
Towards Inconsistency Tolerance
by Quantification of Semantic Inconsistencies

István Dávid
University of Antwerp - Flanders’ Make, Belgium

istvan.david@uantwerpen.be

Eugene Syriani
University of Montreal, Canada
syriani@iro.umontreal.ca

Clark Verbrugge
McGill University, Canada
clump@cs.mcgill.ca

Didier Buchs
University of Geneva, Switzerland

didier.buchs@unige.ch

Dominique Blouin
HPI, University of Potsdam, Germany

Telecom ParisTech School, France
dominique.blouin@telecom-paristech.fr

Antonio Cicchetti
Mälardalen University, Sweden
antonio.cicchetti@mdh.se

Ken Vanherpen
University of Antwerp - Flanders’ Make, Belgium

ken.vanherpen@uantwerpen.be

ABSTRACT
Due to the increase of their complexity, currently engineered sys-
tems cannot be developed by one individual, but are a product of a
collaboration between multiple stakeholders who develop the sys-
tem from different domain-specific views. Inconsistencies between
views, however, hinder collaboration and therefore, must be man-
aged. Since the encountered inconsistencies may potentially dis-
appear as the natural consequence of a design workflow, tolerating
them to a given extent may be desirable and can lead to a more effi-
cient collaboration. A key to reason about tolerance is the quantifi-
cation of the impact of single inconsistencies on the overall system
design.

In this paper we present a quantification model for semantic in-
consistencies in discrete and continuous systems. We investigate
characteristic behavioral patterns of inconsistencies based on this
model and identify the links with various forms of tolerance. Fi-
nally, we discuss the directions of further expanding the approach
required for a comprehensive inconsistency tolerance technique.

Keywords
inconsistency management, inconsistency tolerance, temporal tol-
erance, multi-view modeling, collaborative modeling

1. INTRODUCTION
The complexity of current engineered systems has increased dras-

tically over the last decades. Pertinent examples are today’s mecha-
tronic and cyber-physical systems (CPS). Due to their complexity,
these systems are no longer engineered by a single individual, but
rather by the collaboration of experts. Such collaborative endeavors
involve stakeholders from different domains, who bring their point
of view on the system to be built, resulting in typical settings of
multi-tool and multi-view modeling (MVM) [37, 47]. Collabora-
tive environments are further characterized by multi-formalism and
multi-abstraction, meaning, different formalisms and languages are
used to support each team of stakeholders.

Models of different views must be kept consistent in order to
develop a correct system. However, as stakeholders develop the
respective domain-specific parts of the system independently from
each other, models from these domains can become inconsistent.
Following the definition of Herzig et al. [36], this means two or

more statements about the system are made that are not jointly sat-
isfiable.

While dealing with inconsistencies has been a well-researched
topic, most approaches focus on maintaining consistency in terms
of syntactic relationships between models [23, 25, 26, 40]. These
approaches, however, fall short of properly addressing the problem
of semantic inconsistencies, which are typical in collaborative set-
tings where disparate formalisms of various domains are involved,
e.g. when engineering mechanical and control parts of a CPS.

Finkelstein [21] suggests that instead of simply removing incon-
sistencies from the system from time to time, one should manage
consistency. This entails characterization and detection of incon-
sistencies before resolving them, and the subsequent analysis. In-
consistencies are, however, stateful entities that might occur, evolve
and later potentially disappear as the natural consequence of a de-
sign workflow. This gives room for temporarily tolerating them [4],
i.e. allowing inconsistencies to exist for a period of time, which
promises lower resolution costs by (i) postponing resolution to a
more appropriate phase of the design process; or, in some cases,
even (ii) completely avoiding resolution when specific inconsisten-
cies get resolved on their own.

Deciding whether or not to intervene in an inconsistent situation
requires information about (i) how severe the inconsistency of the
whole model space is; and (ii) what are the chances that the incon-
sistency gets resolved without intervention. In this paper, we focus
on the first question and present a quantitative approach for assess-
ing the severity of semantic inconsistencies. For that, we formalize
the notion of (in)consistency in multi-view modeling by defining
a relation between a property of the whole system, the satisfaction
of the property by individual views, and the consistency between
views. We identify characteristic behavioral patterns of properties
in terms of their consistency and use these patterns for guiding the
tolerance. The results of this paper serve as formal foundations
to implement a consistency management framework for collabora-
tive modeling scenarios with multi-paradigm and multi-abstraction
characteristics.

In Section 2, we give an overview on multi-view modeling along
with an illustrative example used throughout the paper. In Sec-
tion 3, we provide a quantitative model for assessing the severity
of semantic inconsistencies. In Section 4, we show how the pre-
viously defined quantitative model can be extended to support tol-



erance of parameter inconsistencies and temporal tolerance of in-
consistencies. We also discuss the directions of further expanding
the approach required for a comprehensive inconsistency tolerance
technique. Finally, we discuss the related work in Section 5 and
conclude our paper with Section 6.

2. OVERVIEW ON MULTI-VIEW MODEL-
ING

In this section, we give an overview on the context of our work
and provide a motivating example to illustrate the contributions of
the paper.

2.1 Typical Scenarios in MVM

Figure 1: Scenarios in multi-view modeling.

Corley et al. [13] identify four typical collaborative modeling sce-
narios shown in Figure 1. In Multi-User Single-View settings (Sce-
nario 1), users work on the same view of the model and observe the
exact same data in the same concrete syntax. The other three sce-
narios are characteristically different as they feature multiple views
or multiple models, which are the primary cause of emerging in-
consistencies. In Multi-View Single-Model settings (Scenario 2),
users work on different views of the model. The two views may
use different concrete syntax. The views are projections of the
same single underlying model (SUM) and therefore conform to the
same modeling language. Changes in the abstract syntax of one
view have to be reflected in the other view in order to retain consis-
tency. The Multi-View Multi-Model scenario (Scenario 3) does not
assume a SUM, but multiple separated underlying models, which
are connected via their semantic domains. Manipulating the mod-
els throught the respective views causes mismatches in the models
themselves and thus, inconsistencies may arise. Finally, the Single-
View Multi-Model scenario (Scenario 4) is a special form of the
Multi-View Multi-Model scenario, in which one view corresponds
to multiple underlying models. In practice, collaborative modeling
settings typically feature combinations of these scenarios.

