
A SYMBOLIC EXECUTION-BASED APPROACH TO MODEL
TRANSFORMATION VERIFICATION USING STRUCTURAL

CONTRACTS

by
Bentley James Oakes

School of Computer Science
McGill University, Montreal, Quebec

August 2018

A thesis submitted to McGill University

in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

Copyright © 2018 by Bentley James Oakes

Abstract

As the complexity of software systems increases, the engineering effort for
developing those systems must deal with that complexity. One paradigm for software
development is model-driven engineering, where the models of the system become
the first-order artefacts. These models may be used for simulation or analysis of the
system, or be transformed into executable code or documentation. The intention is
to represent each facet in the system in the most appropriate formalism at the most
appropriate level of abstraction.

Model transformations provide a structured and understandable way of
manipulating these models, and are often rooted in a mathematical approach which
enables precise specification and analysis. However, it may be difficult for a
user to reason about what elements will be matched and written by a particular
transformation.

Our research is focused on the verification of model transformations for a
particular model transformation language. In particular, we are interested in the
proving of pre-condition/ post-condition contracts, which relate the elements in the
input models to the transformation with the elements present in the corresponding
output elements.

i

DSLTrans

The DSLTrans transformation language was selected for our research because
of the properties guaranteed by construction: termination and confluence. In this
thesis, we provide a description of the semantics of DSLTrans in the double-pushout
approach, which brings DSLTrans to the state-of-the-art in model transformation.
As well, we provide semantics for other DSLTrans constructs not considered in
earlier works. These constructs include negative elements, indirect links, and Exists
elements.
Contract Proving

The core idea of our contract proving approach is to build path conditions for
the DSLTrans transformation through a symbolic execution procedure. That is, our
technique determines all valid combinations of rules in the transformation. Each of
these path conditions will explicitly represent the input and output elements present
when that combination of transformation rules execute through an abstraction
relation.

We then prove pre-condition/ post-condition contracts on these path conditions.
If a path condition does not satisfy the contract, then the path condition serves as
a counter-example. Examination of this counter-example allows for reasoning about
rules and rule interaction in the transformation.

As a contribution of this thesis, we consider all constructs in the DSLTrans
language and thus we can verify all DSLTrans transformations, including those that
contain negative elements. As well, we also define the unique split morphism in this
thesis, which allows for the vertices in the pattern graph to ‘split’ over the vertices in
the target graph. The use of this morphism allows us to create fewer path conditions
than in previous research, enabling our technique to scale to larger transformations.

ii

SyVOLT Tool

Another contribution of this thesis is to present the SyVOLT tool, which is our
implementation of the path condition generation and contract proof techniques. In
this thesis, we discuss the work-flow and implementation details of the prover, with a
focus on discussing the multi-paradigm and multi-formalism nature of the tool. We
also present a number of techniques to improve the scalability and analysis results
of the tool.

iii

Résumé

À mesure que la complexité des systèmes de logiciels augmente, l’effort
d’ingénierie pour développer ces systèmes doit faire face à cette complexité. Un
paradigme pour le développement des logiciels est l’ingénierie axée sur le modèle,
où les modèles du système deviennent les artéfacts de premier ordre. Ces modèles
peuvent être utilisés pour la simulation ou l’analyse de système, ou être transforméś
en code exécutable ou en documentation. L’intention est de représenter chaque facette
dans le système dans le formalisme le plus approprié et au niveau d’abstraction le
plus approprié.

Les transformations de modèles fournissent une manière structurée et
compréhensible de manipuler ces modèles, et sont souvent ancrées dans une approche
mathématique qui permet une spécification et une analyse précises. Cependant, il
peut être difficile pour un l’utilisateur de raisonner sur quels éléments seront appariés
et créer par une transformation particulière.

Notre recherche se concentre sur la vérification des transformations de modèles
pour un langage de transformation de modèle spécifique. En particulier, nous sommes
intéressés par prouvant des contrats de pré-condition / post-condition, qui relient les
éléments intrants des modèles à la transformation avec les éléments présents dans les
éléments d’extrants correspondants.

iv

DSLTrans

Ce langage de transformation DSLTrans a été sélectionné pour la vérification
en raison des propriétés garanties par construction : terminaison et confluence.
Dans cette thèse, nous fournissons une description de la sémantique de DSLTrans
dans l’approche « double-pushout », qui apporte DSLTrans au point dans les
transformations des modèles. De plus, nous fournissons les sémantiques pour d’autres
constructions DSLTrans qui ne sont pas considérées dans des travaux antérieurs.
Ces constructions comprennent des éléments négatifs, liens indirects, et éléments
«Existe».
Preuve de Contrat

L’idée de base de notre approche de vérification des contrats est de construire
des conditions de trajet pour la transformation DSLTrans à travers une procédure
d’exécution symbolique. Autrement dit, notre technique détermine toutes les
combinaisons valides de règles dans la transformation. Chacune de ces conditions
de trajet représentera explicitement les éléments intrant et extrants présents lorsque
cette combinaison des règles de transformation s’exécute à travers une relation
d’abstraction.

Nous vérifions ensuite les contrats de précondition / post-condition sur ces
conditions de trajet. Si une condition de trajet ne satisfait pas le contrat, la condition
de trajet sert de contrexemple. L’examen de ce contrexemple permet de raisonner
sur les règles et l’interaction des règles dans la transformation.

En tant que contribution de cette thèse, nous considérons toutes les constructions
dans le langage DSLTrans et ainsi nous pouvons vérifier toutes les transformations
DSLTrans, y compris celles qui contiennent des éléments négatifs. De plus, dans
cette thèse, nous définissons également l’unique morphisme de division, ce qui
permet aux sommets dans le graphique de modèle de se «diviser» sur les sommets
dans le graphique cible. L’utilisation de ce morphisme nous permet de créer moins
de conditions de trajets que dans les recherches précédentes, permettant à notre
technique d’évoluer vers de plus grandes transformations.

v

SyVOLT Outil

Une autre contribution de cette thèse est de présenter l’outil SyVOLT, qui est
notre implémentation des techniques de génération de condition de trajet et de preuve
de contrat. Dans cette thèse, nous discutons de la procédure et des détails de mise en
œuvre de l’outil, en mettant l’accent sur la nature multiparadigme et multiformalisme
de l’outil. Nous présentons également un certain nombre de techniques pour améliorer
l’évolutivité et l’analyse des résultats de l’outil.

vi

Acknowledgements

I would like to thank all those who have guided me in my life, especially my friends
and colleagues. Every little bit of help has been instrumental in all my adventures.

For my supervisors, Clark and Hans, thank you for giving me this opportunity.
For Levi Lúcio, thank you for the wonderful time in Munich and for being a friend
as well as a colleague. I also deeply appreciate the insights by Dániel Varró, Juan de
Lara, and Esther Guerra.

I acknowledge the generous support of the Natural Sciences and Engineering
Research Council of Canada (NSERC).

I thank my family for being there for me and listening to me. For my parents
and brother, I will always be there for you.

And for my wonderful wife, thank you for being the amazing person that you are.
I cannot put into words how much you mean to me, Alicia. And all of love to our
little V/B.

vii

Publications

This research has resulted in the following publications. Please note that Section 1.3
discusses the author’s specific contributions to these publications.

1. B. Oakes, C. Verbrugge, L. Lúcio,and H. Vangheluwe. Debugging of Model
Transformations and Contracts in SyVOLT. Accepted in the Debugging in
Model-Driven Engineering (MDEbug 2018) workshop.

2. B. Oakes, L. Lúcio, C. Gomes, and H. Vangheluwe. Expressive Symbolic-
Execution Contract Proving for the DSLTrans Transformation Language.
Technical Report SOCS-TR-2017.1, McGill University, 2017.

3. B. Oakes, J. Troya, L. Lúcio, and M. Wimmer. Full Contract Verification
for ATL using Symbolic Execution. Software and Systems Modeling, pages
1–35, 2016.

4. B. Oakes, J. Troya, L. Lúcio, and M. Wimmer. Fully Verifying
Transformation Contracts for Declarative ATL. In International Conference
on Model Driven Engineering Languages and Systems, pages 256–265, 2015.

5. L. Lúcio, B. Oakes, C. Gomes, G. Selim, J. Dingel, J. Cordy, and
H. Vangheluwe. SyVOLT: Full Model Transformation Verification using
Contracts. In International Conference on Model Driven Engineering
Languages and Systems, pages 24–27, 2015.

viii

6. G. Selim, J. Cordy, J. Dingel, L. Lúcio, and B. Oakes. Finding and Fixing
Bugs in Model Transformations with Formal Verification: An Experience
Report. In Proceedings of Analysis of Model Transformations workshop at
Model Driven Engineering Languages and Systems, pages 26–35, 2015.

7. L. Lúcio, B. Oakes, and H. Vangheluwe. A Technique for Symbolically
Verifying Properties of Graph-based Model Transformations. Technical Report
SOCS-TR-2014.1, McGill University, 2014.

8. G. Selim, J. Cordy, J. Dingel, L. Lúcio, and B. Oakes. Specification and
Verification of Graph-Based Model Transformation Properties. In Proceedings
of International Conference on Graph Transformation, pages 113–129, 2014.

ix

Contents

1 Introduction 2

1.1 Problem Overview . 4
1.1.1 Research Questions . 5

1.2 Solution Overview and Contributions 5
1.2.1 DSLTrans Semantics in the Double-Pushout Approach 6
1.2.2 Structural Contract Proving 7
1.2.3 Prover Implementation . 12

1.3 Author Contributions . 14
1.4 Thesis Organization . 17

2 Background 19

2.1 Model Transformations . 19
2.1.1 Transformation Rules . 21

2.2 DSLTrans Introduction . 22
2.2.1 Families-to-Persons Transformation 23
2.2.2 Rules . 26
2.2.3 Layers . 27
2.2.4 Backward Links . 28
2.2.5 DSLTrans Constructs . 30
2.2.6 Termination and Confluence Properties 32

x

2.3 Fundamental Definitions . 33
2.3.1 Graphs . 33
2.3.2 Graph Morphisms . 35

3 DSLTrans Formalization 42

3.1 DSLTrans Structures . 43
3.1.1 Transformation Rule . 43
3.1.2 Layer and Transformation . 45
3.1.3 Input-Output Model . 46
3.1.4 Matcher and Rewriter . 47

3.2 DSLTrans Semantics . 51
3.2.1 Application of a DSLTrans Rule 51
3.2.2 Negative Application Conditions 56
3.2.3 Attributes . 59
3.2.4 Indirect Links . 61
3.2.5 Repeated Application of a DSLTrans Rule 63
3.2.6 Any versus Exists Elements 65
3.2.7 DSLTrans Layer Execution . 70
3.2.8 DSLTrans Transformation Execution 71

3.3 Complexity of DSLTrans . 72
3.4 Confluence and Termination Properties 74

3.4.1 Confluence . 74
3.4.2 Termination . 77

3.5 Conclusion . 78

4 Transformation Verification using Contracts 80

4.1 Abstraction Relation . 82
4.1.1 Symbolic Execution . 82
4.1.2 Rule Combinations . 83
4.1.3 Path Conditions . 85

xi

4.1.4 Definition of the Abstraction Relation 87
4.1.5 Examples . 92
4.1.6 Other DSLTrans Constructs 103
4.1.7 Partitioning of Input-Output Models 103

4.2 Building Path Conditions . 104
4.2.1 Path Condition Generation Overview 104
4.2.2 Rule Classification Sets . 106
4.2.3 Rule Combination . 111
4.2.4 Considering Further Layers 118

4.3 Representation and Coverage of the Technique 118
4.3.1 Representation . 119
4.3.2 Coverage . 123

4.4 Contract Proof . 126
4.4.1 Structure of a Contract . 126
4.4.2 Contract Satisfaction . 130
4.4.3 Transformation Verification 134

4.5 Validity of Contract Proof . 136
4.5.1 Implication 1 - Positive Satisfaction 137
4.5.2 Implication 2 - Negative Satisfaction from Path Condition . . 139
4.5.3 Implication 3 - Negative Satisfaction from an Input-Output

Model . 140
4.5.4 Partitioning of Transformation Executions 142

4.6 Contract Expressiveness . 143
4.6.1 Attributes . 143
4.6.2 Propositional Logic and Pivots 144
4.6.3 Types of Contracts . 151
4.6.4 Limitations . 153

4.7 Conclusion . 155

xii

5 SyVOLT Design and Work-flow 157

5.1 FTG+PM . 158
5.2 Transformation and Contract Construction 163

5.2.1 Higher-order Transformation from ATL 164
5.2.2 Eclipse Plugin . 169
5.2.3 Meta Programming System (MPS) 171

5.3 Proving Process Implementation . 176
5.3.1 Himesis Format . 176
5.3.2 T-Core . 180
5.3.3 PyRamify . 183
5.3.4 Path Condition Creation . 188
5.3.5 Contract Proof . 189

5.4 Conclusion . 190

6 SyVOLT Algorithms 192

6.1 Experimental Conditions . 193
6.2 Split Morphism Matching Algorithm 194

6.2.1 Step 1 - Candidate Generation 198
6.2.2 Typing and Attribute Resolution 201
6.2.3 Step 2 - Match Set Creation 202
6.2.4 Complexity Analysis . 207
6.2.5 Experimental Results . 210

6.3 Algorithmic Optimizations . 213
6.3.1 Parallelization . 214
6.3.2 Slicing . 222
6.3.3 Pruning . 229
6.3.4 Conclusion . 235

6.4 Checks and Analysis . 237
6.4.1 Dependency Checking . 238
6.4.2 Rule Application . 241

xiii

6.4.3 Contract Result Analysis . 241
6.5 Conclusion . 247

7 Case Studies 248

7.0.1 Case Study Sizes . 248
7.0.2 Contract Description . 249

7.1 RSS2ATOM . 251
7.1.1 Transformation . 251
7.1.2 Contracts . 253

7.2 GM-to-AUTOSAR Transformation 255
7.2.1 M6 Contract . 255

7.3 UML-to-Kiltera Transformation . 256
7.3.1 Contracts . 257

7.4 Families-to-Person Transformation 259
7.4.1 Contracts . 263

7.5 mbeddr . 270
7.5.1 Transformation . 270
7.5.2 Contract . 273

8 Related Work 276

8.1 DSLTrans . 276
8.1.1 Graph Transformation Formalism 276
8.1.2 In-place versus Out-place . 277
8.1.3 Control Flow . 278
8.1.4 Confluence and Termination 278

8.2 Model Transformation Verification . 279
8.2.1 State-space Analysis . 280
8.2.2 Contract Proving . 281

8.3 SyVOLT Algorithms . 284
8.3.1 Contract/Transformation Analysis 286

xiv

9 Conclusion and Future Work 288

9.1 Research Questions . 289
9.1.1 Formalization of DSLTrans . 289
9.1.2 Formalization of the Contract Proving Approach 290
9.1.3 Design of SyVOLT . 291
9.1.4 Algorithmic Scalability Techniques 292

9.2 Future Work . 292
9.2.1 Transfer Contract Proving Approach 293
9.2.2 Creation Process for Contracts 293
9.2.3 Integration with Modelling Tools 294

1

Chapter 1

Introduction

Over the past few years, software has become an integral part of daily life,
from smart thermometers [168] to the industrial automotive domain [138]. As
these systems become more inter-connected and feature-rich, there is a increasing
demand to effectively manage the complexity in the system during its construction,
maintenance, and analysis stages [55].

Model-driven engineering (MDE) [133] is a method to manage the complexity
in the systems under study by using models at an appropriate level of abstraction.
The intention is to separate the concepts in the problem space (‘what problem is
to be solved’) from the concepts in the solution space (‘how the problem is to be
solved’) [161]. Thus, the user is afforded appropriate complexity without introducing
accidental complexity.

Once models of the system have been created at an appropriate of abstraction,
the models can be fed as input into tools to simulate the model, or a solution (such as
code) may be generated directly from the model. This use of MDE has been highly
successful and is increasingly employed in the engineering of physical systems [156].

A core tenet of model-driven engineering is that the models are typed by a
meta-model [84]. This meta-model is the language for the model which defines the
constraints and types available to write the model in. For example, a class diagram
which is itself written in the Unified Modelling Language [32] will define the classes

2

available for instantiation in a model. Thus, the model is said to conform to or be
typed by the classes in the meta-model [27]. This relation is discussed in Section 2.1
when we discuss transformations further. In this thesis, we will also refer to a model
as being in a language, or the meta-model as the model’s language.

