value: false)

Setting RTA to true sets types-for-sites to true, and causes Paddle to use a single points-to set for all
variables, giving Rapid Type Analysis.

22

Field Based (field-based) (default value: false)

When this option is set to true, fields are represented by variable (Green) nodes, and the object
that the field belongs to is ignored (all objects are lumped together), giving a field-based analysis.
Otherwise, fields are represented by field reference (Red) nodes, and the objects that they belong to
are distinguished, giving a field-sensitive analysis.

Types For Sites (types-for-sites) (default value: false)

When this option is set to true, types rather than allocation sites are used as the elements of the
points-to sets.

Merge String Buffer (merge-stringbuffer) (default value: true)

When this option is set to true, all allocation sites creating java.lang.StringBuffer objects are
grouped together as a single allocation site. Allocation sites creating a java.lang.StringBuilder

object are also grouped together as a single allocation site.

Propagate All String Constants (string-constants) (default value: false)

When this option is set to false, Paddle only distinguishes string constants that may be the name of
a class loaded dynamically using reflection, and all other string constants are lumped together into a
single string constant node. Setting this option to true causes all string constants to be propagated
individually.

Simulate Natives (simulate-natives) (default value: true)

When this option is set to true, the effects of native methods in the standard Java class library are
simulated.

Global Nodes in Simulated Natives (global-nodes-in-natives) (default value: false)

The simulations of native methods such as System.arraycopy() use temporary local variable nodes.
Setting this switch to true causes them to use global variable nodes instead, reducing precision. The
switch exists only to make it possible to measure this effect on precision; there is no other practical
reason to set it to true.

Simple Edges Bidirectional (simple-edges-bidirectional) (default value: false)

When this option is set to true, all edges connecting variable (Green) nodes are made bidirectional, as
in Steensgaard’s analysis.

this Pointer Assignment Edge (this-edges) (default value: false)

When constructing a call graph on-the-fly during points-to analysis, Paddle normally propagates only
those receivers that cause a method to be invoked to the this pointer of the method. When this option
is set to true, however, Paddle instead models flow of receivers as an assignnment edge from the receiver
at the call site to the this pointer of the method, reducing precision.

Precise newInstance (precise-newinstance) (default value: true)

Normally, newInstance() calls are treated as if they may return an object of any type. Setting this
option to true causes them to be treated as if they return only objects of the type of some dynamic
class.

5.3.4 Paddle Points-To Set Flowing Options

Accepted phase options:

23

Propagator (propagator) (default value: auto)

This option tells Paddle which propagation algorithm to use.

Possible values:

24

auto When the bdd option is true, the Incremental BDD propagation
algorithm will be used. When the bdd option is false, the Worklist
propagation algorithm will be used.

iter Iter is a simple, iterative algorithm, which propagates everything
until the graph does not change.

worklist Worklist is a worklist-based algorithm that tries to do as little work
as possible. This is currently the fastest algorithm.

alias Alias is an alias-edge based algorithm. This algorithm tends to
take the least memory for very large problems, because it does not
represent explicitly points-to sets of fields of heap objects.

bdd BDD is a propagator that stores points-to sets in binary decision
diagrams.

incbdd A propagator that stores points-to sets in binary decision diagrams,
and propagates them incrementally.

Set Implementation (set-impl) (default value: double)

Select an implementation of points-to sets for Paddle to use.

Possible values:

hash Hash is an implementation based on Java’s built-in hash-set.
bit Bit is an implementation using a bit vector.
hybrid Hybrid is an implementation that keeps an explicit list of up to

16 elements, and switches to a bit-vector when the set gets larger
than this.

array Array is an implementation that keeps the elements of the points-to
set in a sorted array. Set membership is tested using binary search,
and set union and intersection are computed using an algorithm
based on the merge step from merge sort.

heintze Heintze’s representation has elements represented by a bit-vector
+ a small ’overflow’ list of some maximum number of elements.
The bit-vectors can be shared by multiple points-to sets, while the
overflow lists are not.

double Double is an implementation that itself uses a pair of sets for each
points-to set. The first set in the pair stores new pointed-to ob-
jects that have not yet been propagated, while the second set stores
old pointed-to objects that have been propagated and need not be
reconsidered. This allows the propagation algorithms to be incre-
mental, often speeding them up significantly.

Double Set Old (double-set-old) (default value: hybrid)

Select an implementation for sets of old objects in the double points-to set implementation.

This option has no effect unless Set Implementation is set to double.

Possible values:

hash Hash is an implementation based on Java’s built-in hash-set.
bit Bit is an implementation using a bit vector.

25

hybrid Hybrid is an implementation that keeps an explicit list of up to
16 elements, and switches to a bit-vector when the set gets larger
than this.

array Array is an implementation that keeps the elements of the points-to
set in a sorted array. Set membership is tested using binary search,
and set union and intersection are computed using an algorithm
based on the merge step from merge sort.

heintze Heintze’s representation has elements represented by a bit-vector
+ a small ’overflow’ list of some maximum number of elements.
The bit-vectors can be shared by multiple points-to sets, while the
overflow lists are not.

Double Set New (double-set-new) (default value: hybrid)

Select an implementation for sets of new objects in the double points-to set implementation.

This option has no effect unless Set Implementation is set to double.