The views can belong to different domains, i.e. they may rep-
resent various aspects of the SUM in different formalisms and on
different levels of abstraction. A typical example is the mechanical
design of a complex system where multi-body models and more
detailed finite element models are used to reason about different
aspects of the same virtual product.

Inconsistencies arise due to the shared elements between views:
as one view changes an overlapping element, the change has to be
propagated to the other views that share the same element, other-
wise an inconsistency will occur [22, 27]. These related elements
are not necessarily of syntactic nature, but they may exist in the
semantic domain of the SUM as the ontological properties of the
system, e.g., safety, energy-efficiency, autonomy, etc. The confor-
mance of the system to such properties can be evaluated by simu-
lations or model checking.

To reason about characteristics of the semantic domain of mod-
els (such as overlaps and linked properties), an explicit representa-
tion of the semantic domain has to be provided. In this paper, we
consider models M expressed with an operational semantics JMK,
consisting of traces on given states.

2.2 Motivating Example

2.2.1 Collaboration models
Our example concerns the development of complex and heteroge-

nous systems such as CPS involving the collaboration of several
development teams. This collaboration can be supported by cloud-
based model-based development environments such as the one pre-
sented in [13]. Such environments allow the definition of view-
points specifying how different views of the system under develop-
ment can be constructed to be used by the various teams to interact
with the models of the system. These environments can typically
support two different working modes. For the simultaneous mode,
any update performed on a view is immediately sent to the server
for being applied to the model and changes are reflected on all other
depending views. This is the way well known collaborative tools
work, such as Google Docs or Overleaf, which were used to write
this paper collaboratively.

However this simultaneous mode may not meet the needs of all
development organizations. For example, large and complex sys-
tems are often decomposed into subsystems developed by different
entities (e.g., manufacturers, suppliers, subcontractors, etc.). Fur-
thermore, due to intellectual property protection concerns, the mod-
els may never be allowed to cross the boundaries of an enterprise lo-
cal network. Then, a system integrator needs to plan ahead of time a
series of virtual integration steps where the models developed by all
external entities are integrated and analyzed for various properties.
Consistency of the system as a whole then needs to be checked as
the models have evolved independently for a given period of time.
According to the analysis results, decisions and updates will then
be made to restore consistency. We call this mode delayed commit.
The frequency of such virtual integration steps may vary but has
to be carefully considered, e.g., to avoid the large costs potentially
induced by the rework of highly inconsistent models. In this mode,
providing a measure that quantitatively determines how inconsis-
tent the models are is highly relevant.

2.2.2 The Automated Guided Vehicle
Our running motivational example is the collaborative model-

based development of an Automated Guided Vehicle (AGV) (Fig-
ure 2). According to the stakeholder requirements specification, the
AGV needs to be able to transport a number of objects by follow-
ing a given trajectory with a given maximal tracking error. Further-
more, it needs to have a given autonomy as defined by the number
of trajectories that can be followed before needing to recharge the
AGV’s empowering component. Finally, the mass of the AGV must
not exceed a given value because, for example, it will be too heavy
for the setting in which it is planned to operate.

To meet these requirements, an initial design is provided con-
sisting of a custom mechanical frame (Figure 2), an off-the-shelf
electrical battery, an off-the-shelf electrical motor, a drive train and
a drive train control system. A set of viewpoints for this design is
then defined in the collaborative environment to be used for design
activities such as requirements specification, electric motor selec-
tion, battery selection, mechanical frame design, drive train design
and drive train controller design. These are listed in the header row
of Table 1.



Requirements
(VR)

Mechanical
Frame (VMF )

Battery (VB) Motor (VM ) Drive Train
(VDT )

Drive Train Con-
trol (VDTC )

Integrated Ve-
hicle (VIV )

Battery
Support
Size

= Battery Sup-
port Size

≥ Battery Size

Electrical
Current
Capacity

≤ Battery Cur-
rent Capacity

≥ Minimum
Current Capac-
ity Required by
Motor

Power ≤ Motor Power ≥ Maximum Mo-
tor Power Required
by Drive Train
Control System
(e.g. obtained from
simulation)

Mass ≤ Maximum Ve-
hicle Mass (ob-
tained from a Re-
quirement)

> Frame Mass > Battery Mass > Motor Mass > Drive Train
Mass

≤ Maximum
Vehicle Mass Sup-
ported by Drive
Train Control Sys-
tem (e.g. obtained
from simulation)

= Vehicle Mass
(computed from
the sum of its
constituents)

Table 1: Example consistency properties and statements about their values for each relevant viewpoint.

Figure 2: Overview of the Automated Guided Vehicle example.

2.3 System Properties and Consistency State-
ments

Herzig et al [36] define inconsistency as two or more statements
that are not jointly satisfiable. In our approach, we provide such
set of statements per system property and concerned viewpoint as
defined in the cells of Table 1 for the AGV example. Overall consis-
tency then consists in ensuring consistency for each given property
of interest of the system. For a given property, consistency can be
checked for each pair of viewpoints providing a statement about the
property. From the two statements of the viewpoints, a compound
statement can be derived about the consistency of both viewpoints.

For example, consider property P = BatterySupportSize for
the AGV (first row of Table 1). Let us assume that there is a sin-
gle underlying model for the mechanical frame viewpoint and a
separate model for the battery viewpoint. The battery support size
provided by the mechanical frame view is then simply the value
of the corresponding property in the underlying mechanical design
model. On the battery view however, a less precise information
is provided as all that can be stated for a consistent design is that
it should be greater or equal to the size of the battery. Therefore,
only a range of values can be inferred from the battery viewpoint.
Composing these two statements, we derive the compoud statement
BatterySupportSize ≥ BatterySize, which can be evaluated
at design time from the involved views VMF and VB to evaluate
consistency. In other words, a value from the battery view outside
the range provided by the mechanical frame view will indicate an
inconsistent system.

Generalizing this example, we can say that for a given prop-

erty P of the system under design, it is possible to automaticaly
derive for each pair of viewpoints providing a statement about P
a compound statement about the consistency of both views with
respect to P . This compound statement will involve all proper-
ties involved in the composed statements. For example, for P =
BatterySupportSize, we obtain a consistency statement about
the pair of properties BatterySupportSize and BatterySize.
In Section 3, we further show how such statement can be adapted
to provide a quantification of inconsistency.