One approach to managing model complexity is through the creation of domain-
specific modelling languages for the meta-model, such that the model’s language
encodes concepts from the problem domain [79]. This allows domain experts to
reason about their model more efficiently, without having to become experts in the
solution space [162]. This has been seen to increase productivity significantly [76, 78].
An example of domain-specific modelling is seen in Van Mierlo et al. [159] where the
authors present a nuclear power system using an intuitive visual syntax.

Model transformations are a key part of the MDE method, and have even
been called “the heart and soul of model-driven software development” [140]. The
reason for the adoption of transformations is that they can manipulate models in a
structured and repeated way with an excellent compromise between strong theoretical
foundations and applicability to real-world problems [34].

For example, both a particular model and its meta-model can be represented
as a typed attributed graph, which can be modified by a transformation [84].
Transformations may perform any number of operations on the model and meta-
model, such as creating, updating, or deleting model elements [45, 64]. Thus,
transformations can operate on the high-level domain-specific concepts in the model
language, while still allowing for mathematical treatment based on the foundations
of graphs and graph transformations.

There may be different intents for these transformations [93], such as simulation
to represent a system changing over time [47], synthesis, where for example executable
code is created from the model, or as a migration to change the language of the model
while preserving the content [137, 135].

More detail about the interaction between transformations, models, and meta-
models is found in the background material for this thesis (Section 2.1).

3

1.1 Problem Overview

As adoption of MDE increases in both academia and industry, the verification of
these transformations becomes a critical part of software development. For example,
a code generation transformation which converts a software system model into
executable code may be subject to industry standards. The ISO-26262 [73] standard
in the automotive domain requires documentation and assertions that the produced
artefacts are correct.

Properties of interest for a transformation may be that the transformation always
terminates or can never produce an unsafe model where a safety property does not
hold. In this thesis, we focus on the proving of structural contracts, such that if a
pre-condition holds on the input model, then a post-condition will hold on the output
model. That is, our structural contracts provide proof that a relationship exists or
does not exist between input and output elements. For example, the contract in
Figure 1.2a on page 9 relates members of a family in the input model with the male
and female elements produced in the output model.

One technique for verifying a transformation is to explore all possible outcomes
of the transformation, which is termed state-space exploration or symbolic execution
(related work is discussed in Section 8.2.1).

However, this verification technique may be infeasible due to a number of issues
which cause an explosion of possibilities in the state space. The first issue is that a
transformation under study may contain many rules and elements, making it difficult
to build all possibilities of interactions between the rules. Second, this explosion of
possibilities may be made much worse if the order of rule application changes the final
result. Finally, if the transformation is not guaranteed to terminate and the resulting
state-space is infinite, then it may be impossible to verify the transformation. We
address these issues with our symbolic execution technique.

4

1.1.1 Research Questions

Our thesis statement is thus:

How can structural contracts be efficiently verified on a domain-specific
transformation language, given certain expressiveness restrictions?

We further break down this thesis statement into a collection of research questions
(RQs), which will be answered throughout this thesis:

— RQ1) How can the semantics of a model transformation language with reduced
expressiveness (DSLTrans) be precisely formalized and brought to the state-of-
the-art?

— RQ2) How can the infinite execution possibilities of a transformation be
represented in an explicit finite set?

— RQ3)
— a) How can structural pre-condition/ post-condition contracts be proven to

be satisfied or non-satisfied on these representations?
— b) When a contract is not satisfied, how do the counter-examples produced

relate to the transformation?
— RQ4) What is the design and work-flow of a contract verification tool?
— RQ5) What are techniques for improving the scalability of the verification tool

to allow for larger transformations to be verified?
The next section will present an overview of our solutions to the above research

questions.

1.2 Solution Overview and Contributions

Our research is focused on techniques for the creation of a symbolic execution
state-space for transformations, and verification of certain properties over that
representation of the state-space. We employ three components in our solution
to this problem: the DSLTrans language, the contract proving approach, and the
SyVOLT tool which implements this contract proving approach.

5

1.2.1 DSLTrans Semantics in the Double-Pushout Approach

To avoid the mentioned problem of an explosion in state-space, we require that
the transformation language being verified have reduced expressiveness, as in work by
Varró et al. [166]. Our research verifies the model transformation language DSLTrans,
which has the properties of termination and confluence. Termination means that
transformations will execute in a finite amount of time, while confluence means that
transformations always produce the same output model for the same input model.
This ensures that the state-space is finite, and lowers the number of state-spaces that
have to be created.

Note that although the language has restricted expressiveness, our research and
case studies show that DSLTrans is applicable to real transformation problems which
involve translation or migration transformations [98, 135, 113]. These translation
transformations translate a model in one meta-model into another meta-model, which
may be done to ‘evolve’ the model to a new meta-model. An example of this is
our industrial case study GM-to-AUTOSAR (Section 7.2) where the input model
is modelled in a proprietary language, and is translated into an industry standard
language for use with a greater variety of tools.

1.2.1.1 Contributions

The DSLTrans transformation language used in this thesis was introduced in
past work [21, 19, 94] and is thus not a contribution of this thesis. However, the past
descriptions of the semantics of DSLTrans have been incomplete.

The first contribution of this thesis is to formalize the semantics of DSLTrans
in Chapter 3 by placing the language within the double-pushout approach. This
intuitive approach provides greater clarity to the use and expressiveness of DSLTrans.
As well, by aligning DSLTrans closer with the current state-of-the-art, future
work will be able to extend the contract verification approach to other model
transformation languages.

Second, this thesis presents significant advances over earlier works by formalizing
a number of DSLTrans constructs not addressed in earlier works. These constructs

6

include Any and Exists elements, indirect links, and the negative versions of elements
which prevents rule application, which enables more expressiveness for DSLTrans
transformations.

The formalization of the semantics of DSLTrans is also required for our approach
to contract proving. This is made concrete in Section 4.2, where we represent
the application of DSLTrans rules. The complete formalization of all constructs of
DSLTrans allows us to consider them in our contract proving approach, and we can
now state that our contract prover technique handles all DSLTrans transformations.

1.2.2 Structural Contract Proving

Our contract verification technique (discussed in Chapter 4) builds structures
called path conditions which represents the application of rules in the transformation.
As these structures represent transformation executions where those rules have
applied, they explicitly include the input and output elements matched over or
created by those rules.

Once the set of path conditions has been created for a transformation, then pre-
condition/ post-condition contracts are matched over these path conditions. This
determines in which cases the contract is satisfied. If the post-condition does not
hold on a path condition, then we have found a counter-example to the contract,
and those rule combinations represented by the path condition do not satisfy the
contract.

Path Conditions. An example path condition is shown in Figure 1.1, which
explicitly shows the elements involved in the application of four rules in the
transformation. These rules are bounded in dashed boxes and contain nodes and
edges which are elements from the input and output meta-models.

The path condition represents rule application by explicitly containing the input
and output elements present when the rules apply. The white top-half of the path
condition is the input graph, while the grey bottom-half is the output graph. Lines
between the input graph and output graph are traceability links, which record how

7

the output elements were created during the execution of the transformation. This
path condition can therefore be read as: “If only these four rules apply during a
transformation execution, then (at least) these upper elements were present in the
input model, and these lower elements are present in the output model.” Section 4.1
presents more information on path conditions, including a formal definition and
multiple examples.

Figure 1.1 – A path condition which represents the application of four transformation
rules.

Contracts. The structural pre-condition/ post-condition contracts represent
patterns on the input and output models of a transformation, including traceability
information. If a contract is said to hold by our technique, then whenever a
transformation’s input model contains the pattern specified in the pre-condition of
the contract, the output model produced by that transformation will contain the
pattern specified in the contract’s post-condition (including traceability constraints).

For example, the input graph of the contract in the upper-half of Figure 1.2a
contains a Family element and four connected Member elements. The output graph
of the contract in the lower-half of the figure contains a Community element, two
Man elements, and two Woman elements. The dashed lines represent the restriction
that the output elements must have been produced by a rule that matched over the
connected input element. Note that the Community element is not produced directly
from the Family element.

8

The contract in Figure 1.2a therefore represents the informal statement “A Family
with a father, mother, son and daughter should always produce two Man and two
Woman elements connected to a Community”. This contract should always hold over
all transformation executions of the Families-to-Persons transformation, which will
be briefly presented in Section 2.2.1.

Note that a contract may be expected to not hold in all cases for a transformation.
For example, consider the contract Neg_DaughterMother in Figure 1.2b, which is
also from the Families-to-Persons transformation. The informal statement for this
contract is “A Family with a mother and a daughter will always produce a Man.’ As
mothers and daughters should always produce Woman elements, then this contract
should not hold in those case where only the rules involving mothers and daughters
apply.

(a) Pos_FourMembers contract – No

counter-examples found.

(b) Neg_DaughterMother contract –

Counter-examples found.

Figure 1.2 – Contracts proved on the Families-to-Persons transformation.

9

For the Neg_DaughterMother contract in Figure 1.2b, our contract prover will
find multiple path conditions which are counter-examples. One of these path
conditions is the path condition in Figure 1.1.

Note that the pre-condition of the contract will be said to match onto the top
component of the path condition (through a unique morphism), while the Man
element in the contract post-condition cannot be found in the bottom component
of the path condition. Thus the failure of this contract gives verification that the
transformation is working correctly, as Man elements have not been erroneously
produced from daughters and mothers in the represented transformation executions.

If path conditions are produced as counter-examples to a contract and this was
not an expected result, then this indicates an error with either the contract or
the transformation. As the path conditions indicate which rule applications they
represent, this allows the transformation verifier to precisely identify those rule
combinations wherein an error may have occurred. This is further discussed in
Chapter 4.4.

1.2.2.1 Contributions

Another contribution of this thesis is the complete definition of a contract proving
approach that a) handles all constructs of the DSLTrans transformation language,
including indirect links and negative elements, b) employs a novel matching technique
to reduce the number of path conditions required to be built, and c) extends the
abstraction relation to represent the repeated application of a rule in a path condition.

Complete Formalization. Chapter 4.4 provides the formalization of the structural
contract proving process using the double-pushout approach. A notable contribution
of this chapter is to handle all constructs of the DSLTrans language (such as
Any/Exists elements, negative elements) which have not been addressed in past work.
Thus, the contract proving approach can now verify all DSLTrans transformations.

10

Matching Technique. A symbolic execution approach for contract proving of
DSLTrans transformations was first introduced in the thesis of Barroca [19]. This
approach was then implemented as an early version of SyVOLT in Lúcio et al. [98].

However, this earlier approach required explicit path conditions to be produced
in a combinational explosion. This is because of the ‘disambiguation’ approach used
where elements in the path condition must be considered to overlap or not overlap
with each other. An explicit path condition must be created for each possible
combination of rule overlaps, which is on the order of two to the power of the
number of elements in the rule. This means that the full path condition set could
not be created for even small transformations, rendering the technique impractical
for industrial use on larger transformations.

To avoid the creation of these explicit path conditions, a new matching morphism
is detailed in this thesis. This typed graph split morphism has the distinction of being
non-isomorphic as described in Section 2.3.2.2. This means that the morphism is able
to ‘split’ a pattern graph over a target graph when matching, which removes the need
for explicit path conditions to be produced.

For example, the path condition in Figure 1.1 is a counter-example for the
contract in Figure 1.2b, as the pre-condition of the contract is said to match, but
the post-condition does not. The pre-condition of the contract will only match if the
split morphism is used, which is able to match the Family element in the contract
over both Family elements in the path condition. This matching is presented within
the contract proving context in Figure 4.20b on page 135.

Thus this thesis has the contribution of formalizing the typed graph split
morphism (Section 2.3.2.2), demonstrating its use within the abstraction relation
and contract proving steps (Chapter 4.4), and finally providing the algorithms used
for implementation of this morphism(Section 6.2).

Repeated Rule Application. The path conditions presented in this thesis are
representations of rule applications during transformation execution, as discussed
in Section 4.1.3. As it is impossible to represent the repeated application of all rules

11

within the transformation an infinite number of times, it is necessary to abstract
over the number of times each rule applies.

Therefore, in this thesis we make the contribution of examining how to explicitly
represent repeated application of a rule (Section 4.2.3.2), and the consequences for the
abstraction relation, path condition construction and contract proving approaches.
As well, we introduce a method in Section 6.4.1 which examines the contract and rules
to determine if a rule must be repeatedly applied during path condition construction.
This case can arise when a contract requires a rule to be applied multiple times to
produce the elements matched over by the contract.

1.2.3 Prover Implementation

The culmination of our research has been the SyVOLT contract verifier, which
implements the contract proving technique detailed in Chapter 4.4. This tool has
already been used in transformation verification research such as the work by Azizi
et al. [16].

1.2.3.1 Contributions

In this thesis, we make the following contributions for the SyVOLT tool: a)
a description of the work-flow and algorithms employed in the contract prover as
an example of multi-paradigm modelling, b) algorithmic techniques and results for
reducing the time and space requirements of the contract proving approach, and c) a
discussion of the contract analysis implemented in the prover, which assists the user
in understanding the results of contract proof.

Work-flow and Algorithms. Our contract proving approach operates on DSLTrans
transformations and rules, both of which may be represented as typed graphs and
manipulated by model transformations. Thus, we have built the SyVOLT contract
prover tool using a model-driven design which will be sketched in this thesis in
Chapter 5.

For example, we provide a Formalism Transformation Graph + Process Model
(Section 5.1) which explicitly details how the prover manipulates various artefacts

12

typed by a variety of formalisms. We consider the description of the multi-paradigm
modelling approach of our tool a contribution, as it highlights some of our successes
and failures in designing a tool capable of model manipulation.

For example, in Section 5.3.3, we discuss the critical issue of creating structures
which are able to match over rules. This higher-order reasoning is not widely
supported by modelling tools, and we had to write the custom PyRamify script,
which we consider to be a violation of best MDE practices. It is our hope that by
highlighting the precise reasoning issues that we faced, these reasoning issues can be
addressed by tool-builders in the community.

Algorithms and Techniques. The algorithms portion in Chapter 6 details the
design and implementation of our matching algorithm which uses the split morphism.
We provide pseudo-code, a brief complexity discussion, and a presentation of
matching results on a benchmark.

Algorithmic techniques to reduce the time and space requirements are required
during the path generation and contract proving process to ensure the verification of
reasonably-sized transformations. In this thesis, we present three techniques along
with complexity arguments and experiments on our set of case studies (Chapter 7).
These results indicate that our technique is scalable and widely applicable, as we can
prove multiple contracts on relatively large transformations within the span of a few
minutes.

The first technique is parallelization where the path condition generation and
contract proof processes are divided amongst different worker threads. We present
in this thesis an overview of this process, along with experimental results showing
how the number of threads affects the time taken for prover operation.

The act of slicing the transformation is our second technique. This operation
chooses only those rules in the transformation which are required for a contract to
be proved, dramatically reducing the time required to prove contracts. This approach
is a static analysis to determine which rules need to apply (and how many times) for
successful contract validation. This technique was introduced in Oakes et al. [112]

13

and expanded upon in Oakes et al. [113]. In this thesis, we contribute an example of
slicing for a contract, a complexity discussion, and an expanded results section.

The third contribution in the area of prover algorithms is the notion of pruning.
In this optimization, we detect required containment links in the meta-model, and
remove any path conditions that do not respect those links. This reduces the number
of path conditions in our symbolic execution and therefore decreases the time taken
to prove contracts. In this thesis, we provide a brief overview of pruning, an example
of the technique, and results showing the benefit for our case studies.

Transformation and Contract Analysis. As there may be errors during the
building of the transformation or contract, the contract prover also conducts a
number of static and dynamic checks which are detailed in this thesis. We detect
rule and contract dependencies such that if they cannot be satisfied, this is reported
before symbolic execution begins.

It can also be difficult to understand why a contract fails in the proving process.
This thesis will detail in Section 6.4 a number of techniques to allow the user to
understand why a contract is failing, namely which rules cause the contract to succeed
or fail, and which elements the contract cannot find in a sample failed path condition.

1.3 Author Contributions

This section will discuss the precise contributions of the thesis author to each of
the publications listed on page viii.