Possible values:

hash Hash is an implementation based on Java’s built-in hash-set.
bit Bit is an implementation using a bit vector.
hybrid Hybrid is an implementation that keeps an explicit list of up to

16 elements, and switches to a bit-vector when the set gets larger
than this.

array Array is an implementation that keeps the elements of the points-to
set in a sorted array. Set membership is tested using binary search,
and set union and intersection are computed using an algorithm
based on the merge step from merge sort.

heintze Heintze’s representation has elements represented by a bit-vector
+ a small ’overflow’ list of some maximum number of elements.
The bit-vectors can be shared by multiple points-to sets, while the
overflow lists are not.

5.3.5 Paddle Output Options

Accepted phase options:

Print Context Counts (context-counts) (default value: false)

Causes Paddle to print the number of contexts for each method and call edge, and the number of
equivalence classes of contexts for each variable node.

Print Context Counts (Totals only) (total-context-counts) (default value: false)

Causes Paddle to print the number of contexts and number of context equivalence classes.

Method Context Counts (Totals only) (method-context-counts) (default value: false)

Causes Paddle to print the number of contexts and number of context equivalence classes split out by
method. Requires total-context-counts to also be turned on.

Calculate Set Mass (set-mass) (default value: false)

When this option is set to true, Paddle computes and prints various cryptic statistics about the size
of the points-to sets computed.

26

Number nodes (number-nodes) (default value: true)

When printing debug information about nodes, this option causes the node number of each node to be
printed.

6 Whole Shimple Transformation Pack (wstp)

Soot can perform whole-program analyses. In whole-shimple mode, Soot applies the contents of the Whole-
Shimple Transformation Pack to the scene as a whole after constructing a call graph for the program.

In an unmodified copy of Soot the Whole-Shimple Transformation Pack is empty.

Accepted phase options:

Enabled (enabled) (default value: true)

7 Whole Shimple Optimization Pack (wsop)

If Soot is running in whole shimple mode and the Whole-Shimple Optimization Pack is enabled, the pack’s
transformations are applied to the scene as a whole after construction of the call graph and application of
any enabled Whole-Shimple Transformations.

In an unmodified copy of Soot the Whole-Shimple Optimization Pack is empty.

Accepted phase options:

Enabled (enabled) (default value: false)

8 Whole-Jimple Transformation Pack (wjtp)

Soot can perform whole-program analyses. In whole-program mode, Soot applies the contents of the Whole-
Jimple Transformation Pack to the scene as a whole after constructing a call graph for the program.

Accepted phase options:

Enabled (enabled) (default value: true)

8.1 May Happen in Parallel Analyses (wjtp.mhp)

May Happen in Parallel (MHP) Analyses determine what program statements may be run by different
threads concurrently. This phase does not perform any transformation.

Accepted phase options:

Enabled (enabled) (default value: false)

8.2 Lock Allocator (wjtp.tn)

The Lock Allocator finds critical sections (synchronized regions) in Java programs and assigns locks for
execution on both optimistic and pessimistic JVMs. It can also be used to analyze the existing locks.

27

Accepted phase options:

Enabled (enabled) (default value: false)

Locking Scheme (locking-scheme) (default value: medium-grained)

Selects the granularity of the generated lock allocation

Possible values:

medium-grained Try to identify transactional regions that can employ a dynamic
lock to increase parallelism. All side effects must be protected by
a single object. This locking scheme aims to approximate typical
Java Monitor usage.

coarse-grained Insert static objects into the program for synchronization. One ob-
ject will be used for each group of conflicting synchronized regions.
This locking scheme achieves code-level locking.

single-static Insert one static object into the program for synchronization for all
transactional regions. This locking scheme is for research purposes.

leave-original Analyse the existing lock structure of the program, but do not
change it. With one of the print options, this can be useful for
comparison between the original program and one of the generated
locking schemes.

Perform Deadlock Avoidance (avoid-deadlock) (default value: true)

Perform Deadlock Avoidance by enforcing a lock ordering where necessary.

Use Open Nesting (open-nesting) (default value: true)

Use an open nesting model, where inner transactions are allowed to commit independently of any outer
transaction.

Perform May-Happen-in-Parallel Analysis (do-mhp) (default value: true)

Perform a May-Happen-in-Parallel analysis to assist in allocating locks.

Perform Local Objects Analysis (do-tlo) (default value: true)

Perform a Local-Objects analysis to assist in allocating locks.

Print Topological Graph (print-graph) (default value: false)

Print a topological graph of the program’s transactions in the format used by the graphviz package.

Print Table (print-table) (default value: false)

Print a table of information about the program’s transactions.

Print Debugging Info (print-debug) (default value: false)

Print debugging info, including every statement visited.

9 Whole-Jimple Optimization Pack (wjop)

If Soot is running in whole program mode and the Whole-Jimple Optimization Pack is enabled, the pack’s
transformations are applied to the scene as a whole after construction of the call graph and application of
any enabled Whole-Jimple Transformations.

28

Accepted phase options:

Enabled (enabled) (default value: false)

9.1 Static Method Binder (wjop.smb)

The Static Method Binder statically binds monomorphic call sites. That is, it searches the call graph for
virtual method invocations that can be determined statically to call only a single implementation of the
called method. Then it replaces such virtual invocations with invocations of a static copy of the single called
implementation.

Accepted phase options:

Enabled (enabled) (default value: false)

Insert Null Checks (insert-null-checks) (default value: true)

Insert a check that, before invoking the static copy of the target method, throws a NullPointerException
if the receiver object is null. This ensures that static method binding does not eliminate exceptions
which would have occurred in its absence.