It should be noted that such considerations are independent from
the source of inconsistency. For example, it can originate from the
actual values of the underlying models used by the views, but also
simply from the fact that the views are outdated due to network
latency or delayed commit between the views in the cloud-based
development environment. In order to explore different types of
inconsistency tolerance patterns as proposed in Section 4, we will
therefore consider that the two different modes (simultaneous and
delayed commit) for the cloud-based multi-view modeling environ-
ment are used for two different development processes. Example
use cases for this are provided in Section 4.

2.4 Other Applicable Cases
While our motivating example concerns collaborative develop-

ment, we emphasize here that what we provide is applicable to
many other cases, thus making this proposal even more relevant.
One of them is that of runtime models and views such as those
employed in computer games implying a variety of consistency
concerns. These are most apparent in network-based, multiplayer
games, which are both realtime environments and distributed sys-
tems, and as such bring a number of consistency concerns due to
network latency, lossy communication protocols, and bandwidth
limitations. Even single player games induce consistency issues,
with modern designs organized through a separation of domains
in order to provide good, domain-specific performance and be-
haviour, a distinction quite visually evident in, for example, the way
collision domains are simplified abstractions of the representation
domain [20]. Games make a further interesting and motivational
subject due to the way consistency is tolerated - the perception-
oriented, entertainment focus of game software means subtle in-
consistency is not necessarily a problem, and weaker or heuristic
consistency guarantees are often viewed as an acceptable trade-off



for increased performance or broader scope in implementation.

3. A QUANTITATIVE MODEL FOR ASSESS-
ING INCONSISTENCIES

Based on our running example, we can now provide a model
for quantifying inconsistency. This can be achieved as explained
previously for a given system property such as those listed in Table
1. We first consider consistency for a given system property P
and two given views V1 and V2 each providing a statement about
P . The consistency statement composed from the statements of V1

and V2 about P then provides a set of two properties that must be
evaluated to evaluate the consistency statement. We then propose
a metric combining these two properties to quantify the degree of
inconsistency. Such measure can later be used for assessing the
importance of the inconsistency and support its management.

3.1 Formal Definitions
The definition of consistency is based on a distance function that

takes the two views and provides a measure value. In this simple
setting we need a simple domain for measures that can be used in a
compositional and associative way.

Definition 1. (Measure) A given set of values M with operations
0 :→ M,+ : M ×M → M (0 neutral, + associative and commu-
tative) and an order relation ≤ on M is called a measure.

Definition 2. (State distance) Given two state domains Σ1 and
Σ2, a distance is a function δ : Σ1 × Σ2 7→ M.

From the state distance we can define by extension distances on
finite prefix of traces. By trace, we mean a sequence of perfor-
mance values [49] a semantic property exhibits as the underlying
model changes. This distance is a natural extension that can ex-
press the observation on a trace with a finite window starting from
the beginning of the trace. The size of the window λ is a parameter
of such distance.

Definition 3. (Sequence of ordered points) A sequence of or-
dered points (or index on a trace) is a word I = i1, i2, ..., in, ... ∈
N s.t. ∀k, ik < ik+1.

Definition 4. (Window) Given a sequence of observations O =
o1, o2, . . . , on, a window w of length λ is defined as a prefix of
length λ of O.

Definition 5. (Trace distance) Given two set of traces Σω1 and
Σω2 generated by two properties ρ1 and ρ2, respectively, a distance
on trace for a given window of lenght λ is a function δλ : Σω1 ×
Σω2 7→ M defined as:

δλ(ρ1, ρ2) =

λ−1∑
i=0

δ(ρ1(i), ρ2(i)),

where ρ(i) denotes the ith observation of ρ.
The above definition can be extended to continuous systems as

follows:

δλ(ρ1, ρ2) =

∫ λ

i=0

δ(ρ1(i), ρ2(i))di.

Definition 6. (Consistency) Two views V1 and V2 are said to be
consistent iff

∀ρ ∈ JMKV1×V2 : δλ(ρ|V1 , ρ|V2) = 0.

That is, V1 and V2 are consistent iff every property ρ has the same
value in both views.

3.2 Measuring Distances
Inconsistency management requires providing a meaningful con-

sistency measure given the two properties and the states for evaluat-
ing them. Such measure should take into account the amount of de-
velopment work required to fix the inconsistency. This depends on
several factors such as which activities must be performed to fix the
design, which in turn depends on which part(s) of the design will
be changed to resolve the inconsistency (e.g. for our example bat-
tery selection or battery support from mechanical design or both).
One way to evaluate this is to take into account the cost of the in-
volved development activities that will need to be performed. This
set of activities can be determined by the graph of dependencies
of the involved properties and their dependency to other properties.
However, this complex task is left for future work. For now, we
only provide illustrative simplified examples showing how simple
measures can be derived for the different properties and viewpoints
of Table 1.

For our AGV example, the aforementioned state trace is defined
by the successive model states corresponding to the versions of the
system design evolving through the activities performed along a
development time axis.

3.2.1 Battery Support Size
For the battery support size property, let us assume that the sec-

tions of the battery and its support are of circular shape and can
therefore be characterized by a single numerical value of the sec-
tion diameter. We compose the statements of viewpoints VMF and
VB of Table 1 to obtain a Boolean consistency statement about the
pair of properties BatterySupportSize and BatterySize as:

ρBatterySize ≤ ρBatterySupportSize

where ρBatterySupportSize and ρBatterySize are the property val-
ues obtained from VMF and VB respectively. In such case, a simple
measure of inconsistency can be given assuming that the amount of
rework required for changing the battery support size of the me-
chanical design to account for the battery size is proportional to
the difference in the diameters of the batttery and battery support.
Thus, the consistency statement can be transformed to provide a
metric for the amount of inconsistency as the difference between
the battery and battery support diameters:

δ = |ρBatterySize − ρBatterySupportSize|

3.2.2 Vehicle Mass
For the AGV mass property, we first consider the statements

from the viewpoint of the drive train control system VDTC and the
integrated vehicle mechanical design VIV . In a similar process as
for the battery support size we derive the consistency statement:

ρV ehicleMass ≤ ρMaxV ehicleMassDriveTrainControl

And with similar simplification as for the battery support size prop-
erty that the amount of rework to account for fixing an inconsistent
design is proportional to the difference between the masses, we de-
rive the measure:

δ = |ρV ehicleMass − ρMaxV ehicleMassDriveTrainControl|

4. TOWARDS TOLERANCE OF INCONSIS-
TENCIES

In this section we discuss how the quantitative model in Section 3
can be used to tolerate semantic inconsistencies. We support the
notion of two types of inconsistency tolerance.