The publication of Selim et al. [137] applied an early version of the SyVOLT
contract prover to the GM-to-AUTOSAR case study which is briefly detailed in
Section 7.2. This conference paper was the result of a collaboration between McGill
University and Queen’s University. Levi Lúcio wrote the description of the contract
proving in discussion with the author. The author then presented the paper with
Gehan Selim at the International Conference on Graph Transformation (ICGT) in
July 2014.

14

During that time, the author helped write two submissions of the technique for
the Software and System Modeling journal. In particular, the author was heavily
involved in discussions concerning the entire work, and was the main author on the
sections of the paper explaining the path condition generation process.

The description of the semantics of DSLTrans was based on set-theory and did not
address all of the constructs used in the DSLTrans language (Any/Exists elements,
negative elements, etc.). The constructive criticism of the reviewers indicated that
this formalization was not complete, and that an alternative formalization based in
category theory would be more appropriate. This work was distributed as a technical
paper [98], and the reformalization effort was put aside for a later time.

At the MODELS conference in 2015, the author presented a demonstration paper
on the SyVOLT prover [97]. This paper was written by Levi Lúcio and the author,
while the Eclipse front-end was implemented by Cláudio Gomes. As well, the paper
was reviewed by our colleagues at Queen’s University. Note that the chapter on
the SyVOLT prover (Chapter 5) is based on this paper, but has been expanded
substantially by the author.

Also presented at the MODELS 2015 conference was the conference paper
on converting ATL to DSLTrans through a higher-order transformation. Javier
Troya and Manuel Wimmer came up with the idea, implemented the higher-order
transformation, and wrote the text about the higher-order transformation in the
paper. The author performed the experiments and wrote the majority of the paper,
with Levi Lúcio as second author on the SyVOLT portion.

This paper was invited to become a journal paper in 2016 for the Software and
System Modeling journal [113]. During the expansion process, each contributor
added detail to their section as listed in the preceding paragraph. Again, the author
wrote the majority of the text about the SyVOLT prover, performed all experiments,
and wrote the results section.

In 2016, Levi Lúcio led an effort to develop a front-end for SyVOLT in the Meta-
Programming System (MPS), as described in Section 5.2.3. The author assisted

15

with defining constructs and constraints for editing DSLTrans transformations and
contracts. As well, the importer plug-ins such that MPS can import transformations,
contracts, and meta-models were original ideas and implementations by the author.
These plug-ins are also discussed in Section 5.2.3.

The author then reformulated the material in Lúcio et al. [98] to produce two
journal-length papers. The first was submitted to the Formal Aspects of Computing
journal [111] but was rejected, while the second has been published as a technical
paper [110]. Note that the second paper will be submitted to a journal upon the
successful publication of the first paper.

These two journal papers form the basis of Chapter 3 and Chapter 4.4. Note
that the changes in material between the original paper from 2014 and the
updated versions are substantial, such that very little of the original structure and
formalization remain. While these papers were written in discussion with Lúcio,
the author has rewritten practically all text. In other words, all additions made
compared to Lúcio et al. [98] are the author’s. These additions are described in
Section 1.2.1 and Section 1.2.2.1.

In particular, the typed graph split morphism is a substantial difference to
the technique presented in Lúcio et al. [98]. This split morphism allows for
path conditions to abstract over a much larger set of input-output models for the
transformation than was possible before. This decreases the cost to build these path
conditions and dramatically increases the scalability of the contract prover. The split
morphism was an original idea by the author. As well, all integration of the split
morphism into the contract proving approach is the author’s work, as well as the
implementation in the SyVOLT tool (Section 6.2).

The SyVOLT prover idea and initial prototype was developed by Levi Lúcio,
as well as the initial implementations of slicing and pruning. However, these
implementations were redone by the author on account of the complications
introduced by the split morphism. The author also implemented the parallelization

16

optimizations and the transformation/contract analysis. Note that the analysis
section forms the basis of the workshop paper on debugging of contracts [114].

All experiments and result analyses in this paper were performed by the author.

1.4 Thesis Organization

The next chapter of this paper, Chapter 2 will provide background on model
transformations including and introduction to the notion of meta-modelling. An
example of the DSLTrans language will follow, including selections from an example
transformation. The chapter finishes with an introduction to the formal concepts
used in the rest of the paper, such as typed graphs and graph morphisms. These
concepts will be used to formalize the semantics of the DSLTrans language and the
contract proving approach.

Following this, Chapter 3 describe the semantics of DSLTrans using the double-
pushout approach. The structures of DSLTrans necessary for graph matching and
rewriting are presented in Section 3.1, while the actual semantics themselves are
explained in Section 3.2.

Chapter 4 discusses our verification of DSLTrans transformations. Our approach
symbolically executes rules from the transformation, relying on an abstraction
relation defined in Section 4.1. Through resolution of dependencies, this procedure
creates a set of path conditions, which indicate possible input and output models for
the transformation (Section 4.2).

Our path condition building algorithm builds path conditions that both represent
and cover the infinite set of transformation executions, as discussed in Section 4.3.

Structural contracts can then be proved on these path conditions, allowing the
transformation verifier to understand the relationship between input and output
models for the transformation. This contract verification is described in Section 4.4
with a discussion of validity presented in Section 4.5. A short discussion of the
constructs available in the contract language is contained in Section 4.6 with
examples from our case studies.

17

Chapter 5 will then provide a discussion of our multi-paradigm SyVOLT tool,
which can efficiently prove structural contracts on DSLTrans transformations. The
work-flow of the tool is presented in Section 5.1, while following sections introduce
the two front-ends available to construct transformations and contracts, the ATL
higher-order transformation, and the algorithms involved in the back-end of the
prover.

Following this, Chapter 6 discusses some of the algorithms and optimization
techniques employed in our contract proving tool. Section 6.2 will discuss our
implementation of the split morphism which is at the core of our techniques. The
algorithmic optimization techniques such as parallelization, slicing, and pruning are
presented in Section 6.3, along with complexity arguments and experimental results.
Finally, this chapter finishes with Section 6.4 which details the analyses we perform
on transformations and contracts to detect errors and assist the user in correcting
them.

Chapter 7 details the case studies used for our research. These case studies are
diverse in size and complexity, and demonstrate how our technique is applicable to
a variety of applications including industrial usage. The rules and contracts for each
transformation are presented, along with a selection of how contracts hold or do not
hold on each transformation.

In Section 8 we present work related to the DSLTrans language, the contract
verification approach, and our verification tool. Finally, a detailed conclusion of the
material will be presented along with avenues of future work in Chapter 9.

18

Chapter 2

Background

This chapter will provide the needed background for this thesis on transformation
verification. First, we introduce the concepts of model transformations, which act on
models to manipulate their elements. Next, we introduce the DSLTrans language and
relevant constructs with the assistance of an example. Finally, Section 2.3 presents
the fundamental definitions required for the formalization of DSLTrans (Chapter 3)
and the contract proving approach (Section 4).

2.1 Model Transformations

The concept of model transformations is central to the idea of model-driven
engineering. These transformations may perform a number of operations on a model,
such as creating, updating, or deleting model elements. As well, transformations
may be classified in a variety of ways [102], such as optimisation, normalisation, or
abstraction/refinement. Transformations may also be used for the translation of a
graphical model to source code, or a system might also be simulated using model
transformation rules, whereby the rules continually update the model and evolve the
system over time [47].

Figure 2.1 shows the components involved in a model transformation. In this
diagram, a model is fed as input into a model transformation, which produces a

19

model as output. The solid arrows represent the flow of data, while the dashed
arrows represent the conforms to or is typed by relation. This relation means that
the elements in the model are instantiations of the elements in the meta-model,
and may be subject to constraints defined in the meta-model such as multiplicity
restrictions.

The input model Minput conforms to the input language MMinput , while the
output model Moutput conforms to the output language MMoutput . Note that the
input and output languages may also be termed the source and target languages.

If MMinput and MMoutput are the same language, then this is termed an
endogenous model transformation [102]. Otherwise, the transformation is exogenous.
As well, transformations are in-place if the input and output models are the same,
or out-place if they are different. In our verification research, we focus on exogenous
and out-place transformations.

Figure 2.1 – Relationships between a model transformation and the input and output
models/meta-models.

Note that a model transformation itself conforms to some language [28], marked as
MMtrans in Figure 2.1. This transformation language contains concepts for defining
and scheduling transformation rules which perform the actual model matching and
rewriting [87]. In this thesis, the transformation language will be DSLTrans, as
further explained in Section 2.2 on page 22.

20

2.1.1 Transformation Rules

A transformation rule is the essential component of a model transformation. In
this thesis, we will focus exclusively on graph rules, which operate on typed graphs.
These rules are scheduled in some order in the transformation, and they match over
elements in the input model, and produce (or delete) elements in the output model.

Let r be a rule as in Figure 2.2a on the next page. r is mainly composed of two
graphs, with optional negative application condition graphs as explained below. The
first graph is the left-hand graph (LHS), which represents the condition for which
the rule can apply. The second graph is the right-hand side (RHS), which defines
the action to be performed on the graph when the LHS matches (creating, updating,
or deleting elements).

Note that both the LHS and the RHS will contain elements typed according to
pattern languages. These pattern languages are representations which allow the rules
to represent constraints and actions on the input and output languages. Pattern
languages are created from the input and output meta-models through a process
known as RAMification [85], which allows for the relaxation, augmentation, and
modification of the language to form the pattern language.

An example of this process is to allow an abstract class to appear in the pattern
language, which requires the relaxation of the abstract property of that element. This
is further discussed in Section 5.3.3 on page 183, where we discuss our implementation
of the RAMification procedure.

Rule Application. For a rule to apply, there must be a match between the LHS
of the rule and the model being transformed. That is, it must be possible to match
the types and structure of elements in the LHS to the input model. If the match
succeeds, then the part of the input model which has been matched will then be
acted upon by the RHS.

In this thesis, we will employ the double-pushout approach to graph
transformation, which is explained in Section 3.2.1.1 on page 52. In this approach,

21

elements which exist on the LHS but not the RHS will be deleted, while elements
that exist on the RHS but not the LHS will be created.

An example of a rule is seen in Figure 2.2a. In this rule, if an element of type
A is found connected to an element of type B, then the B element will be rewritten
with an element of type C. Note that the same A element is present in both the LHS
and RHS.

(a) Rule with left-hand side and

right-hand side.

(b) Rule with negative application condition.

Figure 2.2 – Examples of transformation rules.

Constraints may also be added to the rule to prevent the matching of the LHS
to the input model. These constraints are formulated as negative applications
conditions (NAC), which use the same pattern language as the LHS. If a rule has a
NAC graph, then the rule cannot apply on an input model if there is also a match
of the NAC to the input model. This concept allows the transformation designer to
specify cases in which the rule should not apply.

In Figure 2.2b, the NAC is found in a dashed box to the left of the LHS. It
specifies that the rule may only execute if an element of type A is not connected to
an element of type D.

2.2 DSLTrans Introduction

This section will present the DSLTrans transformation language, which is the
target of our verification research. DSLTrans transformations operate on an input

22

model using rules, which are structured into layers. If a rule in a layer successfully
matches on the input model, then it will produce elements in the output model.

This layer-based structure enhances the understandability of DSLTrans
transformations. As discussed in Section 3.2 on page 51, layers enforce the order
of rule execution. As well, the semantics of DSLTrans means that transformations
will always terminate and produce consistent results, as discussed in Section 3.4 on
page 74.

We introduce DSLTrans through the presentation of the Families-to-Persons
transformation. This transformation is also one of our case studies as shown
in Section 7.4, where we present the full Families-to-Persons transformation in
Figure 7.7 on page 261 and Figure 7.8 on page 262.

The meta-models and a selection of rules for this transformation are shown to
help illustrate the mechanics of DSLTrans. As well, we provide a reference to the
constructs available in the DSLTrans language. This section finishes with a brief
discussion of the termination and confluence properties, which are crucial to the
symbolic execution approach detailed in this thesis.

2.2.1 Families-to-Persons Transformation

As an example DSLTrans transformation, we present the Families-to-Persons
transformation from Oakes et al. [113]. This transformation takes Families of
Members who live in Countries and Cities, and converts those elements into Men
and Women who live in Communities and work at TownHalls.

This transformation was originally found in the ATL zoo [2], but was dramatically
expanded for our work on converting ATL transformations to DSLTrans [112, 113].
Note that this conversion process is discussed in Section 5.2.1 on page 164. The
Families-to-Persons transformation was selected as an introductory transformation
as the domain is familiar to reason about. As well, the original version of this
transformation has been discussed in related verification and testing research [63].

The transformation is reasonably complex enough to be representative of
translation transformations. This is seen in Section 7.0.1 on page 248 with a

23

comparison of the sizes of our case studies. As well, the Families-to-Persons contains
interesting concepts with regards to our verification work. In particular, a number of
rules produce elements in the output model which have their attributes set through
manipulation of the attributes in the input model. These rules therefore test our
technique’s ability to correctly abstract and prove contracts on this attribute-setting.

2.2.1.1 Meta-models

The input and output meta-models of this transformation are shown in Figure 2.3,
taken from Oakes et al. [113]. Note that abstract classes are depicted in grey and
with italic names, and inheritance relationships are depicted in grey.

24

Country

City

Company

School

Service

Neighborhood

Family
lastName : EString

Child

Member
firstName : EString

Parent

NamedElement
name : EString

1..* families

0..*
sons

0..*
daughters0..*

fathers
0..*

mothers

family1..1
1..*

cities

0..*
companies

1..*
isIn

0..*
employees

0..1
worksIn

companies0..*

registeredIn1..1

1..1
livesIn

0..*
schools

0..*
special

0..*
ordinary

neighborhoods1..*

goesTo1..1students
0..*

(a) Families meta-model.

Community

TownHall

Committee

Association

SpecialFacility OrdinaryFacility

Facility

District

Man Woman

Person
fullName : EString

NamedElement
name : EString

1..* persons

0..* associations

committee
1..1

1..*townHalls

1..*districts

facilities0..*

workersmembers
0..*0..*

committee 1..1

(b) Persons meta-model.

Figure 2.3 – Meta-models for the Families-to-Persons transformation.

25

Figure 2.3a shows the input meta-model for the Families-to-Persons transforma-
tion. In this meta-model, the root element is a Country, which contains Companies,
Families, and Cities. In each Family, there are Members where some are Parents
who work in the Companies and some Members are Children who go to School.
These Schools contains Services which may be special for special-needs programs, or
ordinary for ordinary services. As well, these Schools are contained in Neighborhoods
which are contained in Cities. Family elements have a lastName, while Member
elements have a firstName, and all other elements have a name attribute.

The output Persons meta-model is shown in Figure 2.3b. In this meta-model,
Communities contain Persons, TownHalls, and Associations. Persons are either Men
or Women 1 who work at TownHalls or attend Facilities. The Facilities are divided
into SpecialFacilities and OrdinaryFacilities. The TownHalls and Associations have
a common Committee. Persons have fullNames, while most other elements have a
name.

2.2.2 Rules

The essential unit of a DSLTrans transformation is the rule, containing a
MatchModel and an ApplyModel. In Figure 2.4 on the following page, the MatchModel
is the white box in the top half of the rule containing two elements, while the
ApplyModel is the yellow box in the bottom of the rule containing one element.

The semantics of rule application, formally described in Section 3.2.1 on page 51,
are to match the elements found in the MatchModel onto the input model. If this
can be accomplished, then the elements in the ApplyModel are created in the output
model. For example, Figure 2.4 shows the Father2Man rule. In this rule, if an
element of type Parent is found connected to an element of type Family in the input
model, then an element of Man is created in the output model.

Note that these elements are technically patterns over the Families and Persons
meta-model shown in Figure 2.3. That is, when we refer to the Parent element in
the rule, it is the Parent element in the pattern language.

1. The authors note that the meta-models lack nuance with respect to gender.

26

Figure 2.4 – The Father2Man DSLTrans rule.

Also present in this rule example is the copying of attribute values from the
MatchModel to the ApplyModel. This is represented by the lines between the match
elements and the apply element in Figure 2.4. In this example, the fullName of
the Man is created from the concatenation of the firstName of the Parent, and the
lastName of the Family. This setting of attribute values is discussed in Section 3.2.3
on page 59. As well, Figure 2.4 shows the symbols to denote Any and Exists elements,
as discussed later in this section.