Insert Redundant Casts (insert-redundant-casts) (default value: true)

Insert extra casts for the Java bytecode verifier. If the target method uses its this parameter, a
reference to the receiver object must be passed to the static copy of the target method. The verifier
may complain if the declared type of the receiver parameter does not match the type implementing
the target method.

Say, for example, that Singer is an interface declaring the sing() method and that the call graph
shows all receiver objects at a particular call site, singer.sing() (with singer declared as a Singer)
are in fact Bird objects (Bird being a class that implements Singer). The virtual call singer.sing()
is effectively replaced with the static call Bird.staticsing(singer). Bird.staticsing() may per-
form operations on its parameter which are only allowed on Birds, rather than Singers. The Insert
Redundant Casts option inserts a cast of singer to the Bird type, to prevent complaints from the
verifier.

Allowed Modifier Changes (allowed-modifier-changes) (default value: unsafe)

Specify which changes in visibility modifiers are allowed.

Possible values:

unsafe Modify the visibility on code so that all inlining is permitted.
safe Preserve the exact meaning of the analyzed program.
none Change no modifiers whatsoever.

9.2 Static Inliner (wjop.si)

The Static Inliner visits all call sites in the call graph in a bottom-up fashion, replacing monomorphic calls
with inlined copies of the invoked methods.

Accepted phase options:

Enabled (enabled) (default value: true)

Reconstruct Jimple body after inlining (rerun-jb) (default value: true)

29

When a method with array parameters is inlined, its variables may need to be assigned different types
than they had in the original method to produce compilable code. When this option is set, Soot re-runs
the Jimple Body pack on each method body which has had another method inlined into it so that the
typing algorithm can reassign the types.

Insert Null Checks (insert-null-checks) (default value: true)

Insert, before the inlined body of the target method, a check that throws a NullPointerException if
the receiver object is null. This ensures that inlining will not eliminate exceptions which would have
occurred in its absence.

Insert Redundant Casts (insert-redundant-casts) (default value: true)

Insert extra casts for the Java bytecode verifier. The verifier may complain if the inlined method
uses this and the declared type of the receiver of the call being inlined is different from the type
implementing the target method being inlined.

Say, for example, that Singer is an interface declaring the sing() method and that the call graph
shows that all receiver objects at a particular call site, singer.sing() (with singer declared as a
Singer) are in fact Bird objects (Bird being a class that implements Singer). The implementation of
Bird.sing() may perform operations on this which are only allowed on Birds, rather than Singers.
The Insert Redundant Casts option ensures that this cannot lead to verification errors, by inserting a
cast of bird to the Bird type before inlining the body of Bird.sing().

Allowed Modifier Changes (allowed-modifier-changes) (default value: unsafe)

Specify which changes in visibility modifiers are allowed.

Possible values:

unsafe Modify the visibility on code so that all inlining is permitted.
safe Preserve the exact meaning of the analyzed program.
none Change no modifiers whatsoever.

Expansion Factor (expansion-factor) (default value: 3)

Determines the maximum allowed expansion of a method. Inlining will cause the method to grow by
a factor of no more than the Expansion Factor.

Max Container Size (max-container-size) (default value: 5000)

Determines the maximum number of Jimple statements for a container method. If a method has more
than this number of Jimple statements, then no methods will be inlined into it.

Max Inlinee Size (max-inlinee-size) (default value: 20)

Determines the maximum number of Jimple statements for an inlinee method. If a method has more
than this number of Jimple statements, then it will not be inlined into other methods.

10 Whole-Jimple Annotation Pack (wjap)

Some analyses do not transform Jimple body directly, but annotate statements or values with tags. Whole-
Jimple annotation pack provides a place for annotation-oriented analyses in whole program mode.

Accepted phase options:

Enabled (enabled) (default value: true)

30

10.1 Rectangular Array Finder (wjap.ra)

The Rectangular Array Finder traverses Jimple statements based on the static call graph, and finds array
variables which always hold rectangular two-dimensional array objects.

In Java, a multi-dimensional array is an array of arrays, which means the shape of the array can be
ragged. Nevertheless, many applications use rectangular arrays. Knowing that an array is rectangular can
be very helpful in proving safe array bounds checks.

The Rectangular Array Finder does not change the program being analyzed. Its results are used by the
Array Bound Checker.

Accepted phase options:

Enabled (enabled) (default value: false)

10.2 Unreachable Method Tagger (wjap.umt)

Uses the call graph to determine which methods are unreachable and adds color tags so they can be high-
lighted in a source browser.

Accepted phase options:

Enabled (enabled) (default value: false)

10.3 Unreachable Fields Tagger (wjap.uft)

Uses the call graph to determine which fields are unreachable and adds color tags so they can be highlighted
in a source browser.

Accepted phase options:

Enabled (enabled) (default value: false)

10.4 Tightest Qualifiers Tagger (wjap.tqt)

Determines which methods and fields have qualifiers that could be tightened. For example: if a field or
method has the qualifier of public but is only used within the declaring class it could be private. This, this
field or method is tagged with color tags so that the results can be highlighted in a source browser.

Accepted phase options:

Enabled (enabled) (default value: false)

10.5 Call Graph Grapher (wjap.cgg)

Creates graphical call graph.

Accepted phase options:

Enabled (enabled) (default value: false)

Show Library Methods (show-lib-meths) (default value: false)

31

10.6 Purity Analysis [AM] (wjap.purity)

Purity anaysis implemented by Antoine Mine and based on the paper A Combined Pointer and Purity
Analysis for Java Programs by Alexandru Salcianu and Martin Rinard.