In parameter tolerance, the definition of inconsistency is weak-
ened to allow slight deviations from desired values of parameters,
i.e. performance values of semantic properties [49]. In temporal
tolerance scenarios, semantic inconsistencies are allowed for a cer-
tain amount of time before intervening and resolving inconsisten-
cies, making use of the fact that inconsistencies might occur, evolve
and later potentially disappear as the natural consequence of a de-
sign workflow.

4.1 Tolerating Parameter Inconsistencies
The idea of parameter tolerance embraces the presence of slight

deviations from desired values of properties while still considering
the situation a consistent one. In our specific case this means the
distance between two views (properties) is not exactly 0, but stays
within a parameter β.

Parameter tolerance enables reasoning about how much deviation
is to be tolerated. For this purpose, Definition 6 can be weakened
as follows.

Definition 7. (Bounded consistency) V1 and V2 are β-bounded
consistent for M iff

∀ρ ∈ JMKV1×V2 : δλ(ρ|V1 , ρ|V2) ≤ β,

where β is a measure. (See Definition 1.) The above definition
allows the distance of two properties being within β, instead of
restricting it to 0.

T

δ
+β

V1
−β

V2

Figure 3: β-bounded consistency of two views.

From our running example, this occurs for the mass property when
a high level of abstraction model of the drive train control system is
used that, when executed, does not meet real-time deadlines for the
given inertia due to the mass of the AGV. While the high level of ab-
straction model is functionally correct, it does not react fast enough
due to poor execution time. The inconsistency with the mass ob-
tained from the integrated vehicle view as evaluated according to
the equation of Section 3.2.2 giving the measure of inconsistency
may be tolerated at this level of abstraction up to a given bound β,
otherwise it is well known by an experienced designer that no im-
plemented system can ever execute fast enough for the given AGV
inertia.

Such parameter inconsistency tolerance is a frequently encoun-
tered technique in engineering practice, albeit without explicitly
reasoning about it. It is the tacit domain knowledge of stakeholders
(engineers) that allows tolerating parameter inconsistencies. The
caveat is, however, that without proper formalizaion, the automa-
tion of tolerance mechanisms is not possible.

Contract-Based Design (CBD) [6, 17] can be seen as an enabling
methodology to formalize an agreement upon the allowed param-
eter tolerances. By defintion, an agreement consists of a set of as-
sumptions and guarantees, called a contract, defining under which
conditions a system promises to operate satisfying desired param-
eters. Typically, a contract and its content, e.g. the boundaries of
certain parameters, is defined prior to the design phase. When the
relation between parameters is known, e.g. using an ontology [49],
one can reason about the tolerated (in)consistency of parameters
during design.

4.2 Temporal Tolereance of Inconsistencies
When inconsistencies emerge it may be also desirable to tem-

porarily tolerate them, even if the extent of inconsistencies (i.e. the
distance between views) exceeds the boundary β as defined pre-
viously. Temporal tolerance enables reasoning about how long a
deviation is to be tolerated. For this purpose, we investigate char-
acteristic behavioral patterns of inconsistencies in the temporal di-
mension. The patterns can be used in a prescriptive manner, i.e.
specifying the expected behavior of properties and consider inter-
vention when the expected behavior is not followed. In each pat-
tern, we assume β-bounded consistency. (See Definition 7.)

4.2.1 Exact Consistency
The most simplistic behavioral pattern of properties wrt their

consistency is when the consistency is maintained constantly.

Definition 8. (Exact consistency) V1 and V2 are exact consistent
for M iff

∀ρ ∈ JMKV1×V2 ,∀t ∈ T : δtλ(ρ|V1 , ρ|V2) ≤ β.
That is, V1 and V2 are exact consistent iff the consistency is pre-
served constantly, i.e. for every timestamp t∈T.

T

δ

V1

V2

Figure 4: Exact consistency of two views with β = 0.

For our AGV example, this corresponds to the case where the cloud-
based multi-view development environment is operating in simulta-
neous mode. In such case, the consistency of the properties defined
in Table 1 is consistently monitored for each pair of views as the
design of the system evolved and immediate resolving actions must
be performed in case of any detected inconsistency.

In practice, it is however often not efficient to enforce exact
consistency during system design, especially in complex multi-
paradigm and multi-abstraction settings. The following patterns
formalize cases more likely to be encountered.

4.2.2 Eventual Consistency
Eventual consistency guarantees that at some point in the future

the two views become consistent.

Definition 9. (Eventual consistency) V1 and V2 are eventually
consistent for M iff

∀ρ ∈ JMKV1×V2 ,∃t ∈ T : δtλ(ρ|V1 , ρ|V2) ≤ β.

T

δ

V1
V2

obs1

Figure 5: Eventual consistency of two views with β = 0.

For our AGV example, eventual consistency with β = 0 will be
required when the drive train controller design is refined into im-
plementation code and the combined code and execution platform
result in meeting the real-time deadlines for the total mass of the
AGV.

Demanding eventual consistency is also a typical scenario when
parallel branches of design are to be integrated at some point in the
design process. This leads to the definition of the repetitive and
regular consistency patterns presented below.



4.2.3 Repetitive and Regular Consistency
Similarly to the eventual case, consistency of views may form a

repetitive pattern, i.e. views may be consistent at given points in
time, but may deviate in between.

T

δ

V1

V2obs1 obs2 obs3 obs4 obs5 obs6 obs7

Figure 6: Repetitive consistency of two views.

Definition 10. (Repetitive consistency) V1 and V2 are repetitive
consistent for M wrt a sequence of ordered points I (see Defini-
tion 3) iff

∀ρ ∈ JMKV1×V2 ,∧i∈Iδλ(ρi|V1 , ρ
i|V2) ≤ β.

For our AGV example, this corresponds to the case where the de-
velopment of the different subsystems is subcontracted to external
entities and virtual integration steps, at which consistency must be
restored, are planned in advance in an aperiodic manner.