2.2.3 Layers

The construction used for the scheduling of DSLTrans rules is a layer. A
transformation is composed of layers where each layer contains a set of transformation

27

rules. Layers in DSLTrans are organized sequentially such that each layer in turn
will match over an input model and produce elements in the output model.

Note that while the transformation will execute layer-by-layer, rules in a layer will
apply in a non-deterministic order. However, an essential property of the DSLTrans
language is that each rule in a layer cannot match over the output of any other rule
in the same layer, and rules can only produce elements (termed out-place). Thus,
the semantics of rule execution is that all rules in the layer match as many times
as possible, before they apply at once in a mass production, which is described in
Section 3.2.7 on page 70. This separation of matching and rewriting steps is necessary
for DSLTrans to be confluent by construction as discussed in Section 2.2.6.

In Figure 2.5 we present a selection of layers of the Families-to-Persons
transformation, where each layer contains one rule. In this case, the layers will
execute in sequence from left to right, as denoted by the arrows in the figure.

Figure 2.5 – Four layers selected from the Families-to-Persons DSLTrans
transformation.

2.2.4 Backward Links

DSLTrans rules specify how elements of the output model were created from
specific elements of the input model during rule application. This traceability

28

information for the transformation is stored as traceability links, which are built
between a newly generated element in the output model, and the elements of the
input model that originated it. For example, whenever the rule in Figure 2.4 applies,
traceability links are created from the matched Parent and Family elements to the
produced Man elements in the output model. This building process is discussed in
Section 3.1.4.2 on page 50.

The backward link construct in DSLTrans rules is used to match over these
traceability links. Figure 2.6 depicts a rule containing two backward links. The
backward links are denoted as dotted lines, connecting the Country and Community
elements and the Child and Woman elements. These links enforce a dependency
that the Community element must have been produced by a rule that matched on
the Country element in an earlier layer of the transformation.

Figure 2.6 – A DSLTrans rule with backward links

These backward links are thus used during the matching process of a rule. In
this process, the elements in the MatchModel of the rule are searched for in the
transformation’s input model, together with the elements in the ApplyModel of the
rule that are directly connected to backward links. If these elements were found, then
those ApplyModel elements not connected to the backward link are created in the
output mode during the rewrite part of rule application.

For example, the copersons... rule in Figure 2.6 will match over a Country element
connected to a Family element connected to a Child element. If these elements are

29

found in the input model along with the corresponding Community and Woman
elements in the output model, then a persons relation will be created between those
output elements. This is formalized as the matcher and rewriter constructs for a
rule in Section 3.1.4 on page 47.

2.2.5 DSLTrans Constructs

This section will briefly describe all of the constructs present in the DSLTrans
language as a reference for the reader. Some of these constructs are seen in the
transformation presented in Section 7.4 on page 259 which presents the rules in the
transformation.

Note that formal details for the syntax and semantics of these constructs are found
in Sections 3.1 and 3.2. As well, extra reference material is found in the DSLTrans
manual [65], which also contains instructions for executing DSLTrans transformations
in the Eclipse environment.

— Match Elements: Match elements represent elements which will match over
all elements of the corresponding type (or subtype) in the input model when
the transformation is executed. Match elements include those present in the
MatchModel of the rule, as well as those in the ApplyModel connected to
backward links.
Note that the RAMification process [85] (Section 5.3.3) is used to create the
matching elements, such that a School match element can match over elements
of type School in the target model.

— Existential Matching: The Exists construct allows selecting at most one
result when a match element matches onto an input model (Section 3.2.6).
These are denoted as Exists elements, as opposed to Any elements.

— Direct Match Links: Direct match links represent labelled associations
typed by the source meta-model. These match links will match over
associations of the same type in the input model.

30

— Indirect Match Links: Indirect match links are similar to direct match
links, but there can exist a non-empty path without repeated elements
between the matched elements for the indirect link to match. (Section 3.2.4).
The typing of associations is ignored when matching indirect links.

— Backward Links: Backward links connect elements of the ApplyModel and
the MatchModel of a DSLTrans rule to represent dependencies on element
creation by previous layers of the transformation. During the execution of the
transformation, backward links will match over traceability links.
These traceability links are created when a rule applies between the match
elements and apply elements, as defined in Section 3.1.4.2.

— Negative Elements: Match elements, backward, and match links can all
be labelled as negative. This prevents the matching of those elements onto
the input model, allowing the transformation designer greater control over the
execution of the transformation. The semantics for negative elements is found
in Section 3.2.2.

— Apply Elements and Apply Links: Apply elements and apply links are
similar to match elements and match links, but are instead those elements
produced by the application of a rule.
During the execution of a DSLTrans rule, these output elements and links will
be created as many times as the match graph of the rule is found in the input
model, as described in Section 3.2. In particular, apply elements that are not
connected to backward links will create elements in the output model, while
apply links will always be created in the output model.

— Attributes: DSLTrans includes a small language for matching over and
creating String attributes.
— Atoms : String literals.
— Wildcards : Tokens to match over arbitrary values, similar to the Kleene

star operator in regular expressions. For example, Wildcards could be used
to match attribute values that start with the String “pre”.

31

— Match Attribute References : References to the value of match attributes.
— Concat : Used to concatenate atoms, wildcards, and attribute references.

— Match Attributes: Uses the attribute language to create constraints on the
values of attributes in the input model. Thus, the application of rules can be
restricted. For example, an element could be restricted to match only when
the element has a name attribute with a value of __pre.

— Apply Attributes: Apply attributes can be created from concatenating
String literals and/or references to match attributes.

2.2.6 Termination and Confluence Properties

DSLTrans has two important properties guaranteed by construction of the
language: all match and rewrite operations are both terminating and confluent [21].
We require these properties for our contract verification technique as explained in
Chapter 4.4.

Termination means that a DSLTrans transformation will stop executing after a
finite number of steps. A transformation is confluent when, for a given input model,
the outcome of executing the transformation is always the same. An examination
of these properties under the double-pushout approach and with all DSLTrans
constructs is found in Section 3.4 on page 74.

These properties stem from the fact that the transformation executes sequentially,
one layer at a time. As well, the looping constructs (indirect links, multiple rule
matches) used in DSLTrans are always finite by construction. Therefore, it is
impossible to write a DSLTrans transformation which does not terminate.

DSLTrans’ transformations are also strictly out-place. This means that the model
being matched over cannot be modified, and that no elements can be deleted or
modified in the output model. This is crucial in maintaining confluency for the
execution of a transformation.

These restrictions may make writing some transformations difficult (or even
impossible). For example, these restrictions rule out the use of DSLTrans for
the specification of a simulation language as rules cannot infinitely fire. However,

32

DSLTrans is sufficient for expressing translation model transformations [13] which
translate models between source and target meta-models. Examples of translation
transformations are presented as case studies in Section 7 on page 248.

2.3 Fundamental Definitions

This section introduces formal structures and concepts to explain the syntax
and semantics of DSLTrans and the technique for proving contracts on DSLTrans
transformations.

We begin our formalization by introducing (labelled and typed) graph concepts
that will be used as mathematical building blocks. In particular we introduce our
representation of graphs and the morphisms between them. This section is based
on well-known concepts from graph theory, with Ehrig et al. [50] used as a primary
reference.

2.3.1 Graphs

The (labelled) graph is the essential object we will use throughout our
mathematical development to formalize all the important graph-like structures, such
as rules and input-output models. We begin with a definition for a directed multi-
graph (a graph allowing multiple edges between two vertices).

Definition 1. Graph
A graph is a 4-tuple ⟨V,E, (s, t)⟩ where:

— V is a finite set of vertices;
— E is a finite set of directed edges connecting the vertices V ;
— V and E are disjoint;
— (s, t) is a pair of functions s : E → V and t : E → V that respectively provide

the source and target vertices for each edge;
— Edges e ∈ E are noted v

e−→ v′ if s(e) = v and t(e) = v′;

33

2.3.1.1 Typed Graph

The DSLTrans transformation language is targeted at transforming domain-
specific models in the model-driven engineering domain. Therefore, we must employ
typed graphs, where the types of vertices and edges are drawn from a particular meta-
model. These meta-models will play a part in Definition 9 on page 44, which specifies
how DSLTrans rules consist of multiple typed graphs with potentially different meta-
models for the match and apply components.

This typing is provided by a type graph, which provides the vertex and edge types
to be used in a typed graph. A typed graph is then defined in Definition 2. where
the function τ gives typing information for each vertex and edge in the graph.

Definition 2. Typed Graph
A typed graph is a 5-tuple ⟨V,E, (s, t), τ⟩ where:

— V,E, s, t are as in graphs;
— The function τ provides the mapping for each vertex and edge to a type graph;
— The set of all typed graphs is denoted TG;
— We define the empty graph ∅ to be the typed graph with all empty functions

and sets.

For example, the match graph for the rule in Figure 2.6 on page 29 is typed
by the Families meta-model (presented in Section 2.2.1). The vertices in the type
graph would include Member and Family, while an edge marked fathers would exist
between those vertices in the type graph.

As well, the typing information found in the transformation domain may rely
on inheritance relations. In particular, our notion of graph matching must handle
sub-type information for vertices. For example, the Member element in a rule must
match over both Parent and Child elements, due to the inheritance relationship in
the Families meta-model. Note that edge sub-typing is not considered.

We construct a partial ordering ≤ on the vertex types in a type graph to be
used during the matching of graphs and structures. For the treatment of inheritance

34

during matching, we rely on the work of de Lara et al. [46], where vertex types
are replaced with all sub-types during the matching process as required using clan
morphisms. Thus, inheritance considerations are handled transparently.

Note that for simplification purposes, we will not represent edge cardinalities or
containment relationships given by a meta-model in our notion of type graph. In fact,
we require these conditions to be relaxed (as in the RAMification procedure [85]) to
perform our graph rewriting, as incomplete output graphs will be produced during
the execution of the transformation.

2.3.1.2 Sub-graph

A typed sub-graph is simply a restriction of a typed graph to some of its vertices
and edges. This definition allows us to talk about partitioning DSLTrans constructs
such as rules into logical components. For example, this definition can be used to
select the match or apply components of a rule (Definition 9).

Definition 3. Typed Sub-graph
Let ⟨V,E, (s, t), τ⟩ = g, and ⟨V ′, E ′, (s′, t′), τ ′⟩ = g′, where g, g′ ∈ TG.

g′ is a typed sub-graph of g, written g′ ⊑ g, iff:
— V ′ ⊆ V ;
— E ′ ⊆ E;
— s′ = s|E′;
— t′ = t|E′;
— τ ′ ⊆ τ

2.3.2 Graph Morphisms

The formal development of our technique requires the definition of relations
between typed graphs that preserve (some) graph structure and the types of vertices
and edges, i.e. morphisms.

As terminology, these morphisms find mappings or matches from vertices (and
edges) in the pattern graph onto vertices (and edges) in the target graph.

35

2.3.2.1 Typed Graph Morphism

The first typed graph morphism we define is standard in the graph-matching
literature, where it is used to find an isomorphic match of the structure of the
pattern graph in the target graph [43]. This morphism is presented for the reader to
appreciate the complications required for the next morphism, which is not a standard
isomorphism.

Definition 4. Typed Graph Morphism
Let ⟨V,E, (s, t), τ⟩ = g, and ⟨V ′, E ′, (s′, t′), τ ′⟩ = g′, where g, g′ ∈ TG.

A typed graph morphism f : g → g′ is a function f : (fv, fe) such that:
— fv : V → V ′;
— fe : E → E ′;
— ∀v1

e−→ v2 ∈ E:
— Let v′1 = fv(v1), v

′
2 = fv(v2), e

′ = fe(e);
— v′1, v

′
2 ∈ V ′, e′ ∈ E ′;

— s′(e′) = v′1, t′(e′) = v′2;
— τ(v1) ≤ τ ′(v′1), τ(v2) ≤ τ ′(v′2), τ(e) ≤ τ ′(e′)

This last condition handles matching of types, such that the vertex and edge types
in the pattern are the same or super-classes of the types in the target graph. That is,
the types of the vertices (or edges) are obtained with τ or τ ′ and then the ≤ partial
ordering determines whether the types match or not. An equivalent formulation is
to consider the use of clan morphisms, which replaces elements with their sub-types
in the pattern as required during matching.

For a terminology refresh, injective matching means there is a one-to-one
correspondence from the pattern vertices and edges to the target vertices and edges.
Surjective matching means that all target vertices and edges must be matched by at
least one pattern vertex or edge. A bijection is when the matching is both injective
and surjective.

An injective typed graph morphism f from g onto g′ is written f : g
inj→ g′. A

surjective typed graph morphism from g onto g′ is written g
surj→ g′.

36

2.3.2.2 Typed Graph Split Morphism

The improvements in this thesis to the abstraction relation (Section 4.1) and path
condition creation technique (Section 4.2) requires a form of graph morphism that
primarily focuses on matching the edges of the graphs. This morphism will still be an
injective match regarding the edges, but note that a particular vertex in the pattern
graph may match onto multiple vertices in the target graph. Thus, this morphism
performs ‘one-to-many’ matching.

Definition 5. Typed Graph Split Morphism
The typed graph split morphism exists between the pattern graph g and the target
graph g′ when a third interface graph h exists that satisfies the following properties:

— h ∈ TG

— ∃p : (hV
surj→ g′V , hE

inj→ g′E)

— This is a surjection on the vertices, but an injection on the edges
— ∃q : h inj→ g′

When a typed graph split morphism f exists from g onto g′, we write g ↣ g′.

This split morphism is primarily different to Definition 4 in the matching of
vertices. In the split morphism, a vertex in the target graph matches onto a vertex
in the pattern graph, with multiple target vertices matching onto the same pattern
vertex.

An example of this morphism is seen in Figure 2.7. Note that on the right-hand
side, the graph h is found as a sub-graph isomorphism within the target graph. On
the left-hand side, the vertices are allowed to overlap in the non-injective morphism
between h and the pattern graph. However, the edges in h must be found injectively
in the pattern graph g.

This unusual morphism allows our technique to ‘split’ our pattern graph vertices
to match over multiple vertices in the target graph. Note that the mapping from a
pattern vertex to the (set of) target vertices is created by composing the p and q

morphisms. That is, for an element a, the mapping m(a) produces a set such that

37

Figure 2.7 – Constructing the interface graph h for the existence of the typed graph
split morphism.

the morphism p gives the element a, and the morphism q provides the elements of
the set. m(a) = {q(n1), q(n2), . . . q(nn) | p(ni) = a}.

The ability for this morphism to allow overlapping is critical to our approach as
our target graphs represent a structure that suffers from vertex duplication. That
is, two vertices of a particular type in the target graph may only represent one
underlying element in an abstracted structure.

A concrete example for when this ‘one-to-many’ matching is required is found in
Section 4.4.2.3 on page 133. Briefly, the issue is that a contract needs to be matched
onto a path condition structure representing multiple rules (Section 4.1.3). Therefore,
one element in the contract may match onto multiple elements in different rule
components. This morphism is our way of unifying elements in different rules without
the combinatorial explosion of generating all unifications of the rules explicitly, as is
performed by Barroca [19].

Note that this split morphism is not equivalent to a non-injective morphism. In
a non-injective morphism, multiple pattern nodes may match on one target node.
In contrast, the split morphism allows one pattern node to match on multiple target
nodes.

2.3.2.3 Transitive Closure

DSLTrans matching constructs allow for the matching of indirect links where
rules may match over indirect paths between elements.

38

The definition of transitive closure in Definition 6 explicitly creates all transitive
edges for that graph. This explicit creation allows us to use indirect links in a
straightforward way during the matching of the rule, as discussed in Section 3.2.4 on
page 61.

Note that we will enforce a restriction that transitive edges are only created
between vertices on paths with no cycles.

Definition 6. Transitive Closure
Let g be a typed graph ⟨V,E, (s, t), τ⟩ ∈ TG.Then we define the transitive closure
g∗ = ⟨V,E ′, (s′, t′), τ ′⟩ ∈ TG to be:

— Etc = {v1
etc−→ v2 | etc ̸∈ E and a path exists in V between v1 and v2 without

cycles}
— E ′ = E ∪ Etc

— s′(etc) = v1, t′(etc) = v2;
— τ(etc) = indirect

2.3.2.4 Links Between Graphs

In the developments that follow, we create structures which consist of two typed
graphs, with links between them. For example, these structures may be a DSLTrans
rule (Definition 9 on page 44) or an input-output model (Definition 12 on page 47).