Accepted phase options:

Enabled (enabled) (default value: false)

Dump one .dot files for each method summary (dump-summaries) (default value: true)

Dump .dot call-graph annotated with method summaries (huge) (dump-cg) (default value: false)

Dump one .dot for each intra-procedural method analysis (long) (dump-intra) (default value: false)

Print analysis results (print) (default value: true)

Annotate class files (annotate) (default value: true)

Be (quite) verbose (verbose) (default value: false)

11 Shimple Control (shimple)

Shimple Control sets parameters which apply throughout the creation and manipulation of Shimple bodies.
Shimple is Soot’s SSA representation.

Accepted phase options:

Enabled (enabled) (default value: true)

Shimple Node Elimination Optimizations (node-elim-opt) (default value: true)

Perform some optimizations, such as dead code elimination and local aggregation, before/after elimi-
nating nodes.

Local Name Standardization (standard-local-names) (default value: false)

If enabled, the Local Name Standardizer is applied whenever Shimple creates new locals. Normally,
Shimple will retain the original local names as far as possible and use an underscore notation to denote
SSA subscripts. This transformation does not otherwise affect Shimple behaviour.

Extended SSA (SSI) (extended) (default value: false)

If enabled, Shimple will created extended SSA (SSI) form.

Debugging Output (debug) (default value: false)

If enabled, Soot may print out warnings and messages useful for debugging the Shimple module.
Automatically enabled by the global debug switch.

12 Shimple Transformation Pack (stp)

When the Shimple representation is produced, Soot applies the contents of the Shimple Transformation Pack
to each method under analysis. This pack contains no transformations in an unmodified version of Soot.

Accepted phase options:

Enabled (enabled) (default value: true)

32

13 Shimple Optimization Pack (sop)

The Shimple Optimization Pack contains transformations that perform optimizations on Shimple, Soot’s
SSA representation.

Accepted phase options:

Enabled (enabled) (default value: false)

13.1 Shimple Constant Propagator and Folder (sop.cpf)

A powerful constant propagator and folder based on an algorithm sketched by Cytron et al that takes condi-
tional control flow into account. This optimization demonstrates some of the benefits of SSA – particularly
the fact that Phi nodes represent natural merge points in the control flow.

Accepted phase options:

Enabled (enabled) (default value: true)

Prune Control Flow Graph (prune-cfg) (default value: true)

Conditional branching statements that are found to branch unconditionally (or fall through) are re-
placed with unconditional branches (or removed). This transformation exposes more opportunities for
dead code removal.

14 Jimple Transformation Pack (jtp)

Soot applies the contents of the Jimple Transformation Pack to each method under analysis. This pack
contains no transformations in an unmodified version of Soot.

Accepted phase options:

Enabled (enabled) (default value: true)

15 Jimple Optimization Pack (jop)

When Soot’s Optimize option is on, Soot applies the Jimple Optimization Pack to every JimpleBody in
application classes. This section lists the default transformations in the Jimple Optimization Pack.

Accepted phase options:

Enabled (enabled) (default value: false)

15.1 Common Subexpression Eliminator (jop.cse)

The Common Subexpression Eliminator runs an available expressions analysis on the method body, then
eliminates common subexpressions.

This implementation is especially slow, as it runs on individual statements rather than on basic blocks. A
better implementation (which would find most common subexpressions, but not all) would use basic blocks
instead.

This implementation is also slow because the flow universe is explicitly created; it need not be. A better
implementation would implicitly compute the kill sets at every node.

Because of its current slowness, this transformation is not enabled by default.

33

Accepted phase options:

Enabled (enabled) (default value: false)

Naive Side Effect Tester (naive-side-effect) (default value: false)

If Naive Side Effect Tester is true, the Common Subexpression Eliminator uses the conservative side
effect information provided by the NaiveSideEffectTester class, even if interprocedural information
about side effects is available.

The naive side effect analysis is based solely on the information available locally about a statement. It
assumes, for example, that any method call has the potential to write and read all instance and static
fields in the program.

If Naive Side Effect Tester is set to false and Soot is in whole program mode, then the Common
Subexpression Eliminator uses the side effect information provided by the PASideEffectTester class.
PASideEffectTester uses a points-to analysis to determine which fields and statics may be written
or read by a given statement.

If whole program analysis is not performed, naive side effect information is used regardless of the
setting of Naive Side Effect Tester.

15.2 Busy Code Motion (jop.bcm)

Busy Code Motion is a straightforward implementation of Partial Redundancy Elimination. This implemen-
tation is not very aggressive. Lazy Code Motion is an improved version which should be used instead of
Busy Code Motion.

Accepted phase options:

Enabled (enabled) (default value: false)

Naive Side Effect Tester (naive-side-effect) (default value: false)

If Naive Side Effect Tester is set to true, Busy Code Motion uses the conservative side effect information
provided by the NaiveSideEffectTester class, even if interprocedural information about side effects
is available.

The naive side effect analysis is based solely on the information available locally about a statement. It
assumes, for example, that any method call has the potential to write and read all instance and static
fields in the program.

If Naive Side Effect Tester is set to false and Soot is in whole program mode, then Busy Code Motion
uses the side effect information provided by the PASideEffectTester class. PASideEffectTester uses
a points-to analysis to determine which fields and statics may be written or read by a given statement.