The repetitive pattern can be more regular w.r.t. to the number
in the sequence, in this case it means that the index I is such that
∀i ∈ N, I(i) = τ ∗ i.

T

dist

V1

V2obs1 obs2 obs3 obs4 obs5 obs6 obs7

Figure 7: Regular consistency of two views.

For our AGV example, this corresponds to the same case as for
repetitive consistency but with periodically planned virtual integra-
tion phases.

4.3 Discussion
The quantification approach of semantic inconsistencies described

in this paper serves as foundations for a comprehensive inconsis-
tency tolerance approach that can be adopted in state-of-the-art
consistency management frameworks. Our work focuses on two
types of inconsistency tolerance: parameter inconsistency tolerance
and temporal tolerance in general.

Toleration methods for parameter inconsistencies can be directly
implemented based on the theory described in Section 4.1. A re-
quirement to such methods is the explicit notion of semantic traces,
which can be achieved by explicit modeling of operational seman-
tics, described e.g. in [16, 51].

In the following, we discuss the required extensions and future
directions to the current results to make the foundations of temporal
tolerance described in Section 4.2 applicable in complex collabo-
rative modeling settings.

4.3.1 Explicitly Modeled Processes
Explicitly modeled processes enable various analyses required

for reasoning about temporarily tolerating inconsistencies. First,
they depict how models evolve throughout the development. The
precedence relationships between various activities modifying the
models are made clear, which helps understanding where and how
inconsistencies occur exactly.

Deciding whether to resolve an inconsistency or further tolerate
it, eventually depends on the added value a fixed inconsistency car-
ries. If the cost of resolving an inconsistency is high, it may be

more appropriate not to intervene and let inconsistencies exist for
a while. The efficiency of resolution depends on numerous factors,
one of them being the formalisms (i.e. domain-specific languages)
used throughout the process. Some formalisms may support more
efficient resolution of a specific type of inconsistencies than others
and therefore, the analysis of the formalisms used in specific de-
sign steps may help identifying when it is most efficient to address
the issue of detected inconsistencies. Richer process models enable
explicit modeling of this information [14], along with the notions
of actors and resources of the process [3].

4.3.2 Specification and Evaluation of Temporal Tol-
erance Rules

Specifying temporal tolerance rules makes only sense if those
rules can be evaluated at runtime. Reasoning about temporal struc-
tures is traditionally addressed by various forms of temporal logic [24,
2, 41], which enable concise proofs and automated theorem proving
with off-the-shelf software [29]. In nowadays’ engineering prac-
tice, however, more high-level and domain-specific specification
languages are desired. Such languages can be designed in accor-
dance with the Dwyer specification patterns [18] for finite-state
verification that occur commonly in the specification of concurrent
and reactive systems. For evaluating temporal tolerance patterns,
the techniques of trace matching and complex event processing can
be used, as presented in previous work [15].

4.3.3 Automation of Tolerance Specification
Tolerance rules applied to single properties usually influence tol-

erance rules of other, related properties. For example, in the run-
ning example, the “battery size” is related to the “battery mass” and
inconsistencies between “size” could be also imply inconsistencies
in “mass”, which may not be tolerated in the same manner. Manual
reasoning about the influence relationships of tolerance rules will
result in scalability issues in real, industrial-sized models. Automa-
tion of specifying tolerance rules is, therefore, a critical require-
ment for an efficiently tolerating inconsistencies. Combinatorial
optimization techniques and design-space exploration can aid the
process of tolerance specification, and can provide a mechanism
for exploring incompatible tolerance rules.

4.3.4 Predictive Impact Analysis
The real challenge of answering whether or not to intervene at

a specific point of the design process to resolve inconsistencies, is
to understand how the inconsistencies can evolve in the subsequent
steps of the process. Inconsistency resolution should be carried out
only if the views are potential subjects of further diverging, but it
should be postponed if the views can converge as a result of sub-
sequent activities. With respect to the quantified distance metric,
this raises the need for predictive techniques to be incorporated in
our distance models to estimate how the impact of an inconsistency
can evolve. In its most simplistic form, techniques of time series
analysis can be employed [11]. In more complex scenarios, the
propagation of inconsistencies may be required to be predicted too.

4.3.5 Resolution Scheduling
Another important cost-related factor is the resolution schedul-

ing strategy of inconsistencies. Mens et al [35] investigated how a
small number of inconsistencies can lead to hard resolution schedul-
ing problems, including cyclic dependencies between inconsisten-
cies, which make naïve resolution techniques fail. Consequently,
the analysis of resolution plans is important to understand the fea-
sibility of resolution and provides essential information on whether
or not to execute resolution at the given time of the process.



4.3.6 Proving Global (In)Consistency
Proving the consistent (or inconsistent) state of the models is a

natural extension of the quantification model. By evaluating lo-
cal consistency and defining the algebraic rules of composition of
views [6], information about the global consistency can be inferred
in an automated fashion. Apart from the composition rules of views,
proving global (in)consistency depends on how the semantic do-
mains of views overlap as discussed in [37].

5. RELATED WORK

5.1 Inconsistency Management
Managing inconsistencies has been a well-studied topic in the

domain of software engineering [46]. With the advent of complex
engineered systems that require collaborative model development,
addressing the topic of inconsistencies in a multi-view context be-
came more relevant. Persson et al [37] identify consistency be-
tween the various views of cyber-physical system design as one of
the main challenges in design of such complex systems. The out-
look to the near-future of multi-view modeling by Hanxleden et
al [50] further emphasizes the need for inconsistency management
techniques in distributed, agile development settings with global-
ized DSLs and actor-oriented cloud based modeling tools.

Traditional approaches focus on maintaining consistency on the
linguistic level, typically employing some form of correspondence
models, such as dependency graphs [25, 26] and pivot models, e.g.
by using SysML [44, 43] or EAST-ADL [8]. Qamar et al [38]
introduce an inconsistency management approach by explicit mod-
eling of inter- and intra-model dependencies. Dependencies are di-
rect results of semantic overlaps and are used to notify stakeholders
about possible inconsistencies when dependent properties change.
Adourian et al [1] use triple-graph grammars (TGG) for maintain-
ing consistency between geometric and dynamic properties of me-
chanical systems. Bhave et al [9] use an architectural base model as
a pivot model and a set of model transformations for bi-directional
mapping between various views and the base model.