Definition 7 describes how the links between the two typed graphs is simply a
set of edges, grouped with the source and target functions. However, it is important
to note that the source and target elements of each link are in the typed graphs.
Therefore, the links are connecting the two typed graphs.

Definition 7. Link Homomorphism
Let a link be a tuple of edges and the source / target functions. That is, l = ⟨E, (s, t)⟩.

Definition 8 defines a morphism to match links. An example for its use would be to
match the backward link construct for DSLTrans rules, as discussed in Section 2.2.4
on page 28. This link morphism is necessary such that the backward links from

39

a DSLTrans rule (Definition 9 on page 44) can match onto a input-output model
containing traceability links (Definition 12 on page 47).

Definition 8. Link Homomorphism
Consider two groups of links A = ⟨EA, (sA, tA)⟩, and B = ⟨EB, (sB, tB)⟩.

We define an injective morphism function f : A → B to match A over B, such
that ∀ea ∈ EA, there exists eb ∈ EB |

(
f(ea) = eb

)
.

As well, the constraints (types, attributes) must match for the source and target
nodes of the ea and eb links.

2.3.2.5 Morphisms Between Structures

The final morphism required is the mapping between the structures which are
used throughout this thesis to represent transformation rules, intermediate states of
the transformation, and the contracts to prove. In general, each of these structures
is composed of two typed graphs, connected by links. For example, the contract
structure defined in Definition 24 on page 128 is composed of a pre-condition, post-
condition, and backward links between them. This structure must match onto a path
condition (Definition 19 on page 86), which is composed of an input graph, output
graph, and traceability links.

We create a morphism m : S1 → S2 between two structures S1 = ⟨A,B,L⟩ and
S2 = ⟨A′, B′, L′⟩, where A,A′, B,B′ ∈ TG and L,L′ are links of the form ⟨E, (s, t)⟩.

This overall morphism is composed of the sub-morphisms f : A→ A′, g : B → B′,
h : L → L′, where f and g are the morphisms to be found, and h is the link
homomorphism described in Definition 8. Note that f and g may have differing
properties, such as one being injective or not. Therefore, we consider it more elegant
to require three distinct sub-morphisms.

Our definitions for these structures require that the components (such as A,
B, and L) are all disjoint. Thus we consider the morphism to be composed as
m = (f, g, h), where the sub-morphism employed is chosen based on the component
of interest.

40

Consistency. As well, we require these morphisms to have consistency in their
vertex mapping for the matching morphism m to be valid.

For example, let link l ∈ L be the pattern link, with source and target vertices
s(l) = a ∈ A and t(l) = b ∈ B. As well, let there be a target link l′ ∈ L′ where
h(l) = l′, with source and target vertices s′(l′) = a′ ∈ A′ and t′(l′) = b′ ∈ B′. Then,
the composed morphism will be valid iff g(a) = s′(a′) and f(b) = t′(b′).

That is, if a link is matched by the link morphism h, then the correct source
and target vertices must be matched by the f and g morphisms. This is stated in
Equation 2.1.

h(l) = l′ =⇒
(
g(s(l)) = s′(l′) ∧ f(t(l)) = t′(l′)

)
(2.1)

41

Chapter 3

DSLTrans Formalization

This chapter will discuss a key contribution of this thesis: the complete and
precise definition of the semantics for all DSLTrans constructs in the double-pushout
approach.

This answers our first research question: How can the semantics of a
model transformation language with reduced expressiveness (DSLTrans) be precisely
formalized and brought to the state-of-the-art?

Section 3.1 begins this chapter by defining the core structures involved
in DSLTrans as typed structures. Structures defined include the rule, layer,
transformation, the matchers and rewriters used for the application of the rule, as
well as the input-output model construct acted upon by rules.

Section 3.2 then employs these structures in a precise description of the semantics
of DSLTrans in the double-pushout approach (Section 3.2.1.1). The semantics of
the rules, layers, and the overall transformation will be presented, as well as an
examination of all constructs such as Exists elements, indirect links, and negative
elements. These latter constructs have not been precisely defined in earlier works
on DSLTrans, and thus a contribution of this thesis is to describe them and present
examples of their use.

A discussion of the complexity of DSLTrans execution follows in Section 3.3 to
provide a sense of the scalability of DSLTrans.

42

Finally, the proof sketches for confluence and termination for DSLTrans are
presented in Section 3.4. These proof sketches originated in the thesis of Barroca [19],
and have been updated to account for the new formalization and new constructs
(Exists elements, indirect links, negative elements) addressed in this thesis.

3.1 DSLTrans Structures

This section will detail the constructs involved in a DSLTrans transformation
such as rules, layers, and the matchers and rewriting used in rule application.

Note that in this section, we define structures which are very similar in
composition, with each containing two typed graphs, as well as a link component.
This approach of typed graph composition is preferable as the similarity between
structures aids comprehension of our proving technique. In particular, in the path
condition generation and contract proving portions of this thesis (Section 4.2 and
Section 4.4), we employ multiple morphisms between the various components of
these constructions.

We also note that this three-part structure approach directly reflects the
implementation in the DSLTrans transformation engine and contract prover tool.

These structures can also be represented as one large typed graph. In this case,
elements would be annotated by the component they originate from, and Definition 3
on page 35 (Typed Subgraph) would be used to select an appropriate projection.

3.1.1 Transformation Rule

Recall from Section 2.2 that DSLTrans transformations are composed of rules
arranged in layers.

A transformation rule includes a match graph and a non-empty apply graph, as
seen in an example rule in Figure 2.4 in Section 2.2. These match and apply graphs
are similar 1 to the left-hand side (LHS) and right-hand side (RHS) (Section 2.1)

1. The difference is that elements in the Apply graph connected to backward links are matched
in DSLTrans rules (Section 2.2.4).

43

found in the model transformation literature. When the elements from the rule’s
LHS are found in the input model, then the RHS elements are produced in the
output model.

Definition 9. Transformation Rule
A DSLTrans transformation rule is a six-tuple

⟨
Match, Apply, backward , VNeg, ENeg,

VExists, Eindirect

⟩
, where:

— Match,Apply ∈ TG;
— Match ∩ Apply = ∅ ∧ Apply ̸= ∅.
Note that when we require an element of the Match or Apply graphs, such as the

vertices, we will index the required element. For example, the vertices for the Match
graph will be VMatch.

— backward = ⟨Eback, (sback, tback)⟩;
— Eback contains the backward links;

— Eback ∩ EMatch = ∅, Eback ∩ EApply = ∅.
— ∀e ∈ Eback : τ(e) = back

— (sback, tback) is a pair of functions
sback : Eback → VApply and tback : Eback → VMatch that respectively provide the
pattern and target vertices for each backward link
— Note the source of backward links is a vertex in VApply while the target is a

vertex in VMatch

— VNeg ∈ VMatch is the set of negative vertices in the match graph;
— ENeg ∈ EMatch ∪ Eback is the set of negative edges in either the match graph

or the backward links;
— VExists ∈ VMatch is the set of Exists elements in the match graph;
— EIndirect ∈ EMatch is the set of indirect links.
Rules is the set of all rules.

A transformation rule also includes backward links (and potentially negative
backward links) to define dependencies between rules, as introduced in Section 2.2.4.

44

These backward links are placed in a separate component in the formalization of the
DSLTrans rule.

A rule may also contain negative elements in its match graph, such as match
elements or direct and indirect match links. These elements are held in the set
VNeg and ENeg. These elements will be considered during the matching procedure as
formally described in Section 3.2.

Match graphs can also include indirect links that are used to match over the
transitive closure of the associations in a model. These indirect links are held in the
set Eindirect. An apply graph does not include indirect links as they are used only for
the matching of elements.

Finally, match elements in DSLTrans rules can be denoted as Any or Exists
elements, as explained in Section 3.2.6. These Exists elements are held in the set
VExists.

We additionally impose that for the well-formedness of a DSLTrans rule, there
always exists an element or edge to be created in the Apply graph to be created.
That is, either there are edges present in the Apply graph, or there is a vertex in
the Apply graph that is not the source of a backward link. This is presented in
Equation 3.1.

EApply ̸= ∅ ∨
(
∃v ∈ VApply,∀e ∈ Eback : sback(e) ̸= v

)
(3.1)

Rule Well-Formedness

3.1.2 Layer and Transformation

Definition 10 and Definition 11 formalize a DSLTrans transformation, which is
composed of a sequence of layers where each layer is composed of a set of rules.

Definition 10. Layer
A layer is a finite set of transformation rules: {r0, r1, . . . , rn | ri ∈ Rules}.

The set of all layers is denoted Layers.

45

Note that the order of the rules within the layer does not matter, due to
the semantics of DSLTrans rule execution. These semantics ensure that rules are
independent and cannot act on the output of other rules within the same layer as
discussed in Section 2.2.6 and Section 3.4.1,

Definition 11. Transformation
A DSLTrans transformation is a three-tuple, consisting of a finite sequence of layers,
along with the type graphs for the input and output meta-models. ⟨(l0, l1, . . . , ln | li ∈
Layers),mm in,mmout⟩.

The set of all transformations is denoted as Transforms.

Note that the order of layers in a transformation is important, as this ordering
defines the execution of the transformation.

The type graphs for the input and output meta-models are used to type the typed
graphs composing the rules and intermediate states within the transformation.

3.1.3 Input-Output Model

Before describing the semantics of a DSLTrans model transformation in
Section 3.2, we must first define the central input-output model construct. This
construct represents the input model given as input to the transformation, as well
as the intermediate operational states during the transformation’s execution.

Note that the structure of a input-output model is intentionally very similar to a
DSLTrans rule to support the matching and rewriting of elements.

An input-output model contains one typed graph representing the input model
and another typed graph representing the output model. As well, the construct
contains a set of edges named traceability links. These links indicate which elements
in the output model originated from which elements in the input model.

During execution of the transformation, a rule will be matched onto the input-
output model to determine if the rule can apply. If so, the appropriate output
elements will be created in the output portion. As well, traceability links will be

46

created between the output elements and those input elements involved in the rule.
These semantics are described in Section 3.2.1.1 on page 53.

As DSLTrans rules cannot delete elements or links, an input-output model
can only accumulate output elements and traceability links as the transformation
proceeds.

Definition 12. Input-Output Model
An input-output model is a three-tuple

⟨
Input , Output , trace

⟩
, where:

— Input ,Output ∈ TG;
— |Input | ≥ 0,|Output | ≥ 0, Input ∩Output = ∅;
— trace = ⟨Etrace, (strace, ttrace)⟩

— Etrace contains the traceability links;
— Etrace ∩ EInput = ∅, Etrace ∩ EOutput = ∅;
— ∀e ∈ Etrace : τ(e) = trace

— (strace, ttrace) is a pair of functions
strace : Etrace → VOutput and ttrace : Etrace → VInput that respectively provide
the source and target vertices for each traceability link.

The set of all input-output models for a transformation tr is denoted IOM tr.

Note that as this structure represents an execution of the transformation, the
type graph for the input and output graphs will be sourced from those contained in
the transformation (Definition 11).

We define a utility function getTransformationIOM : IOM → Transforms. This
(trivial) function returns the transformation that the input-output model was built
for from the set of all transformations. The purpose of this function is to restrict
input-output models to be applicable for only the transformation they represent, as
the output model was created through the application of rules in that transformation.

3.1.4 Matcher and Rewriter

This section will discuss how the matcher and rewriter structures for a DSLTrans
rule are constructed. These structures are required for the application of rules in the

47

double-pushout approach, as they act as the rule’s left-hand side and right-hand side
as mentioned in Section 2.1 on page 19.

An example of matcher and rewriter construction from a rule is presented
in Figure 3.1. A rule from the Families-to-Persons transformation is shown in
Figure 3.1a. This rule was selected as it contains both backward links and performs
edge creation in the apply graph. The matcher for this rule is shown in Figure 3.1b,
while Figure 3.1c shows the rewriter.

(a) The copersons... rule.

(b) The matcher for the rule. (c) The rewriter for the rule.

Figure 3.1 – The matcher and rewriter structures created for a rule.

Note the presence of the persons edge in the rewriter. As this edge is not present
in the matcher, it will be created in the output model when this rule applies.

3.1.4.1 Matcher of a Transformation Rule

A DSLTrans rule can only apply if the elements present in the match graph
appear in the graph being matched over. As well, the backward links in the rule are

48

additional constraints on how the rule can match. Therefore, the matcher for a rule
is composed of the rule’s Match graph combined with backward links, as well as any
Apply vertices connected to the backward links.

Note that there may also be negative elements and links present in the match
graph, as well as negative backward links. These elements will be extracted
into a negative application condition (NAC) during rule matching, as explained in
Section 3.2.2 on page 56.

Definition 13. Matcher of a Transformation Rule
Let the transformation rule r =

⟨
Matchr, Applyr, backward r, V r

Neg, Er
Neg, V r

Exists,
Er

indirect

⟩
.

We define r’s matcher, noted ⌈r⌉, to be a seven-tuple
⟨
Matchm, Applym, backwardm,

V m
Neg, Em

Neg, V m
Exists, Em

indirect

⟩
, where:

— Matchm ∈ TG,Applym ∈ TG, backwardm = ⟨E, (s, t)⟩
— V m

Match = V r
Match;

— Em
Match = Er

Match;
— V m

Apply = {sback(e) | e ∈ Ebackward};
— Em

Apply = ∅;
— (smMatch, t

m
Match, τ

m
Match) = (srMatch, t

r
Match, τ

r
Match);

— (smApply, t
m
Apply, τ

m
Apply) = (srApply, t

r
Apply, τ

r
Apply);

— backwardm = backward r;
— V m

Neg = V r
Neg |V m is the set of negative vertices;

— Em
Neg = Er

Neg |Em is the set of negative edges;
— V m

Exists = V r
Exists |V m is the set of Exists elements;

— Em
indirect = Er

indirect |Em is the set of indirect links.

In Figure 3.1b, the matcher of the rule contains the Country, Family, and Child
elements from the match graph of the rule, as well as the backward links connected
to the Community and Woman elements. Therefore for the rule to apply on a target
graph, all of these elements must be present and the backward links must successfully
match over traceability links.

49

Note that the white and grey boxes in the matcher are used to highlight the
similarity in structure to the rule itself. The white box contains elements from the
source meta-model of the rule, while elements from the target meta-model of the rule
are contained within the grey box.

3.1.4.2 Rewriter of a Transformation Rule

For the double-pushout approach, we must also construct the rewriting (or
replacement) graph which will produce additional elements or attributes in the graph
being rewritten. Note that in other transformation languages, the rewriter may define
a deletion of elements – those that appear in the matcher but not the rewriter – but
DSLTrans only permits the addition of elements.

The construction of this rewriter is essentially the same as the underlying rule.
However, new traceability links will be created between most match and apply
vertices to indicate the proper traceability for element creation. As well, we discard
the negative elements in the rule, as they are used only for matching.

Note that the backward links present in the matcher are still present as
traceability links in the rewriter. This is purely a change in visual syntax, and
the underlying link is not modified.

Definition 14. Rewriter of a Transformation Rule
Let the transformation rule r =

⟨
Match, Apply, backward , VNeg, ENeg, VExists,

Eindirect

⟩
.

We define r’s rewriter, noted ⌊r⌋, to be a three-tuple
⟨
Input , Output , trace

⟩
, where:

— Input ∈ TG, Output ∈ TG, trace = ⟨E, (s, t)⟩
— VInput = {m ∈ VMatch | m ̸∈ VNeg};
— EInput = {e ∈ EMatch | e ̸∈ ENeg};
— (sInput, tInput, τInput) = (sMatch, tMatch, τMatch);
— Output = Apply;
— trace = ∀(a e−→ m) ∈ trace:

m ∈ VMatch | m ̸∈ VNeg, a ∈ VApply , strace(e) = a, ttrace(e) = m.

50

The set trace will contain the traceability links between elements matched in
the application of this rule, and the elements being created. Note that traceability
links will only be created from non-negative elements, and their direction is from the
output elements to the input elements, similar to backward links.

As well, the backward links which were present in the rule are represented as
traceability links in the rewriter. This is to represent the fact that the links are
not deleted by the rewriter. For example, in Figure 3.1c the backward links in the
matcher are still present in the rewriter, but instead as denoted as traceability links.