If whole program analysis is not performed, naive side effect information is used regardless of the
setting of Naive Side Effect Tester.

15.3 Lazy Code Motion (jop.lcm)

Lazy Code Motion is an enhanced version of Busy Code Motion, a Partial Redundancy Eliminator. Before
doing Partial Redundancy Elimination, this optimization performs loop inversion (turning while loops into
do while loops inside an if statement). This allows the Partial Redundancy Eliminator to optimize loop
invariants of while loops.

34

Accepted phase options:

Enabled (enabled) (default value: false)

Safety (safety) (default value: safe)

This option controls which fields and statements are candidates for code motion.

Possible values:

safe Safe, but only considers moving additions, subtractions and multi-
plications.

medium Unsafe in multi-threaded programs, as it may reuse the values read
from field accesses.

unsafe May violate Java’s exception semantics, as it may move or reorder
exception-throwing statements, potentially outside of try-catch
blocks.

Unroll (unroll) (default value: true)

If true, perform loop inversion before doing the transformation.

Naive Side Effect Tester (naive-side-effect) (default value: false)

If Naive Side Effect Tester is set to true, Lazy Code Motion uses the conservative side effect information
provided by the NaiveSideEffectTester class, even if interprocedural information about side effects
is available.

The naive side effect analysis is based solely on the information available locally about a statement. It
assumes, for example, that any method call has the potential to write and read all instance and static
fields in the program.

If Naive Side Effect Tester is set to false and Soot is in whole program mode, then Lazy Code Motion
uses the side effect information provided by the PASideEffectTester class. PASideEffectTester uses
a points-to analysis to determine which fields and statics may be written or read by a given statement.

If whole program analysis is not performed, naive side effect information is used regardless of the
setting of Naive Side Effect Tester.

15.4 Copy Propagator (jop.cp)

This phase performs cascaded copy propagation.

Accepted phase options:

Enabled (enabled) (default value: true)

Only Regular Locals (only-regular-locals) (default value: false)

Only propagate copies through “regular” locals, that is, those declared in the source bytecode.

Only Stack Locals (only-stack-locals) (default value: false)

Only propagate copies through locals that represent stack locations in the original bytecode.

15.5 Jimple Constant Propagator and Folder (jop.cpf)

The Jimple Constant Propagator and Folder evaluates any expressions consisting entirely of compile-time
constants, for example 2 * 3, and replaces the expression with the constant result, in this case 6.

35

Accepted phase options:

Enabled (enabled) (default value: true)

15.6 Conditional Branch Folder (jop.cbf)

The Conditional Branch Folder statically evaluates the conditional expression of Jimple if statements. If
the condition is identically true or false, the Folder replaces the conditional branch statement with an
unconditional goto statement.

Accepted phase options:

Enabled (enabled) (default value: true)

15.7 Dead Assignment Eliminator (jop.dae)

The Dead Assignment Eliminator eliminates assignment statements to locals whose values are not subse-
quently used, unless evaluating the right-hand side of the assignment may cause side-effects.

Accepted phase options:

Enabled (enabled) (default value: true)

Only Tag Dead Code (only-tag) (default value: false)

Only tag dead assignment statements instead of eliminaing them.

Only Stack Locals (only-stack-locals) (default value: false)

Only eliminate dead assignments to locals that represent stack locations in the original bytecode.

15.8 Null Check Eliminator (jop.nce)

Replaces statements ’if(x!=null) goto y’ with ’goto y’ if x is known to be non-null or with ’nop’ if it is known
to be null, etc. Generates dead code and is hence followed by unreachable code elimination. Disabled by
default because it can be expensive on methods with many locals.

Accepted phase options:

Enabled (enabled) (default value: false)

15.9 Unreachable Code Eliminator 1 (jop.uce1)

The Unreachable Code Eliminator removes unreachable code and traps whose catch blocks are empty.

Accepted phase options:

Enabled (enabled) (default value: true)

Remove unreachable traps (remove-unreachable-traps) (default value: false)

Remove exception table entries when none of the protected instructions can throw the exception being
caught.

36

15.10 Unconditional Branch Folder 1 (jop.ubf1)

The Unconditional Branch Folder removes unnecessary ‘goto’ statements from a JimpleBody.
If a goto statement’s target is the next instruction, then the statement is removed. If a goto’s target is

another goto, with target y, then the first statement’s target is changed to y.
If some if statement’s target is a goto statement, then the if’s target can be replaced with the goto’s

target.
(These situations can result from other optimizations, and branch folding may itself generate more

unreachable code.)

Accepted phase options:

Enabled (enabled) (default value: true)

15.11 Unreachable Code Eliminator 2 (jop.uce2)

Another iteration of the Unreachable Code Eliminator.

Accepted phase options:

Enabled (enabled) (default value: true)

Remove unreachable traps (remove-unreachable-traps) (default value: false)

Remove exception table entries when none of the protected instructions can throw the exception being
caught.

15.12 Unconditional Branch Folder 2 (jop.ubf2)

Another iteration of the Unconditional Branch Folder.

Accepted phase options:

Enabled (enabled) (default value: true)

15.13 Unused Local Eliminator (jop.ule)

The Unused Local Eliminator phase removes any unused locals from the method.

Accepted phase options:

Enabled (enabled) (default value: true)

16 Jimple Annotation Pack (jap)

The Jimple Annotation Pack contains phases which add annotations to Jimple bodies individually (as op-
posed to the Whole-Jimple Annotation Pack, which adds annotations based on the analysis of the whole
program).