As opposed to our work, the above techniques do not consider
inconsistencies of purely semantic nature, i.e. the ones that do
not manifest on the syntactic level. Multiple works focus on ef-
ficiently expressing semantic and ontological properties. Hehen-
berger et al [28] relate semantic concepts to the linguistic concepts
of modeling by organizing structural design elements and their re-
lations into a domain ontology to identify inconsistencies. Chechik
et al [12] introduce the notion of approximate properties: linguistic
properties expressed as graph patterns which are accurate enough
to appropriately approximate a semantic property. These works can
serve as complementary techniques to our work, to provide the se-
mantic properties our technique can be applied on.

5.2 Measuring Inconsistency
Measuring inconsistency has been a topic of interest in the on-

tology and knowledge engineering. Hunter and Konieczny [30] ap-
proach measuring the level of inconsistency through the notion of
minimal inconsistency sets. They show how their inconsistency
metric is a special Shapley Inconsistency Value, which enables us-
ing SAT techniques for proving consistency and inconsistency. Ma
et al [34] propose a technique to measure the degree of inconsis-
tency in description logic based ontologies. As compared to these
approaches, we mainly focus on collaborative modeling of com-
plex engineered systems where the semantic inconsistencies of the
models are not that obvious as in ontologies.

Inconsistency measurement approaches in software engineering
settings typically focus on inconsistencies on linguistic level. Lange

et al [33] use the number of detected instances of various incon-
sistency rules between UML diagrams as an inconsistency metric
between views. Inconsistency rules are syntactic, such as messages
in sequence diagrams without names.

Similar to our approach is the one presented by Barragáns-Martínez
et al [5], who provide a formal framework to assess the significance
of inconsistencies in requirement specifications. The scope of our
work is more general as our technique is not constrained to require-
ment specifications but arbitrary models in a collaborative setting.

5.3 Temporal Tolerance
Balzer et al [4] introduces the notion of temporal tolerance by

deconstructing inconsistency rules to two derived rules, the appear-
ance and disappearance rule which span a temporal interval of the
model(s) being in an inconsistent state, hence making inconsisten-
cies stateful entities. By allowing further engineering activities to
be executed during the inconsistent interval, the better paralleliza-
tion of the design workflow can be achieved and ultimately, these
may lead to the inconsistencies to be resolved without interrupt-
ing the design process for further reconciliation. As a limitation,
the technique only deals with the most simplistic version of tempo-
ral consistency relations, in which a pair of subsequent operations
form an identity transformation. In practice, more complex struc-
tures of operations have to be supported.

Easterbrook et al [19] propose a framework for temporal incon-
sistency tolerance in the context of multi-view modeling. Tolerat-
ing inconsistencies decouples the viewpoints and introduces flex-
ibility in the design process as deciding upon when to resolve in-
consistencies is the responsibility of the owner of the view. The au-
thors provide a formal approach for guiding the decision in form of
pairs of pre- and postconditions. Our approach extends this model
by using a quantifiable distance metric to evaluate the divergence
of views (and viewpoints). The distance metric also helps under-
standing the impact of unresolved inconsistencies and reason over
their accumulation and evolution.

5.4 Consistency in Other Contexts
Consistency issues are of course well known in distributed and

multiprocessor contexts, where program correctness is strongly de-
pendent on understanding precise conditions under which the mem-
ories of different processors may differ. Lamport’s seminal work on
parallel computers, for instance, developed core notions of consis-
tency as preserving causality between events [31], or in terms of
interleaving sequential streams in the well known Sequential Con-
sistency model [32]. A wide variety of less strict, or “relaxed” con-
sistency models have since been defined, although they are often
quite specific to the design decisions made in the underlying hard-
ware [42]; Sorin et al.’s book provides a good overview [45] of
memory model designs and issues.

A number of approaches to categorizing consistency have also
been attempted. For distributed, virtual environments, Bouillot and
Gressier-Soudan decompose consistency into elements of causal-
ity, concurrency, simultaneity, and instantaneity [10]. The latter 2
are difficult to achieve, and typically imply sacrificing the former 2
and living with short-term inconsistencies. Liu et al.’s survey paper
organizes models based on their focus on ultimate consistency (sys-
tems which become eventually consistent), or on being deadline-
based (given an event at time t, consistency is achieved at t + δ).
The former includes Lamport’s basic models, as well as various
similar forms of serializability [7], while the latter can be further
broken down into perceptive (or absolute) consistency [10], where
every process executes events at the same absolute time, delayed
consistency [39], which imposes a fixed, maximum pair-wise delay



of δ(i, j) between processes i and j, and timed consistency [48],
which requires a fixed global bound of δ on all processes. In this
terminology our definition of eventual consistency is an instance of
ultimate consistency, exact consistency a kind of absolute consis-
tency, and regular consistency is deadline-based. Repetitive con-
sistency and bounded consistency introduce new ideas based on a
flexible notion of delay, and a formal distance metric for relative
consistency.

6. CONCLUSION
In this paper, we presented a quantification model for semantic

inconsistencies in multi-view settings of collaborative system de-
sign. The model serves as the foundation of a more comprehensive
inconsistency tolerance methodology. By elaborating on character-
istic examples we concluded that the model is well-suited for sup-
porting the notion of parameter inconsistency tolerance and also
tolerating inconsistencies in the temporal aspect.

This paper reported the results of a work in progress and there-
fore, the links to the state-of-the-art have been explored, as well as
the further directions to be investigated. One particularly important
direction concerns the measure of level of inconsistency. Our sim-
plified example measures need to be extended to include a study on
how to relate a measure of inconsistency with the cost of fixing it
given an actual design, the other dependent consistency properties
and their dependency graph, and given an inconsistency resolution
plan expressed as a sequence of activities to be performed on the
involved views. Adequate modeling of all these artifacts and cor-
responding analysis methods will be required to better support this
task.

Acknowledgments
This work has been partially carried out within the MBSE4Mechatronics
project (grant nr. 130013) of the Flanders Innovation & Entrepreneur-
ship agency (VLAIO). This research was partially supported by
Flanders Make vzw.