Therefore in the rewriter, only the two traceability links coming from the Family
element will be created, along with the persons association in the apply part of the
rule. All other elements and links will be retained.

3.2 DSLTrans Semantics

This section will discuss the semantics of DSLTrans transformation execution,
by grounding the language in the elegant double-pushout approach to graph
transformation. This approach, detailed by Ehrig et al. [50], employs morphisms
to embed the matching and rewriting processes of the rule within the target graph.

We start our explanation of transformation execution by describing the
application of a DSLTrans rule on an input model to produce elements in the output
model. Then, we explain how layers and transformations are executed, in a bottom-
up approach.

3.2.1 Application of a DSLTrans Rule

The application of a DSLTrans rule is a two step process. First, the elements
and links contained in the rule’s matcher are found in the target graph. Then, the
elements and links contained in the rule’s rewriter are produced in the target graph.

Note that for simplicity the following explanation of rule application will be
presented twice. The first and simpler case is where the DSLTrans rule does not
contain the indirect link construct. This case is diagrammed in Figure 3.2. Then,

51

the explanation will be extended in Section 3.2.4 on page 61 to build the intermediate
graphs necessary for the indirect links to match.

3.2.1.1 Double-Pushout Diagram

The core idea of the double-pushout approach to graph rewriting is to present
graph matching and rewriting in terms of morphisms. These morphisms allow us to
compartmentalize the actions of finding a match of the pattern graph in the target
graph, and the addition (or deletion) of elements and edges [50].

To frame this in terms of category theory, the objects are structures of typed
graphs, and the arrows between the objects are morphisms between the structures.
Thus, all operations are within the category of typed graphs and graph morphisms.
For instance, performing the application of a rule will involve matching all three
components of a rule matcher (Definition 13 on page 49) onto all three components
of an input-output model (Definition 12 on page 47). A concrete example of this
matching process is displayed in Figure 3.3 on page 54.

The top half of Figure 3.2 shows a production p = L
l←− K

r−→ R, where L, K,
and R are finite typed graphs respectively representing the left-hand side of a rule,
the gluing (or interface) graph, and the right-hand side. Note that K is termed the
interface graph of L and R because K contains the elements common to both L and
R.

l and r are graph morphisms embedding the elements of K within L and R

respectively.
The application of a rule depends on the production p and a graph G, and whether

there exists a mapping m between L and G. If so, then the rest of the double-pushout
diagram can be built in the following way as succinctly stated by Syriani [143]:

1. Find a mapping of L onto G. This mapping is denoted M = m(L).

2. Remove L − K (the elements to be deleted) from M such that the gluing
condition (G−M) ∪ k(K) = D still holds.

3. Glue R−K (the elements to be created) to D in order to obtain H.

52

L K R

G D H

m (1)

l r

k (2) n

f g

Figure 3.2 – A double-pushout diagram

If the above steps can be accomplished, then the boxes labelled (1) and (2) in
Figure 3.2 are pushouts. That is, the morphisms will commute on either side, as
further discussed on page 55:

m
(
l(K)

)
= G = f

(
k(K)

)
and g

(
k(K)

)
= H = n

(
r(K)

)
Rule Application

We shall now interpret Figure 3.2 in terms of the matching and rewriting process
for a DSLTrans rule. Let us consider a production for a rule r = ⟨Match,Apply , back⟩,
with its matcher ⌈r⌉ and rewriter ⌊r⌋.

For this first explanation, we constrain our rules to not include any indirect links,
and to have no negative elements or links in the match component or the backward
link component, as in the equations below. The indirect and backward link constructs
are examined separately in Section 3.2.1.1 on page 56.

VNeg = ∅ (3.2)

∄e ∈ EMatch | e ∈ ENeg ∨ e ∈ Eindirect (3.3)

Requirements for the First Double-Pushout Explanation

An illustrative example of double-pushout graph transformation is presented in
Figure 3.3. In this example, the rule from Figure 3.1 on page 48 is applied to an
input-output model through the matching of the Matcher and Rewriter structures.
Note that the input-output model records the application of previous rules, as the

53

Man element in the apply portion of the target graph is connected to the Community
element.

Note that this figure represents each three-component structure (Matcher,
Rewriter, input-output model) as a unified graph. This is to aid comprehension
and bring our approach closer to the double-pushout literature. As the components
in the structures are disjoint, this can be done without loss of generality.

Figure 3.3 – An example of double-pushout graph transformation for the Families-
to-Persons transformation.

The components in Figure 3.3 of interest to model transformation are:
— L: The matcher ⌈r⌉ of the rule
— R: The rewriter ⌊r⌋ of the rule
— G: The graph to be matched/rewritten
— H: The rewritten graph

Matching Components. G is the target graph which is to be matched on. In the
semantics of DSLTrans, this G will be an input-output model iom =

⟨
Input , Output ,

trace
⟩
. m is the typed graph morphism between the matcher of a rule r, denoted

⌈r⌉ and the components of the input-output model.
Note that the explanation for the presence of negative elements in ⌈r⌉ is discussed

in Section 3.2.1.1 on page 56, as this requires further explanation.

54

Interface Components. Recall that K is the interface graph between L and R.
That is, elements in K appear in both L and R. Elements which are to be deleted
by the production appear in L but not K, and elements to be created are present
in R but not K. In the absence of indirect links, we note that K is isomorphic to L

as elements cannot be deleted in DSLTrans rules and therefore the morphism l is an
isomorphism.

The morphism r from K to R is an injective typed graph morphism. Note that
as described in Section 2.3.2.5 on page 40, this morphism will be composed of sub-
morphisms between the Match → Input , Apply → Output , and backward → trace

components. As such, consistency must be maintained, as described in Equation 2.1
on page 41.

D is the interface graph between the original graph G, and the rewritten graph
H. Similar to K, D contains elements from the intersection of G and H.

Again, as DSLTrans rules do not delete elements, D will be isomorphic to G in
this case, and the morphism f will be an isomorphism. The typed graph morphism
k will embed the K interface graph within the interface graph D.

Rewriting Components. The typed graph morphism r gives the embedding of the
interface graph K into the rewriter of the DSLTrans rule R. The elements present
in R but not K indicate new elements to be produced by the rule.

Finally, the typed graph morphism g embeds the interface graph D into the
rewritten graph H, providing the location for the addition of the new elements from
R. Note that the r and g morphisms will be isomorphisms from K (resp. D) to a
subgraph of R (resp. H).

Commutativity. For the double-pushout approach to be valid, it must be shown
that the two squares in Figure 3.2 commute.

The commutativity of these morphisms on the left-hand side is given by the lack
of deletion of elements in DSLTrans. As explained above, this means that the L and
K graph, and the G and D graphs are isomorphisms of each other. The isomorphism

55

morphisms l and f will therefore commute with the m and k morphisms, whether
m and k are the typed graph morphism or the typed graph split morphism. For
the right-hand side, an equivalent argument can be made using the fact that the
morphisms running horizontally are sub-graph isomorphisms, which will commute
with the morphisms running vertically.

Finally, we note that the existence of the Exists elements may affect the
commutativity of these morphisms. As described in Section 3.2.6 on page 65, this
is due to the way that the Exists elements are restricted in their matching on
the target graph. Note that this restriction is non-deterministic, which may also
affect confluence as discussed in Section 3.4.1 on page 74. Therefore, to ensure
commutativity, we require that the Exists elements are consistently matched to the
same elements in the target graph, as is also required for confluence in Section 3.4.1.

Additional Constructs

The following sections will extend the above double-pushout explanation to
include additional DSLTrans constructs such as negative application conditions,
attributes in the rule, and indirect links. Note that while the former two constructs
are mentioned in the thesis of Barroca [19], they were not precisely defined.

DSLTrans match elements can also be divided into Any and Exists types. This
construct is separately explained in Section 3.2.6 on page 65, as these types only
affect the matching of the rule when the rule is repeatedly applied to the target
graph.

3.2.2 Negative Application Conditions

DSLTrans rules can contain negative elements and links to prevent rule
application, reflecting similar constructs in other transformation languages such
as AGG [147]. The components needed for matching are the positive application
condition (PAC) for what pattern is to be found in the target model, as well as a
negative application condition (NAC) which prohibits rule application if it is found.
In DSLTrans, these two conditions are intertwined in the rule matcher construct.

56

To place this in the double-pushout approach, we follow the approach of Habel et
al. [70] to represent the matching of the NAC and the PAC as two different morphisms
on the target graph. These PAC and NAC graphs are extracted from the matcher
by using relatively trivial morphisms.

3.2.2.1 PAC and NAC Construction

The PAC is created by selecting only the positive vertices and edges from the
rule matcher. However, to prevent the creation of dangling edges where an edge is
not connected to two vertices, we only extract positive edges which are between two
positive vertices.

Similarly, the NAC is created by extracting the negative vertices and edges.
As well, to avoid dangling edges in this case, we also include any positive vertices
connected to those negative edges.

Let this extraction process be defined using the morphisms a and b, which embed
the NAC and PAC in the matcher L, as in Figure 3.4. These morphisms rely on the
set VNeg and ENeg defined for the rule’s matcher in Definition 13 on page 49.

NAC L PAC

G

\ n

a

p

b

Figure 3.4 – Extraction of the PAC and NAC graphs.

An example of this extraction process is seen in Figure 3.5. The rule in Figure 3.5a
contains a negative Member element connected to a positive Family element through
a negative association father in the match graph. Thus, this rule should match over
families that contain a mother, but do not contain a father. Note that the apply
graph is purposefully left empty as this example focuses on the matching portion.

The positive application condition (PAC) graph in Figure 3.5c shows that the
positive elements are extracted, consisting of the Family and the Parent connected by

57

(a) An example rule with negative elements.

(b) The extracted negative application

condition (NAC).

(c) The extracted positive application

condition (PAC).

Figure 3.5 – Creating the PAC and NAC for a rule with negative elements.

the positive mothers and family associations. For the negative application condition
(NAC) graph in Figure 3.5b, the negative Parent element is extracted, along with
the negative fathers and family associations. The positive Family element is also
extracted to the NAC to prevent dangling edges with no connected vertices.

3.2.2.2 Matching of PAC and NAC

To place this within the double-pushout approach as seen in Figure 3.2, we declare
that for L to match onto G, then p from PAC to G must exist, and n from NAC to
G must not exist. These new morphisms are displayed in Figure 3.4 on the previous
page.

Note that these morphisms can be easily composed with the double-pushout
diagram in Figure 3.2 by replacing L

m−→ G in that figure with Figure 3.4. Thus,

58

whenever we use the graph matching morphisms → and ↣ in this thesis, we also
include the matching of the positive elements, and preclude the matching of the
negative elements.

3.2.3 Attributes

Another available construct in DSLTrans rules is to match over or store attributes
on elements. For example, a Person element could have an firstName attribute of
type String and a value of “James”.

DSLTrans currently considers only String attributes due to their ease of
implementation. However, the attribute language could be easily extended to other
attribute types. For example, element attributes could contain integer values, and
rules could have constructs for matching ranges of values.

Also note that due to the semantics of DSLTrans, attributes cannot be removed
or modified for an element once that element is created.

Attributed graphs can be addressed in the double-pushout approach in a number
of ways [116]. In this section, we discuss one approach in the literature, and briefly
outline why DSLTrans cannot use this approach.

3.2.3.1 Attributes as Vertices Approach

In Ehrig et al. [50], attributes are represented as distinct attribute vertices,
connected to the elements using node and edge attribute edges. This form of typed
attributed graph is defined in Definition 15.

Definition 15. Typed Attributed Graph
A typed attributed graph is a 7-tuple
⟨VG, VD, EG, ENA, EEA, (sj, tj)j∈{G,NA,EA}, τ⟩ where:

— VG and EG are the sets of vertices and edges for the graph;
— VD is a finite set of data vertices;
— (sG, tG) is a pair of functions sG : EG → VG and tG : EG → VG that

respectively provide the source and target vertices for each edge in the graph;

59

— (sNA, tNA) is a pair of functions sNA : ENA → VG and tNA : ENA → VD to
connect graph vertices to attribute vertices;

— (sEA, tEA) is a pair of functions sEA : EEA → EG and tEA : EEA → VD to
connect graph edges to attribute vertices.

An advantage of the attribute-as-vertices approach is that normal isomorphic
matching requires relatively little extra treatment [50]. If the attribute vertices are
connected to a pattern vertex, then there must be an isomorphic copy on the target
vertex for the match to succeed.

However, certain DSLTrans constructs (detailed in Section 2.2.5) render the
approach of modelling attributes as vertices to be infeasible.

The Wildcard concept allows matching of arbitrary text on a match attribute.
For example, it is possible to specify in a matcher that the name attribute for a City
element must start with “San” or “Los”. The existence of this construct implies that
a purely graph-based approach is not flexible enough, and that there must exist a
resolver which is able to handle wildcards.

As well, to construct the concrete attribute values for elements in the rewriter
part of the rule, the Concat construct can combine Atoms and Match Attribute
References.

For example, the firstName of a person could be concatenated with a lastName
string to form a Man’s fullName, as in the Families-to-Persons rule in Figure 2.4 on
page 27. This concatenation is also difficult to represent with a purely graph-based
approach.

3.2.3.2 Resolver Approach

In our approach, we assume the existence of a resolver for graph matching. This
resolver must be able to handle the Wildcard construct when matching over a graph,
and return a true or false result whether the wildcard matches. As well, the resolver
must correctly handle the Concat construct, such that instead of Concat nodes, the
concatenated String values are correctly created in the output models produced by
the transformation.

60

During rule rewriting, new equations must be defined for nodes to define their
attributes. In this case, equations on an attribute must be checked for consistency,
such that only one value is given to a node’s attribute. This is also performed by
our simple resolver.

Therefore, the matching and rewriting of the attributes in DSLTrans must be
handled by a conceptual layer above the double-pushout approach.

Our implementation of this resolver in our contract proving tool is discussed
in Section 6.2.2. As well, we briefly discuss in that section our approach to
storing attributes in DSLTrans rules. Attributes are stored as equations in the rule
component itself, and are tuples consisting of an element identifier, attribute name,
and attribute values.

3.2.4 Indirect Links

If the DSLTrans rule contains indirect links, we further modify the double-pushout
described in Section 3.2.1 to handle the transitive closure that the indirect link
construct implies. The main change is to build the transitive edges, match on these
links, and then not carry the transitive edges forward to the final graph.

Note that this explanation is an extension of Section 3.2.1, as the explanation
covers both cases where rules do or do not contain indirect links.

The component G′ in Figure 3.6 represents the transitive closure of the Input
graph of G. Recall that this transitive closure, defined in Definition 6, will add edges
between vertices that are connected by any path in the graph. Note that this will
lead to two nodes already connected in the starting graph to be connected again by
the new edges. The isomorphism i then gives the embedding of G into a sub-graph
of G′.

The matching morphism m will try to map the indirect links from L onto the
newly created edges in G′. Note that the type of the newly created edges will be
indirect , which can be matched by the indirect links in the match graph.

Once matching has occurred, all indirect links should not be present in the
rewritten graph. In the rule, K will not contain the indirect links. Note that this

61

means that the morphism l′ will not be an isomorphism between L and K. The
graph R and the morphism r remain the same. Correspondingly, the interface graph
D does not contain the edges matched over in G′ and thus the morphism f ′ is not
an isomorphism between D and G′.

Finally, the edges created in the transitive closure should not remain in the final
graph H ′. This is accomplished by defining a morphism u that embeds all nodes and
original edges from the graph H into the graph H ′. That is, G, G′, and H have a
type graph that includes indirect, while H ′ does not.

3.2.4.1 Example

Figure 3.6 shows an example of the double-pushout approach to graph rewriting
when indirect links are present in the rule.

Figure 3.6 – Double-pushout example with indirect links.

Note that the G and D graph both match onto the newly created graph G’, by an
isomorphism onto a sub-graph of G’ that does not contain the newly created edges
from the transitive closure.

The satisfaction of the indirect link in L is given by matching on the newly created
link in G’. However, the indirect link in L does not appear in K. The binding sites
of the 1 and 2 elements are correctly found, allowing the addition of the 4 element
in the right-hand side of the rule.