Accepted phase options:

Enabled (enabled) (default value: true)

37

16.1 Null Pointer Checker (jap.npc)

The Null Pointer Checker finds instruction which have the potential to throw NullPointerExceptions and
adds annotations indicating whether or not the pointer being dereferenced can be determined statically not
to be null.

Accepted phase options:

Enabled (enabled) (default value: false)

Only Array Ref (only-array-ref) (default value: false)

Annotate only array-referencing instructions, instead of all instructions that need null pointer checks.

Profiling (profiling) (default value: false)

Insert profiling instructions that at runtime count the number of eliminated safe null pointer checks.
The inserted profiling code assumes the existence of a MultiCounter class implementing the methods
invoked. For details, see the NullPointerChecker source code.

16.2 Null Pointer Colourer (jap.npcolorer)

Produce colour tags that the Soot plug-in for Eclipse can use to highlight null and non-null references.

Accepted phase options:

Enabled (enabled) (default value: false)

16.3 Array Bound Checker (jap.abc)

The Array Bound Checker performs a static analysis to determine which array bounds checks may safely be
eliminated and then annotates statements with the results of the analysis.

If Soot is in whole-program mode, the Array Bound Checker can use the results provided by the Rect-
angular Array Finder.

Accepted phase options:

Enabled (enabled) (default value: false)

With All (with-all) (default value: false)

Setting the With All option to true is equivalent to setting each of With CSE, With Array Ref, With
Field Ref, With Class Field, and With Rectangular Array to true.

With Common Sub-expressions (with-cse) (default value: false)

The analysis will consider common subexpressions. For example, consider the situation where r1 is
assigned a*b; later, r2 is assigned a*b, where neither a nor b have changed between the two statements.
The analysis can conclude that r2 has the same value as r1. Experiments show that this option can
improve the result slightly.

With Array References (with-arrayref) (default value: false)

With this option enabled, array references can be considered as common subexpressions; however, we
are more conservative when writing into an array, because array objects may be aliased. We also
assume that the application is single-threaded or that the array references occur in a synchronized
block. That is, we assume that an array element may not be changed by other threads between two
array references.

38

With Field References (with-fieldref) (default value: false)

The analysis treats field references (static and instance) as common subexpressions; however, we are
more conservative when writing to a field, because the base of the field reference may be aliased. We
also assume that the application is single-threaded or that the field references occur in a synchronized
block. That is, we assume that a field may not be changed by other threads between two field references.

With Class Field (with-classfield) (default value: false)

This option makes the analysis work on the class level. The algorithm analyzes final or private class
fields first. It can recognize the fields that hold array objects of constant length. In an application
using lots of array fields, this option can improve the analysis results dramatically.

With Rectangular Array (with-rectarray) (default value: false)

This option is used together with wjap.ra to make Soot run the whole-program analysis for rectangular
array objects. This analysis is based on the call graph, and it usually takes a long time. If the
application uses rectangular arrays, these options can improve the analysis result.

Profiling (profiling) (default value: false)

Profile the results of array bounds check analysis. The inserted profiling code assumes the existence of
a MultiCounter class implementing the methods invoked. For details, see the ArrayBoundsChecker

source code.

Add Color Tags (add-color-tags) (default value: false)

Add color tags to the results of the array bounds check analysis.

16.4 Profiling Generator (jap.profiling)

The Profiling Generator inserts the method invocations required to initialize and to report the results of
any profiling performed by the Null Pointer Checker and Array Bound Checker. Users of the Profiling
Generator must provide a MultiCounter class implementing the methods invoked. For details, see the
ProfilingGenerator source code.

Accepted phase options:

Enabled (enabled) (default value: false)

Not Main Entry (notmainentry) (default value: false)

Insert the calls to the MultiCounter at the beginning and end of methods with the signature long

runBenchmark(java.lang.String[]) instead of the signature void main(java.lang.String[]).

16.5 Side Effect tagger (jap.sea)

The Side Effect Tagger uses the active invoke graph to produce side-effect attributes, as described in the
Spark thesis, chapter 6.

Accepted phase options:

Enabled (enabled) (default value: false)

Build naive dependence graph (naive) (default value: false)

When set to true, the dependence graph is built with a node for each statement, without merging the
nodes for equivalent statements. This makes it possible to measure the effect of merging nodes for
equivalent statements on the size of the dependence graph.

39

16.6 Field Read/Write Tagger (jap.fieldrw)

The Field Read/Write Tagger uses the active invoke graph to produce tags indicating which fields may be
read or written by each statement, including invoke statements.

Accepted phase options:

Enabled (enabled) (default value: false)

Maximum number of fields (threshold) (default value: 100)

If a statement reads/writes more than this number of fields, no tag will be produced for it, in order to
keep the size of the tags reasonable.

16.7 Call Graph Tagger (jap.cgtagger)

The Call Graph Tagger produces LinkTags based on the call graph. The Eclipse plugin uses these tags to
produce linked popup lists which indicate the source and target methods of the statement. Selecting a link
from the list moves the cursor to the indicated method.

Accepted phase options:

Enabled (enabled) (default value: false)

16.8 Parity Tagger (jap.parity)

The Parity Tagger produces StringTags and ColorTags indicating the parity of a variable (even, odd, top,
or bottom). The eclipse plugin can use tooltips and variable colouring to display the information in these
tags. For example, even variables (such as x in x = 2) are coloured yellow.