The authors would like to express their gratitude to the organiz-
ers of the Computer Automated Multi-Paradigm Modelling work-
shop (CAMPaM) where the foundations of this work have been
carried out.

7. REFERENCES
[1] C. Adourian and H. Vangheluwe. Consistency between

geometric and dynamic views of a mechanical system. In
Proceedings of the 2007 Summer Computer Simulation
Conference, SCSC ’07, pages 31:1–31:6, San Diego, CA,
USA, 2007. Society for Computer Simulation International.

[2] J. F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832–843, 1983.

[3] C. Artigues, S. Demassey, and E. Neron.
Resource-Constrained Project Scheduling: Models,
Algorithms, Extensions and Applications. ISTE, 2007.

[4] R. Balzer. Tolerating inconsistency. In 13th International
Conference on Software Engineering, pages 158–165, 1991.

[5] B. Barragáns-Martínez, J. Pazos-Arias, and
A. Fernández-Vilas. On measuring levels of inconsistency in
multi-perspective requirements specifications. In
Proceedings of the 1st Conference on the Principles of
Software Engineering (PRISE’04), pages 21–30, 2004.

[6] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B.
Raclet, P. Reinkemeier, A. Sangiovanni-Vincentelli,
W. Damm, T. Henzinger, and K. G. Larsen. Contracts for

Systems Design : Theory. Technical Report RR-8759,
INRIA, 2015.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Systems.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1987.

[8] A. Bhave, B. Krogh, D. Garlan, and B. Schmerl.
Multi-domain modeling of cyber-physical systems using
architectural views. The First Analytic Virtual Integration of
Cyber-Physical Systems Workshop, pages 43–50, 2010.

[9] A. Bhave, B. H. Krogh, D. Garlan, and B. Schmerl. View
consistency in architectures for cyber-physical systems. In
Proceedings - 2011 IEEE/ACM 2nd International
Conference on Cyber-Physical Systems, pages 151–160,
2011.

[10] N. Bouillot and E. Gressier-Soudan. Consistency models for
distributed interactive multimedia applications. SIGOPS
Operating Systems Review, 38(4):20–32, Oct. 2004.

[11] G. Box, G. Jenkins, and G. Reinsel. Time Series Analysis:
Forecasting and Control. Wiley Series in Probability and
Statistics. Wiley, 2008.

[12] M. Chechik, F. Dalpiaz, C. Debreceni, J. Horkoff, I. Ráth,
R. Salay, and D. Varró. Property-Based Methods for
Collaborative Model Development. In Proc. of 3rd Int.
Workshop on The Globalization of Modeling Languages
(GEMOC 2015), 2015.

[13] J. Corley, E. Syriani, H. Ergin, and S. Van Mierlo.
Cloud-based multi-view modeling environments. In Modern
Software Engineering Methodologies for Mobile and Cloud
Environments. IGI Global, 2015.

[14] I. Dávid, J. Denil, and H. Vangheluwe. Towards
inconsistency management by process-oriented dependency
modeling. In Proceedings of 9th International Workshop on
Multi-Paradigm Modeling, pages 32–41, 2015.

[15] I. Dávid, I. Ráth, and D. Varró. Foundations for streaming
model transformations by complex event processing.
Software & Systems Modeling, pages 1–28, 2016.

[16] J. de Lara and H. Vangheluwe. AToM3: A Tool for
Multi-formalism and Meta-modelling. In R.-D. Kutsche and
H. Weber, editors, Fundamental Approaches to Software
Engineering: 5th International Conference, FASE 2002 Held
as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2002 Grenoble, France, April
8–12, 2002 Proceedings, pages 174–188. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002.

[17] P. Derler, E. A. Lee, S. Tripakis, and M. Törngren.
Cyber-Physical System Design Contracts. In ICCPS ’13,
pages 109–118. ACM, 2013.

[18] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property
specification patterns for finite-state verification. In
Proceedings of the second workshop on Formal methods in
software practice, pages 7–15. ACM, 1998.

[19] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh.
Coordinating distributed viewpoints: the anatomy of a
consistency check. Concurrent Engineering, 2(3):209–222,
1994.

[20] C. Ericson. Real-time collision detection. CRC Press, 2004.
[21] A. Finkelstein. A foolish consistency: Technical challenges

in consistency management. In M. Ibrahim, J. Küng, and
N. Revell, editors, Database and Expert Systems
Applications, volume 1873 of Lecture Notes in Computer
Science, pages 1–5. Springer Berlin Heidelberg, 2000.



[22] A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and
B. Nuseibeh. Inconsistency handling in multiperspective
specifications. IEEE Transactions on Software Engineering,
20(8):569–578, Aug 1994.

[23] R. France and B. Rumpe. Model-driven development of
complex software: A research roadmap. In L. Briand and
A. L. Wolf, editors, Future of Software Engineering, pages
37–54, Minneapolis, may 2007. IEEE Computer Society.

[24] D. M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal
logic mathematical foundations and computational aspects.
1994.

[25] J. Gausemeier, W. Schäfer, J. Greenyer, S. Kahl, S. Pook,
and J. Rieke. Management of cross-domain model
consistency during the development of advanced
mechatronic systems. In DS 58-6: Proceedings of ICED 09,
the 17th International Conference on Engineering Design,
Vol. 6, Design Methods and Tools (pt. 2), Palo Alto, CA,
USA, 24.-27.08.2009, pages 1–12, 2009.

[26] H. Giese and S. Hildebrandt. Incremental model
synchronization for multiple updates. In Proceedings of the
Third International Workshop on Graph and Model
Transformations, GRaMoT ’08, pages 1–8, New York, NY,
USA, 2008. ACM.

[27] J. Grundy, J. Hosking, and W. B. Mugridge. Inconsistency
management for multiple-view software development
environments. IEEE Transactions on Software Engineering,
24(11):960–981, Nov 1998.

[28] P. Hehenberger, A. Egyed, and K. Zeman. Consistency
checking of mechatronic design models. In 30th Computers
and Information in Engineering Conference, volume 3: Parts
A and B, pages 1141–1148. ASME, 2010.

[29] P. Höfner. How to find algebraic semantics for modal and
temporal logics. https://www.informatik.uni-augsburg.de/
lehrstuehle/dbis/pmi/alumni/hoefner/talks/09_relmics/.
Invited talk at the 11th International Conference on
Relational Methods in Computer Science / 6th International
Conference on Applications of Kleene Algebra
(RelMiCS11/AKA6). Accessed: 2016-08-30.