62

As well, the graph H contains the edges added by the transitive closure, between
the 1, 5, and 2 elements. These are removed in a final morphism u, which transfers
the graph from a type graph including the indirect links to one without.

3.2.5 Repeated Application of a DSLTrans Rule

The explanation in Section 3.2.1.1 (or Section 3.2.4) is for a pair of the match and
rewrite steps of a DSLTrans rule. This match / rewrite pair is called a production in
the double-pushout literature. In this section, we define the semantics of DSLTrans
when a rule will apply multiple times over an input graph, once for every set of
elements where the matcher matches.

For example, let there exist an input-output model iom, a rule r, and a production
p that takes iom and produces a new input-output model iom′. As the next
application of the rule r, the second production p′ will match on iom′, and produce
iom′′, and so on.

However, we define that the matching morphism for the second production p′

must only match on those elements present in the original input-output model iom.
This is done to enforce the semantics that rules must not match on newly-created
elements in the same layer.

To neatly express these limitations in repeated rule execution, the double-pushout
approach allows us to gather all the matches on iom, and apply all the productions
at once, known as parallel graph productions. We refer to Definition 3.22 (parallel
graph production and transformation) in Ehrig et al. [50] for the creation process of
this mass production p∗, as detailed in the next section.

3.2.5.1 Mass Production Creation

Section 3.2.1.1 on page 53 describes the components L, K, and R which compose
a production for a rule. To create a mass production, which is a union of rule
productions, we must first define the + operator in Equation (3.4) to combine two
productions:

63

pi + pj = (Li ∪ Lj
li∪lj←−− Ki ∪Kj

ri∪rj−−−→ Ri ∪Rj) (3.4)

Production Combination

The + operator defined in Equation 3.4 operates on two productions and performs
a disjoint union of the graphs involved. The combined production is then available
to match and rewrite on the target graph, thus combining the match and rewriting
steps from two productions.

p1 : L1
l1←− K1

r1−→ R1 . . . pk : Lk
lk←− Kk

rk−→ Rk

L = L1 + . . .+ Lk K = K1 + . . .+Kk R = R1 + . . .+Rk

in1
L

in1
K

in1
R ink

L

ink
K

ink
R

l r

Figure 3.7 – Union of multiple productions, redrawn from [50].

As well, for convenience we define the operator ⊎ in Equation 3.5 to be the +

operator repeatedly applied on a set of productions. Figure 3.7 shows a union of
multiple productions graphically.

⊎(p1, p2, . . . , pn) = p1 + p2 + . . .+ pn (3.5)

Repeated Production Combination

Rule Mass Production. To represent all applications of a rule r on a target graph
g, we will create a rule mass production p∗r. This production will aggregate multiple
copies of the rule’s production to combine all the individual match / rewrite steps
into one production.

In Equation 3.6, the rule’s production is repeatedly combined with itself as many
times as possible, such that the final mass production still matches over the target

64

graph g. Note that this restriction ensures that the mass production is finite, as the
target graph to be matched on is also finite.

p∗r = max
i<N

⊎ pr | p∗r → g (3.6)

Rule Mass Production

The negative application condition (NAC) of the rule is still relevant to the
creation of this mass production. If the NAC prevents the rule from applying, then
the production created will be empty. If the NAC does not prevent rule application,
then it can be safely discarded,

This amalgamation of rule productions is possible because DSLTrans rules do
not delete any elements and can therefore be applied at the same time. These rules
are parallel independent, and thus p∗ can be created as a union of the L, K, and R

components of each production [50].
Definition 16 is the core of DSLTrans’ semantics in which a production is applied

to an input-output model iompre to produce another input-output model iompost .

Definition 16. DSLTrans Rule Application
The application of a DSLTrans rule is defined as a function:
applyRule : IOM × Rule → IOM
Let rule = {r0, r1, . . . , rn} ∈ Rules, and iompre , iompost ∈ IOMs.

iompost will be the result of applying the rule mass production p∗r to iompre .

3.2.6 Any versus Exists Elements

When discussing rule productions, we must also explain constructs that affect
how rules can match on the target graph. DSLTrans match elements can be classified
as either Any or Exists elements. An Exists element provides existential matching
where the matching location is restricted, while an Any element will match over all
possible locations [65].

65

3.2.6.1 Exists Example

Consider the model in Figure 3.8, which contains Manager and Employee
elements where a Manager element may manage many Employees.

Figure 3.8 – Example model for explaining Exists element semantics.

A transformation designer may wish to have rules to represent such statements
as “For every pair of Managers and Employees...” or “For one Employee for every
Manager...”. Table 3.1 shows how the Any and Exists elements can be used in the
matchers of rules to match over these different concepts.

The first column shows the elements in the matcher of the rule (using the symbols
in the legend of Figure 3.8), the second column provides a statement describing the
intention of the matcher, and the third column presents the results when the rule
is matched over the model in Figure 3.8. Note that the × symbol represents the
Cartesian Product, and is employed for conciseness.

For instance, the third matcher in Table 3.1 matches over all pairs of Managers
and exactly one Employee. Note that there are two elements in the left column which
are unconnected by an association, and that the Manager element is denoted Any
while the Employee element is denoted Exists. This Exists element will be bound to
exactly one element in the model. In the results column on the right, the matching
locations are the pairs Alice-Bob, Clay-Bob, John-Bob.

66

Matcher Rule Intention Matching Locations

⃝Any Match all managers Alice, Clay, John

⃝Any ♢Any Match all
manager-employee pairs

{Alice, Clay , John}×
{Bob, Carol , Layla,
Sally , Herb, Elsa}

⃝Any ♢Exists Match all managers
and one employee

{Alice,Clay , John} × {Bob∗}

⃝Any ♢Any Match all managers
and their employees

Alice − Bob, Alice − Carol ,
Clay − Layla, John − Sally ,
John −Herb, John − Elsa

⃝Any ♢Exists Match all managers
and one of their employees

Alice − Carol∗, Clay − Layla,
John − Sally∗

Table 3.1 – Examples of matches onto Figure 3.8. Asterisks represent deterministic
selection.

Note that the selection of the Bob element is marked with an asterisk, as this
depends on the deterministic selection as discussed in the next section.

Another use of the Exists element is shown in the last row of Table 3.1. This
matcher is designed to match over all pairs of Managers and exactly one of their
connected Employees as the Employee element in the left column is denoted as
Exists. The results column on the right records that only one of each of the Manager’s
Employees are matched, again based on deterministic selection.

3.2.6.2 Enforcing Semantics

Based on the preceding description, the Exists element is restricted in where and
how many times it may match in the target graph. These semantics are enforced
during the creation of the production for the rule, such that those elements are forced
to combine together or to stay separated.

Specifically, this enforcement is performed during the creation of a rule mass
production (Equation 3.6), where the productions of rule are repeatedly combined

67

together. The Exists construct defines how the elements in the matcher of the
productions (the L graph) are combined together to specify how the production
will match over the target graph.

If an element is denoted as Exists in a rule by its presence in the set VExists in
the matcher, then we specify that whenever there are multiple productions combined
using Equation 3.4, that there are two restrictions on this combination.

First, if the Exists element is not connected by an association, or is at the tail
of an association, then all copies of that element are unified amongst all copies of
that matcher. This unification is demonstrated graphically in Figure 3.9a, where the
matchers for two productions representing the statement “For all employees of one
manager..." are combined.

The Manager element is marked as Exists and is at the tail of an association.
Therefore, after the + operator is applied to L1 and L2, only one copy of the Manager
element exists in the produced production L. Thus, this element is forced to match
over only one element in the target graph.

(a) Combining Exists elements for unified

matching.

(b) Forbidding Exists elements from

repeated matching.

Figure 3.9 – Enforcing the semantics of the Exists element when combining
productions.

In the second restriction, if the Exists element is at the head of an association,
then it is the association that is restricted in its matching, and neither connected
element can be combined. For example, the matchers being combined in Figure 3.9b

68

represent the statement “For one employee for all managers...". Therefore, both the
Manager and Employee elements must match over different elements in the target
graph, and cannot be unified in any way.

Figure 3.9b therefore shows the only combination of these elements, where neither
the Manager nor Employee elements have been unified. This forces these elements
to match onto different elements in the target graph.

If both elements were marked as Exists elements, then the first restriction takes
precedence. Therefore, both elements and the association will be unified, such that
only a single Manager and Employee pair will be matched in the target graph.

Therefore, by overloading the union operator defined in Equation 3.4, the
semantics of the Exists element can be enforced when generating the mass production
for a rule. This elegantly compacts the semantics of this construct into the double-
pushout approach. However, the determinism of the construct must be examined as
discussed in the next section.

3.2.6.3 Deterministic Matching

Recall the confluence property of DSLTrans (Section 2.2) which states that two
transformation executions on the same input model produce the same output model.
This may be impacted by the Exists element, which enforces a choice of which element
to match over, and thus may potentially change between transformation executions.
For instance, Table 3.1 shows how Manager elements in the matcher were matched
over a single element in the target graph.

Therefore, to ensure repeatability and confluence, we stipulate that the choice of
matched element be deterministic for a particular DSLTrans implementation, such
that the matching locations for Exists elements are repeatable. This is critical to
ensure confluence as discussed in Section 3.4.1.

As a possible implementation, element order could be imposed by creating
comparable hashes for each element based on element connections, data, and order of
creation. The matching selection would be essentially random to the user, satisfying
the intended behaviour of this construct while still maintaining determinism and

69

thereby confluence. However, note that a significant time or memory cost may be
required to create these hashes depending on the specific implementation.

3.2.7 DSLTrans Layer Execution

This chapter has so far defined single and multiple application of a particular
DSLTrans rule on a target graph. As well, we have provided a discussion on semantics
for the constructs defined within rules, such as indirect links and negative elements.
The next definitions uses these previous definitions to examine how DSLTrans layers
and transformations apply rules to an input-output model

First, we define in Equation 3.7 the layer mass production p∗l for a layer l . This
definition combines each individual rule mass production p∗ri for the rules ri in the
layer l with the union operator.

In informal terms, we are collecting all the Match and Apply graphs for each
rule in the layer, with each rule represented as many times as it can match on our
input model and taking into account the presence of Exists elements. Thus, this
production will represent the combined match / rewrite steps for all the rules in the
layer.

p∗l = ⊎ p∗ri ∀ri ∈ l (3.7)

Layer Mass Production

Definition 17 then defines how a layer of rules in a transformation is applied to
an input-output model. We define the application of rules in a layer by first creating
the layer mass production as in Equation 3.7, and then applying this production to
the input-output model.

Note that this will enforce the desired semantics where rules belonging to the
same layer are forced to execute independently by not being able to match on the
output model of the other rules. This is opposed to other model transformation
approaches based on graph rewriting, where the result of each rule rewrite may be
immediately usable by all other rules.

70

Definition 17. DSLTrans Layer Execution
The execution of a DSLTrans layer is defined as a function:
applyLayer : IOM × Layer → IOM
Let layer = {l0, l1, . . . , ln} ∈ Layers, and iompre , iompost ∈ IOMs.

iompost will be the result of applying the layer mass production p∗layer to iompre .

3.2.8 DSLTrans Transformation Execution

Our final definition is for the semantics of execution for a DSLTrans
transformation. Essentially, it is the chaining of layer executions applied on an
input-output model. However, we begin by discussing the conditions for executing a
model transformation on an input model.

Input Conditions. Recall that an input-output model is the three-tuple
⟨
Input ,

Output , trace
⟩

(Definition 12 on page 47). Let iompre be the input-output model
given as input to the transformation, and iompost be the input-output model produced
by the transformation.

Note that iompost will contain the same Input graph as iompre , but will have extra
elements in Output and trace as produced by the execution of the transformation.

As described in Definition 18, we create iompost by repeatedly applying the
productions produced by each layer in the transformation in turn. The input-output
model that is the output of executing a given layer is passed onto the next layer
as input. The final input-output model created will be the result of the model
transformation.

Definition 18. Execution of a DSLTrans Transformation
The execution of a model transformation is a function consisting of a chaining of
executions of those layers ln ∈ Layers within the transformation, and having the
signature applyTransformation : IOM × Transforms → IOM .

Recall the application of a layer is applyLayer : IOM × Layer→ IOM. Therefore,
the application of a transformation is:

iompost = applyLayer
(
. . . applyLayer(applyLayer(iompre × l0)× l1) . . . ×ln

)
71

Note that this approach makes it possible to ‘chain’ transformations. In this case,
the input-output model produced by one transformation would be passed as input to
another transformation, assuming that the typing information of the transformations
and input-output model are compatible.

3.3 Complexity of DSLTrans

This section will present a brief discussion of the complexity of DSLTrans
transformation execution to provide a rough sense of the scalability of the DSLTrans
language. The complexities will be discussed following the presentation order of the
semantics.

Note that the complexities discussed here are based on the T-Core model
transformation engine [145]. T-Core provides a number of model transformation
primitives (Matcher, Rewriter) that have previously been used to implement model
transformation languages including DSLTrans [91]. Further details on the T-Core
engine can be found in Section 5.3.2.

Matching. A crucial component in a graph transformation engine is the efficient
matching of pattern graphs onto target graphs, which is the well-known NP-complete
sub-graph isomorphism problem.

The work of Cordella et al. [43] introduces the VF2 algorithm to perform this
matching, which has a time and spatial complexity for graph V of Θ(|V |2) and Θ(|V |)
in the best case, and Θ(|V |! |V |) and Θ(|V |) in the worst case.

Note that this algorithm also separates matching each node into syntactic and
semantic feasibility steps. The syntactic step checks whether the pattern node and
the target node have compatible structures.The semantic step ensures that typing
and attribute matching is considered, which means that the complexity depends on
the resolution algorithm. For example, the complexity of matching and rewriting
attributes depends on the number and type of those attributes, and the complexity
of the possible operations.

72

In Section 3.6, we discuss how repeated rule application is represented in the
double-pushout approach by creating a mass production. To create this mass
production, a rule’s production is repeatedly combined with itself as many times
as will still match over the target graph. As well, the semantics of the Any and
Exists elements must be taken into account.

However, an equivalent formulation of this mass production creation is to consider
finding all possible matches of the pattern graph on the target graph. According to
Provost [122], the worst-case complexity for the VF2-like algorithm in that work is
O(nm), where n = |VMatcher | and m = |VTarget |. This case occurs when every pair of
vertices are compatible.

Note also if negative application condition graphs (NACs) are present in a rule,
these also have to be matched onto the target graph to see if the rule is disallowed, as
in Section 3.2.2. This may increase the number of matches that need to be performed.

Indirect Links. One addition to the complexity of the matching procedure for
DSLTrans is the process by which indirect links are matched. As discussed in
Section 3.2.4, if indirect links exist in the pattern graph, a transitive closure is first
performed on the target graph before matching proceeds.

Using the Floyd-Warshall algorithm to discover all possible paths in the target
graph, the complexity of this operation is O

(
|V |3

)
[171].

Rewriting. Once the matching step is complete, then the rule’s rewriter can be
embedded into the target graph, and the new elements can be added. This step is
therefore based on the size of both the matcher and the rewriter [145].

As each node and edge in the pattern graph is joined onto the target graph, the
complexity of this step is O

(
|Vpattern |+ |Epattern |+ |Vtarget |+ |Etarget |

)
. Note that the

rewriter must also add attributes to the graph.

Layer and Transformation Execution. Describing the complexity of DSLTrans
transformation execution rests almost entirely on the matching and rewriting steps,
as the complexity discussion for each layer and the transformation itself is simple.

73

For each layer, each rule must be executed over the input model to that layer.
Therefore, the complexity of applying a layer in the transformation is the sum of all
the matching and rewriting steps for each rule r in the layer over the input model g:

O
(
applyLayer

)
=

∑
|ri||g|

For the execution of the transformation, the complexity is then the sum of the
operations for each layer l in the transformation t:

O
(
applyTransformation(t)

)
=

∑
applyLayer(l) ∀l ∈ t

3.4 Confluence and Termination Properties

This section will update the proof sketches for the confluence and termination of
DSLTrans transformations from the thesis of Barroca [19] to ensure that they hold
under the complete definition of DSLTrans in the double-pushout approach. Note
that both these properties are enforced through the construction of the semantics of
DSLTrans.

Note that the limited expressiveness of DSLTrans allows these proofs to be
written in an intuitive and concise manner, rather than in a formal logic framework.
More robust techniques concerning confluence and termination in more expressive
languages can be found in Section 8.1.4 on page 278.