Accepted phase options:

Enabled (enabled) (default value: false)

16.9 Parameter Alias Tagger (jap.pat)

For each method with parameters of reference type, this tagger indicates the aliasing relationships between
the parameters using colour tags. Parameters that may be aliased are the same colour. Parameters that
may not be aliased are in different colours.

Accepted phase options:

Enabled (enabled) (default value: false)

16.10 Live Variables Tagger (jap.lvtagger)

Colors live variables.

Accepted phase options:

Enabled (enabled) (default value: false)

16.11 Reaching Defs Tagger (jap.rdtagger)

For each use of a local in a stmt creates a link to the reaching def.

40

Accepted phase options:

Enabled (enabled) (default value: false)

16.12 Cast Elimination Check Tagger (jap.che)

Indicates whether cast checks can be eliminated.

Accepted phase options:

Enabled (enabled) (default value: false)

16.13 Unreachable Method Transformer (jap.umt)

When the whole-program analysis determines a method to be unreachable, this transformer inserts an
assertion into the method to check that it is indeed unreachable.

Accepted phase options:

Enabled (enabled) (default value: false)

16.14 Loop Invariant Tagger (jap.lit)

An expression whose operands are constant or have reaching definitions from outside the loop body are
tagged as loop invariant.

Accepted phase options:

Enabled (enabled) (default value: false)

16.15 Available Expressions Tagger (jap.aet)

A each statement a set of available expressions is after the statement is added as a tag.

Accepted phase options:

Enabled (enabled) (default value: false)

Kind (kind) (default value: optimistic)

Possible values:

optimistic

pessimistic

16.16 Dominators Tagger (jap.dmt)

Provides link tags at a statement to all of the satements dominators.

Accepted phase options:

Enabled (enabled) (default value: false)

41

17 Grimp Body Creation (gb)

The Grimp Body Creation phase creates a GrimpBody for each source method. It is run only if the output
format is grimp or grimple, or if class files are being output and the Via Grimp option has been specified.

Accepted phase options:

Enabled (enabled) (default value: true)

17.1 Grimp Pre-folding Aggregator (gb.a1)

The Grimp Pre-folding Aggregator combines some local variables, finding definitions with only a single use
and removing the definition after replacing the use with the definition’s right-hand side, if it is safe to do so.
While the mechanism is the same as that employed by the Jimple Local Aggregator, there is more scope for
aggregation because of Grimp’s more complicated expressions.

Accepted phase options:

Enabled (enabled) (default value: true)

Only Stack Locals (only-stack-locals) (default value: true)

Aggregate only values stored in stack locals.

17.2 Grimp Constructor Folder (gb.cf)

The Grimp Constructor Folder combines new statements with the specialinvoke statement that calls the
new object’s constructor. For example, it turns

r2 = new java.util.ArrayList;

r2.<init>();

into

r2 = new java.util.ArrayList();

Accepted phase options:

Enabled (enabled) (default value: true)

17.3 Grimp Post-folding Aggregator (gb.a2)

The Grimp Post-folding Aggregator combines local variables after constructors have been folded. Constructor
folding typically introduces new opportunities for aggregation, since when a sequence of instructions like

r2 = new java.util.ArrayList;

r2.<init>();

r3 = r2

42

is replaced by

r2 = new java.util.ArrayList();

r3 = r2

the invocation of <init> no longer represents a potential side-effect separating the two definitions, so they
can be combined into

r3 = new java.util.ArrayList();

(assuming there are no subsequent uses of r2).

Accepted phase options:

Enabled (enabled) (default value: true)

Only Stack Locals (only-stack-locals) (default value: true)

Aggregate only values stored in stack locals.

17.4 Grimp Unused Local Eliminator (gb.ule)

This phase removes any locals that are unused after constructor folding and aggregation.

Accepted phase options:

Enabled (enabled) (default value: true)

18 Grimp Optimization (gop)

The Grimp Optimization pack performs optimizations on GrimpBodys (currently there are no optimizations
performed specifically on GrimpBodys, and the pack is empty). It is run only if the output format is grimp
or grimple, or if class files are being output and the Via Grimp option has been specified.

Accepted phase options:

Enabled (enabled) (default value: false)

19 Baf Body Creation (bb)

The Baf Body Creation phase creates a BafBody from each source method. It is run if the output format is
baf or b, or if class files are being output and the Via Grimp option has not been specified.

Accepted phase options:

Enabled (enabled) (default value: true)

43

19.1 Load Store Optimizer (bb.lso)

The Load Store Optimizer replaces some combinations of loads to and stores from local variables with stack
instructions. A simple example would be the replacement of

store.r $r2;

load.r $r2;

with

dup1.r

in cases where the value of $r2 is not used subsequently.

Accepted phase options:

Enabled (enabled) (default value: true)

Debug (debug) (default value: false)

Produces voluminous debugging output describing the progress of the load store optimizer.

Inter (inter) (default value: false)

Enables two simple inter-block optimizations which attempt to keep some variables on the stack between
blocks. Both are intended to catch if-like constructions where control flow branches temporarily into
two paths that converge at a later point.

sl (sl) (default value: true)

Enables an optimization which attempts to eliminate store/load pairs.

sl2 (sl2) (default value: false)

Enables an a second pass of the optimization which attempts to eliminate store/load pairs.

sll (sll) (default value: true)

Enables an optimization which attempts to eliminate store/load/load trios with some variant of dup.

sll2 (sll2) (default value: false)

Enables an a second pass of the optimization which attempts to eliminate store/load/load trios with
some variant of dup.