[30] A. Hunter, S. Konieczny, et al. Measuring inconsistency
through minimal inconsistent sets. KR, 8:358–366, 2008.

[31] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[32] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE
Transactions on Computers, 28(9):690–691, Sept. 1979.

[33] C. Lange, M. R. V. Chaudron, J. Muskens, L. J. Somers, and
H. M. Dortmans. An empirical investigation in quantifying
inconsistency and incompleteness of uml designs. In
Incompleteness of UML Designs, Proc. Workshop on
Consistency Problems in UML-based Software Development,
6 th International Conference on Unified Modeling
Language, UML 2003, 2003.

[34] Y. Ma, G. Qi, P. Hitzler, and Z. Lin. Measuring Inconsistency
for Description Logics Based on Paraconsistent Semantics,
pages 30–41. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

[35] T. Mens and R. Van Der Straeten. Incremental resolution of
model inconsistencies. In J. L. Fiadeiro and P.-Y. Schobbens,
editors, Recent Trends in Algebraic Development
Techniques: 18th International Workshop, WADT 2006, La
Roche en Ardenne, Belgium, June 1-3, 2006, Revised

Selected Papers, pages 111–126. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007.

[36] G. Moroni, T. Tolio, S. J. I. Herzig, and C. J. J. Paredis. A
conceptual basis for inconsistency management in
model-based systems engineering. Procedia CIRP,
21:52–57, 2014.

[37] M. Persson, M. Törngren, A. Qamar, J. Westman, M. Biehl,
S. Tripakis, H. Vangheluwe, and J. Denil. A characterization
of integrated multi-view modeling in the context of
embedded and cyber-physical systems. In Proceedings of the
International Conference on Embedded Software, 2013.

[38] A. Qamar, C. J. Paredis, J. Wikander, and C. During.
Dependency modeling and model management in
mechatronic design. Journal of Computing and Information
Science in Engineering, 12(4), 2012.

[39] X. Qin. Delayed consistency model for distributed interactive
systems with real-time continuous media. Journal of
Software, 6(13):1029–1039, 2002.

[40] J. Reineke and S. Tripakis. Basic problems in multi-view
modeling. In Tools and Algorithms for the Construction and
Analysis of Systems, volume 8413 of LNCS, pages 217–232.
Springer, 2014.

[41] G. Roşu and S. Bensalem. Allen linear (interval) temporal
logic–translation to ltl and monitor synthesis. In
International Conference on Computer Aided Verification,
pages 263–277. Springer, 2006.

[42] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O.
Myreen. x86-TSO: A rigorous and usable programmer’s
model for x86 multiprocessors. Communications of the
ACM, 53(7):89–97, 2010.

[43] A. A. Shah, A. A. Kerzhner, D. Schaefer, and C. J. J. Paredis.
Multi-view modeling to support embedded systems
engineering in sysml. In G. Engels, C. Lewerentz,
W. Schäfer, A. Schürr, and B. Westfechtel, editors, Graph
Transformations and Model-driven Engineering, pages
580–601. Springer-Verlag, Berlin, Heidelberg, 2010.

[44] A. A. Shah, D. Schaefer, and C. J. J. Paredis. Enabling
multi-view modeling with sysml profiles and model
transformations. In International Conference on Product
Lifecycle Management, pages 527–538, 2009.

[45] D. J. Sorin, M. D. Hill, and D. A. Wood. A primer on
memory consistency and cache coherence. Number 16 in
Synthesis Lectures on Computer Architecture. Morgan &
Claypool, 2011.

[46] G. Spanoudakis and A. Zisman. Inconsistency management
in software engineering: Survey and open research issues. In
in Handbook of Software Engineering and Knowledge
Engineering, pages 329–380. World Scientific, 2001.

[47] M. Törngren, A. Qamar, M. Biehl, F. Loiret, and
J. El-khoury. Integrating viewpoints in the development of
mechatronic products. Mechatronics, 24(7):745 – 762, 2014.
1. Model-Based Mechatronic System Design 2. Model Based
Engineering.

[48] F. J. Torres-Rojas, M. Ahamad, and M. Raynal. Timed
consistency for shared distributed objects. In Proceedings of
the Eighteenth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’99, pages 163–172, New
York, NY, USA, 1999. ACM.

[49] K. Vanherpen, J. Denil, I. Dávid, P. De Meulenaere, P. J.
Mosterman, M. Törngren, A. Qamar, and H. Vangheluwe.
Ontological reasoning for consistency in the design of
cyber-physical systems. In 2016 1st International Workshop

https://www.informatik.uni-augsburg.de/lehrstuehle/dbis/pmi/alumni/hoefner/talks/09_relmics/
https://www.informatik.uni-augsburg.de/lehrstuehle/dbis/pmi/alumni/hoefner/talks/09_relmics/


on Cyber-Physical Production Systems (CPPS), pages 1–8,
April 2016.

[50] R. von Hanxleden, E. A. Lee, C. Motika, and H. Fuhrmann.
Multi-view modeling and pragmatics in 2020. In
R. Calinescu and D. Garlan, editors, Large-Scale Complex IT
Systems. Development, Operation and Management, volume
7539 of Lecture Notes in Computer Science, pages 209–223.
Springer Berlin Heidelberg, 2012.

[51] G. Wachsmuth. Modelling the operational semantics of
domain-specific modelling languages. In R. Lämmel,
J. Visser, and J. Saraiva, editors, Generative and
Transformational Techniques in Software Engineering II:
International Summer School, GTTSE 2007, Braga,
Portugal, July 2-7, 2007. Revised Papers, pages 506–520.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.


	Introduction
	Overview on Multi-view Modeling
	Typical Scenarios in MVM
	Motivating Example
	System Properties and Consistency Statements
	Other Applicable Cases

	A Quantitative Model for Assessing Inconsistencies
	Formal Definitions
	Measuring Distances

	Towards tolerance of inconsistencies
	Tolerating Parameter Inconsistencies
	Temporal Tolereance of Inconsistencies
	Discussion

	Related Work
	Inconsistency Management
	Measuring Inconsistency
	Temporal Tolerance
	Consistency in Other Contexts

	Conclusion
	References

