
Annotating Java Class Files with

Array Bounds Check and Null Pointer Check Information

Feng Qian (fqian@sable.mcgill.ca)

January 22, 2012

This note explains how to use Soot annotation options to add array bounds check and null pointer check
attributes to a class file and how to use these attributes in a JIT or ahead-of-time compiler.

1 Array References and Object References

Java requires array bounds checks when accessing arrays, and null pointer checks when accessing objects.
Array bounds checks are implemented at the virtual machine level by inserting comparison instructions before
accessing an array element. Most of operating systems can raise a hardware exception when a bytecode
accesses a null pointer, so the nullness check on an object reference is free at most of the time. However,
some bytecodes, like the invokespecial and athrow instructions, do need explicit comparison instructions to
detect null pointers. Both of these safety checking mechanisms do cause heavy runtime overhead.

Soot provides static analyses for detecting safe array and object accesses in a method. These analyses
mark array and object reference bytecodes as either safe or unsafe. The results of these analyses are encoded
into the class file as attributes, which can then be understood by an interpreter or JIT compiler. If a bytecode
is marked as safe in its attribute, the associated comparison instructions can be eliminated. This can speed
up the execution of Java applications. Our process of encoding class files with attributes is called annotation.

Soot can be used as a compiler framework to support any attributes you would like to define; they can
then be encoded into the class file. The process of adding new analyses and attributes is documented in
“Adding attributes to class files via Soot”.

2 Annotation options in Soot

2.1 Description of new options

Soot has new command-line options -annot-nullpointer and -annot-arraybounds to enable the phases
required to emit null pointer check and array bounds check annotations, respectively.

Soot has some phase options to configure the annotation process. These phase options only take effect
when annotation is enabled. Note that the array bounds check analysis and null pointer check analysis
constitute two different phases, but that the results are combined and stored in the same attribute in the
class files.

The null pointer check analysis has the phase name “jap.npc”. It has one phase option (aside from the
default option enabled).

-p jap.npc only-array-ref

By default, all bytecodes that need null pointer checks are annotated with the analysis result. When
this option is set to true, Soot will annotate only array reference bytecodes with null pointer check
information; other bytecodes, such as getfield and putfield, will not be annotated.

1



Soot also has phase options for the array bounds check analysis. These options affect three levels of
analyses: intraprocedural, class-level, and whole-program. The array bounds check analysis has the phase
name “jap.abc”. If the whole-program analysis is required, an extra phase “wjap.ra” for finding rectangular
arrays is required. This phase can be also enabled with phase options.

By default, our array bounds check analysis is intraprocedual, since it only examines local variables. This
is fast, but conservative. Other options can improve the analysis result; however, it will usually take longer
to carry out the analysis, and some options assume that the application is single-threaded.

-p jap.abc with-cse

The analysis will consider common subexpressions. For example, consider the situation where r1 is
assigned a*b; later, r2 is assigned a*b, where both a and b have not been changed between the two
statements. The analysis can conclude that r2 has the same value as r1. Experiments show that this
option can improve the result slightly.

-p jap.abc with-arrayref

With this option enabled, array references can be considered as common subexpressions; however, we
are more conservative when writing into an array, because array objects may be aliased. NOTE: We
also assume that the application in a single-threaded program or in a synchronized block. That is, an
array element may not be changed by other threads between two array references.

-p jap.abc with-fieldref

The analysis treats field references (static and instance) as common subexpressions. The restrictions
from the ‘with-arrayref’ option also apply.

-p jap.abc with-classfield

This option makes the analysis work on the class level. The algorithm analyzes ‘final’ or ‘private’ class
fields first. It can recognize the fields that hold array objects with constant length. In an application
using lots of array fields, this option can improve the analysis results dramatically.

-p jap.abc with-all

A macro. Instead of typing a long string of phase options, this option will turn on all options of the
phase “jap.abc”.

-p jap.abc with-rectarray, -p wjap.ra with-wholeapp

These two options are used together to make Soot run the whole-program analysis for rectangular array
objects. This analysis is based on the call graph, and it usually takes a long time. If the application
uses rectangular arrays, these options can improve the analysis result.

2.2 Examples

Annotate the benchmark in class file mode with both analyses.

java soot.Main -annot-nullpointer -annot-arraybounds spec.benchmarks._222_mpegaudio.Main

The options for rectangular array should be used in application mode. For example:

java soot.Main --app -annot-arraybounds -annot-arraybounds -p wjap.ra with-wholeapp

-p jap.abc with-all spec.benchmarks._222_mpegaudio.Main

The following command only annotates the array reference bytecodes.

java soot.Main -annot-arraybounds -annot-arraybounds -jap.npc only-array-ref

spec.benchmarks._222_mpegaudio.Main

2



3 Using attributes in the Virtual Machine

The array bounds check and null pointer check information is encoded in a single attribute in a class file. The
attribute is called ArrayNullCheckAttribute. When a VM reads in the class file, it can use the attribute
to avoid generating comparison instructions for the safe bounds and nullness checks.

All array reference bytecodes, such as ?aload, ?store will be annotated with bounds check information.
Bytecodes that need null pointer check are listed below:

?aload

?astore

getfield

putfield

invokevirtual

invokespecial

invokeinterface

arraylength

monitorenter

monitorexit

athrow

The attributes in the class file are organized as a table. If a method has been annotated, it will have an
ArrayNullCheckAttribute attribute on its Code attribute. The data structure is defined as:

array_null_check_attribute

{

u2 attribute_name_index;

u4 attribute_length;

u3 attribute[attribute_length/3];

}

The attribute data consist of 3-byte entries. Each entry has the first two bytes indicating the PC of the
bytecode it belongs to; the third byte is used to represent annotation information.

soot_attr_entry

{

u2 PC;

u1 value;

}

Entries are sorted by PC in ascending order when written into the class file. The right-most two bits of
the ‘value’ byte represent upper and lower bounds information. The third bit from right is used for nullness
annotation. Other bits are not used and set to zero. The bit value ‘1’ indicates the check is needed, and 0
represents a known-to-be-safe access. In general, only when both lower and upper bounds are safe can the
check instructions be eliminated. However, sometimes this depends on the VM implementation.

0 0 0 0 0 N U L

N : nullness check

U : upper bounds check

L : lower bounds check

For example, the attribute data should be interpreted as:

0 0 0 0 0 1 x x // need null check

0 0 0 0 0 0 x x // no null check

3



// x x represent array bound check.

0 0 0 0 0 0 0 0 // do not need null check or array bounds check

0 0 0 0 0 1 0 0 // need null check, but not array bounds check

Other information

The detailed annotation process is described in our technical report. The array bounds check analysis
algorithm will show up in another technical report. There is a tutorial describing how to develop other
annotation attributes using Soot.

Change log

• October 2, 2000: Initial version.

4