19.2 Peephole Optimizer (bb.pho)

Applies peephole optimizations to the Baf intermediate representation. Individual optimizations must be
implemented by classes implementing the Peephole interface. The Peephole Optimizer reads the names of
the Peephole classes at runtime from the file peephole.dat and loads them dynamically. Then it continues
to apply the Peepholes repeatedly until none of them are able to perform any further optimizations.

Soot provides only one Peephole, named ExamplePeephole, which is not enabled by the delivered
peephole.dat file. ExamplePeephole removes all checkcast instructions.

44

Accepted phase options:

Enabled (enabled) (default value: true)

19.3 Unused Local Eliminator (bb.ule)

This phase removes any locals that are unused after load store optimization and peephole optimization.

Accepted phase options:

Enabled (enabled) (default value: true)

19.4 Local Packer (bb.lp)

The Local Packer attempts to minimize the number of local variables required in a method by reusing the
same variable for disjoint DU-UD webs. Conceptually, it is the inverse of the Local Splitter.

Accepted phase options:

Enabled (enabled) (default value: true)

Unsplit Original Locals (unsplit-original-locals) (default value: false)

Use the variable names in the original source as a guide when determining how to share local variables
across non-interfering variable usages. This recombines named locals which were split by the Local
Splitter.

20 Baf Optimization (bop)

The Baf Optimization pack performs optimizations on BafBodys (currently there are no optimizations per-
formed specifically on BafBodys, and the pack is empty). It is run only if the output format is baf or b, or
if class files are being output and the Via Grimp option has not been specified.

Accepted phase options:

Enabled (enabled) (default value: false)

21 Tag Aggregator (tag)

The Tag Aggregator pack aggregates tags attached to individual units into a code attribute for each method,
so that these attributes can be encoded in Java class files.

Accepted phase options:

Enabled (enabled) (default value: true)

21.1 Line Number Tag Aggregator (tag.ln)

The Line Number Tag Aggregator aggregates line number tags.

Accepted phase options:

Enabled (enabled) (default value: true)

45

21.2 Array Bounds and Null Pointer Check Tag Aggregator (tag.an)

The Array Bounds and Null Pointer Tag Aggregator aggregates tags produced by the Array Bound Checker
and Null Pointer Checker.

Accepted phase options:

Enabled (enabled) (default value: false)

21.3 Dependence Tag Aggregator (tag.dep)

The Dependence Tag Aggregator aggregates tags produced by the Side Effect Tagger.

Accepted phase options:

Enabled (enabled) (default value: false)

21.4 Field Read/Write Tag Aggregator (tag.fieldrw)

The Field Read/Write Tag Aggregator aggregates field read/write tags produced by the Field Read/Write
Tagger, phase jap.fieldrw.

Accepted phase options:

Enabled (enabled) (default value: false)

22 Dava Body Creation (db)

The decompile (Dava) option is set using the -f dava options in Soot. Options provided by Dava are added
to this dummy phase so as not to clutter the soot general arguments. -p db (option name):(value) will be
used to set all required values for Dava.

Accepted phase options:

Enabled (enabled) (default value: true)

Source (source-is-javac) (default value: true)

check out soot.dava.toolkits.base.misc.ThrowFinder In short we want to ensure that if there are throw
exception info in the class file dava uses this info.

22.1 Transformations (db.transformations)

The transformations implemented using AST Traversal and structural flow analses on Dava’s AST

Accepted phase options:

Enabled (enabled) (default value: true)

22.2 Renamer (db.renamer)

If set, the renaming analyses implemented in Dava are applied to each method body being decompiled. The
analyses use heuristics to choose potentially better names for local variables. (As of February 14th 2006,
work is still under progress on these analyses (dava.toolkits.base.renamer).

46

Accepted phase options:

Enabled (enabled) (default value: false)

22.3 De-obfuscate (db.deobfuscate)

Certain analyses make sense only when the bytecode is obfuscated code. There are plans to implement such
analyses and apply them on methods only if this flag is set. Dead Code elimination which includes removing
code guarded by some condition which is always false or always true is one such analysis. Another suggested
analysis is giving default names to classes and fields. Onfuscators love to use weird names for fields and
classes and even a simple re-naming of these could be a good help to the user. Another more advanced
analysis would be to check for redundant constant fields added by obfuscators and then remove uses of these
constant fields from the code.

Accepted phase options:

Enabled (enabled) (default value: true)

22.4 Force Recompilability (db.force-recompile)

While decompiling we have to be clear what our aim is: do we want to convert bytecode to Java syntax
and stay as close to the actual execution of bytecode or do we want recompilably Java source representing
the bytecode. This distinction is important because some restrictions present in Java source are absent
from the bytecode. Examples of this include that fact that in Java a call to a constructor or super needs
to be the first statement in a constructors body. This restriction is absent from the bytecode. Similarly
final fields HAVE to be initialized once and only once in either the static initializer (static fields) or all
the constructors (non-static fields). Additionally the fields should be initialized on all possible execution
paths. These restrictions are again absent from the bytecode. In doing a one-one conversion of bytecode to
Java source then no attempt should be made to fix any of these and similar problems in the Java source.
However, if the aim is to get recompilable code then these and similar issues need to be fixed. Setting the
force-recompilability flag will ensure that the decompiler tries its best to produce recompilable Java source.

Accepted phase options:

Enabled (enabled) (default value: true)

47