3.4.1 Confluence

This section will discuss the confluence property of the DSLTrans language.
Confluence means that for every execution of a transformation tr ∈ Transforms

where the input-output model iompre ∈ IOMs is the input model, the resulting
input-output model iompost is always the same up to typed graph isomorphism.

If two executions of the transformation were not confluent, then this would occur
because of either conflicting rules, or during two potential points of non-determinism
during the execution of the transformation.

74

Non-determinism is present in DSLTrans a) in the selection of rules in a layer,
and b) in the selection of matches on the input graph, which could potentially give
different results on different transformation executions. We shall explain here how the
semantics of DSLTrans enforces confluence, despite the presence of non-determinism.

Proposition 1. Confluence
Every DSLTrans transformation execution is confluent up to typed graph

isomorphism.

Proof. There are two areas to examine when discussing the property of confluence
in DSLTrans. The first is the possibility of rules interfering with each other. The
second area is the possibility of non-determinism in transformation execution.

1. Confluence for rule execution is determined by examining if all pairs of rules
in the transformation which may conflict are in fact confluent [88]. These
conflicting rules are termed critical pairs, and result from rules adding and
deleting elements matched by the other [119].

There are three situations where there may be conflicting rules. The first
situation is where one rule deletes an element that the second rule could
match over. This cannot occur in DSLTrans, as element deletion and attribute
modification are not part of the language.

The second situation for conflicting rules is where one rule would add elements
to be matched by the second rule. However, as discussed in Section 3.2.5, both
rules must match on the same input model to the layer, before they are applied
in parallel. Consequently, rules cannot produce elements to be matched by
another rule.

The third situation is where elements produced by one rule interfere with the
negative application graph (NAC) of a second rule. Again, as a rule cannot
match over elements produced on the same layer, this situation cannot arise.

Therefore, all rules are by construction parallel independent during execution
of layer, including the repeated application of one rule. Thus no critical pairs

75

of rules can exist in a DSLTrans transformation and rule application will be
confluent.

2. The presence of non-determinism in the execution of a DSLTrans
transformation does not affect the confluence of that transformation.

The first point of non-determinism is in the application of a rule to an input-
output model. Section 3.2.1 discusses how the double-pushout approach
can be used to formalize the application of a rule by finding a match
site. As mentioned in Ehrig et al., the double-pushout approach itself
is non-deterministic as multiple match sites may be found for each rule
application [50]. However, in the DSLTrans approach (equivalent to a layered
graph grammar), all match sites are found at once, before the rule elements
are added in the rewriting step. This prevents selection of one matching site
over another.

However, this guarantee of application at all points does not hold in the
presence of Exists elements in the DSLTrans rules (Section 3.2.6). Recall
that the matching site for a particular Exists element is chosen from all
suitable candidates in the target graph. If this matching site differs for two
transformation executions, then this will violate confluency. It is therefore
necessary to specify that a deterministic procedure is used to determine the
matching site for Exists elements in all implementations of DSLTrans. This
will ensure that executions of transformations is consistent and repeatable to
preserve confluency.

The second point of non-determinism in a transformation involves the
selection of which rule to apply next in a transformation layer. In other
model transformation languages, this selection process may cause violation of
confluency.

However in DSLTrans, the application of rules in a layer is modelled as a
parallel graph production of all the rules at once, as discussed in Section 3.2.7.
This means that rules cannot match over elements produced by other rules in

76

the layer. Thus, all rules in a layer are parallel independent by construction
and confluency is maintained, given repeatable matching for Exists elements.

As well, the deterministic ordering of the layers within the transformation
ensures that DSLTrans transformations will always have the same layers
execute in turn.

Therefore, two executions of a DSLTrans transformation are indeed confluent
up to typed graph isomorphism.

3.4.2 Termination

The termination property is crucially important for the analysis of transforma-
tions, such that the entire state space can be examined [87]. In particular, our
research for verification of DSLTrans transformations discussed in Chapter 4 requires
that the execution of transformations is finite.

Proposition 2. Termination
Every application of DSLTrans transformation must terminate.

Proof. Let us assume that there is an application of a DSLTrans transformation
which does not terminate. For this to happen, there must exist some step in the
transformation which may run indefinitely.

Here, we discuss four possible areas in the application of the transformation where
infinite operations may be found:

1. The finiteness of a rule’s matching step is given by the finiteness of the
pattern and target graphs. Finding graph morphisms may be computationally
expensive (see [43]), but it is a finite process as the number of vertices and
edges are finite.

Also recall that the transitive closure of graphs as required for the matching
of indirect links is expressly prohibited from creating an infinite number of
edges, as in Definition 6 on page 39, the transitive closure paths must contain
unique nodes.

77

2. The matching and rewriting process of a rule production is finite in the double-
pushout approach, as it only consists of finding the match and rewriting of
the graph by adding elements.

One particular area of concern is in the construction of a mass production,
especially in the context of multiple rule application as in Section 3.2.5.1.
Note that the rule matcher is finite, as is the target graph to be matched on.
Thus even if a large derivation is created by considering multiple productions
from the same rule, it is impossible for a match to be successful when the
number of edges in the pattern graph is greater than the number of edges in
the target graph. Therefore, all viable matchers must be of finite size.

3. Mass productions created from multiple rules must also be finite, as
Definition 10 specifies that a number of rules in a layer is finite.

4. Definition 18 specifies that a transformation is composed of a sequential
and finite list of layers. No looping constructs are permitted and thus the
transformation moves through the layers sequentially.

Given that the semantics of rule and layer application are finite, and that
transformation execution cannot loop through layers, every DSLTrans model
transformation must terminate.

3.5 Conclusion

This section has presented the structures and semantics for the DSLTrans
transformation language, grounded in the double-pushout approach. This approach
allows for the matching and rewriting processes for rules in a layer to be elegantly
expressed as a single production. This production operates on an input-output model
to match and apply all elements in the rules at once, avoiding rule interference.

As a contribution of this thesis, the following constructs have been given
semantics: Any/Exists elements, attributes on elements, negative application
conditions (NACs), and indirect links. Thus, the formalization given in this section

78

now covers all of the constructs of DSLTrans. This is required for our transformation
verification research in Section 4.4 to cover all possible DSLTrans transformations.

As well, we have also presented a brief discussion of the complexity of executing a
DSLTrans transformation to indicate the scalability concerns of DSLTrans. Finally,
proofs for the confluence and termination properties of DSLTrans were presented,
showing that DSLTrans transformations are guaranteed to terminate and provide
repeatable output models in all cases.

79

Chapter 4

Transformation Verification using

Contracts

This chapter discusses our symbolic-execution verification technique for DSLTrans
transformation. In particular, we address two research questions from Section 1.1.1:

— RQ2: How can the infinite execution possibilities of a transformation be
represented in an explicit finite set?

— RQ3:
— a) How can structural pre-condition/ post-condition contracts be proven to

be satisfied or non-satisfied on these representations?
— b) When a contract is not satisfied, how do the counter-examples produced

relate to the transformation?
Our approach to RQ2 relies on the concept of symbolic execution to construct

path conditions, which represent all feasible executions (termed input-output models)
of a DSLTrans transformation in a finite set. This representation is done through an
abstraction relation, which we define in Section 4.1. This abstraction relation allows
each path condition to represent an infinite set of possible input-output models. A
number of abstraction relation examples are presented, including the abstraction of
a rule applying multiple times and the use of indirect links in rules.

80

The use of the novel split morphism (Section 2.3.2.2) allows for path conditions
to represent multiple input-output models without an explicit ‘disambiguation’
step. This disambiguation step was present in earlier research [98], where all
possible combinations of elements within rules were produced. However, this is
computationally infeasible as this operation explodes the state space.

We present arguments that our abstraction relation allows path conditions to
both represent and cover the infinite set of input-output models in Section 4.3.
Representation means that each path condition will abstract at least one input-
output model, while coverage means that each possible input-output model is covered
by at least one path condition.

Section 4.2 then discusses the path condition generation process, which resolves
the dependencies of rules to create only those path conditions which represent valid
input-output models. As a contribution of this thesis, an intuitive explanation of
path condition construction is provided which includes negative elements in rules
and removal of invalid rule combinations, allowing the technique to apply to all
DSLTrans transformations.

As well, this thesis also examines the critical issue of rule multiplicity in path
conditions. As it is impossible to represent an infinite application of rules within
the path condition, it is necessary to abstract over the number of times each rule
applies. This chapter examines how to explicitly represent each application of rules
within the path condition, and the consequences for path condition construction and
contract proving.

After path condition generation, structural contracts can then be proved on these
path conditions to determine those where the contract is and is not satisfied. Thus,
RQ3 is answered when we discuss contract verification in Section 4.4. Through
the abstraction relation, if a contract is satisfied or not on a path condition, this
has a relationship to how the contract is satisfied or not on the abstracted input-
output models. This allows the transformation verifier to understand the relationship
between input and output models for the transformation by examining the results of

81

contract proving. The validity of the contract proving with respect to the abstraction
relation is discussed in Section 4.5.

Finally, we discuss the expressibility of the contract language in Section 4.6. This
section provides an overview of the constructs in the contract language which allows
for constructing propositional statements with contracts. Examples from our case
studies (Section 7) are employed to demonstrate the semantics and limitations of the
contract language.

4.1 Abstraction Relation

For a DSLTrans transformation, there are an infinite number of input-output
models possible, each one composed of a pair of an input model to the transformation
and the resulting output model. This section details our abstraction relation which
allows us to create a finite set of representations to represent these input-output
models. These representations are termed path conditions and they are structured
to symbolically represent the applications of rules.

In particular, this section defines the abstraction relation between a path
condition and the set of input-output models that it represents. This abstraction
relation allows our technique to prove contracts on the finite set of representative
path conditions created by the path condition generation algorithm. As this set is
finite, our technique is guaranteed to take a finite amount of time.

4.1.1 Symbolic Execution

Our algorithm operates on the principle of symbolic execution to build the set
of path conditions for the transformation, in an analogy with program symbolic
execution. As introduced by King in his seminal work “Symbolic Execution and
Program Testing” [81], a symbolic execution of a program is a set of constraints
on that program’s input variables called path conditions. Each path condition
describes a traversal of the conditional branching commands of that program. A
path condition is symbolic in the sense it abstracts as many concrete executions

82

as there are instantiations of the path condition’s variables that render the path
condition’s constraints true.

Our technique transposes this notion of symbolic execution to model
transformations. The analogue of an input variable in the model transformation
context are meta-model classes, associations and attributes. Just as program
statements impose constraints on input and output variables during symbolic
execution, transformation rules impose conditions on which meta-model elements are
instantiated during a concrete transformation execution, and how that instantiation
happens. As well, the dependencies present in rules must be taken into consideration
during path condition construction.

As in program symbolic execution, each path condition in our approach abstracts
as many concrete transformation executions as there are input-output models that
satisfy them. This is formulated as an abstraction relation as defined in Section 4.1.4
on page 87.

4.1.2 Rule Combinations

To present the intuition of path conditions and symbolic executions, we first
discuss the idea of rule combinations. This is to present the idea of explicitly
representing each application of the rule (one match / rewrite step or production
as discussed in Section 3.2.1), by recording the input and output elements induced
by rule application.

As described in Section 2.2, a layer in a DSLTrans transformation contains a set
of rules. Let us begin by creating a set of rule combinations for this layer, where each
rule combination in this set will represent all possible input-output models where the
rules in that combination would execute.

For example, in Figure 4.1, the rule combination marked AB represents the set
of input-output models with at least one application of rules A and B. Another rule
combination marked A represents the input-output models where only rule A has
applied at least once. Another rule combination is marked AA representing at least
two applications of the A rule.

83

Figure 4.1 – Rule combinations created for a transformation layer.

Note that within these rule combinations, the number of times a rule has applied
is necessarily abstracted. This is because we consider all possible input models, and
therefore it is impossible to create combinations for all possible rule applications. In
our technique, the abstraction will be a lower bound on the number of times a rule
applies.

In other words, if the rule is not represented in a rule combination, this represents
the case where the rule does not apply on the input model. If the rule is present
once, then this represents the executions where the rule applies once or more in the
input model. Likewise, a rule which appears multiple times in a rule combination
represents the case where it has applied at least that many times in the input model.

This abstraction is key to our approach, as it allows us to create a finite set
of path conditions to abstract over an infinite set of input-output models. These
path conditions will explicitly contain the input and output elements induced by
rule application, as demonstrated in Section 4.1.3.

We also note that we are not concerned with representing the order of rule
application within a rule combination. This is due to the confluence property of
DSLTrans described in Section 2.2, which allows us to ignore rule ordering within a
layer.

We base our concept of path conditions on these rule combinations. However, as
DSLTrans allows for dependencies between rules, we cannot create path conditions

84

by creating rule combinations for all rules in the transformation, as this would create
invalid combinations. Instead, our approach must move layer-by-layer and resolve
the dependencies between rules.

4.1.3 Path Conditions

A path condition represents the symbolic execution of a set of DSLTrans rules,
similar to a rule combination as explained above. Each path condition represents
the execution of a set of transformation rules, by containing the input and output
elements which are produced by the application of those transformation rules.

Again, we use an abstraction over the number of times a rule has symbolically
executed. Each path condition will represent that a rule has not applied, or has
applied at least some number of times.

Figure 4.2 – An example path condition representing the symbolic execution of four
rules.

For example, the graphical representation of a path condition in Figure 4.2
represents the application of four rules in the Families-to-Persons transformation
from Section 2.2: (Mother2Woman, Country2Community, Daughter2Woman, and
copersons...Woman). This representation includes the input and output elements
that will be present in the input and output models if these four rules apply in the
transformation. The input elements are those in the top half of the path condition,
while the bottom half contains the output elements. Traceability links connect input
and output elements within rules, which are represented by overlapping dashed boxes.

85

As an example, in Figure 4.2 the Mother2Woman rule on the left consists of two
input elements Parent and Family, connected by associations. These elements are
connected to the Woman output element by traceability links. Therefore, this path
condition indicates that when there are Parent and Family elements in the input
model to the Families-to-Persons transformation, then a Woman element will be
produced in the output model.

Note that the path condition in Figure 4.2 is representing a lower bound on the
number of times those rules have applied on an input model. This means that this
path condition also represents those input-output models where the four rules have
applied any number of times, thereby matching and producing further input and
output elements. An example of an input-output model that this path condition
abstracts over is seen in Figure 4.11 on page 102.

Definition 19. Path Condition
A path condition is a three-tuple

⟨
Input , Output , trace, VNeg, ENeg,

⟩
, where:

— Input ,Output ∈ TG

— Input and Output may be the empty typed graph ∅
— Input ∩Output = ∅
— trace = ⟨Etrace, (strace, ttrace)⟩: the traceability links

— Etrace is disjoint from EInput, and EOutput

— (strace, ttrace) is a pair of functions strace : Etrace → VOutput and ttrace :

Etrace → VInput that respectively provide the source and target vertices for
each traceability link

— VNeg is the set of negative vertices in the Input graph
— ENeg is the set of negative edges in the Input graph
The empty path condition is defined as ϵpc = {∅, ∅, ⟨∅, (strace, ttrace)⟩}.
The set of all path conditions for a transformation tr is PathCondstr.

A formal definition of path conditions is presented in Definition 19. Note that the
structure of path conditions is intentionally very similar to that of DSLTrans rules
and input-output models (Section 3.1).

86

The Input graph of a path condition represents those elements that are present
(or not present) in the input model of the transformation for the path condition to
hold. The Output graph of a path condition contains those elements which will be
present in the output model of the transformation if the Input graph is present in
the input model. In other words, if all the elements in the Input graph are found
in an input model of the transformation, then all the elements in the Output model
will be present in the respective output model of the transformation.

Traceability links are present in Etrace between elements in the Output and
Input graphs to replicate the traceability information created during application
of DSLTrans rules, as discussed in Section 2.2.

Note that as the path condition represents the execution of DSLTrans rules, a
path condition may also contain negative elements in the Input graph. This is to
indicate that these elements are not present in the input model of the transformation.
Figure 4.10 on page 101 shows an example of how these negative elements can prevent
a path condition from abstracting over an input-output model.

We define a utility function getRules: VInput → P{Rules}. This function
accepts a vertex from the Input graph of the path condition and returns the set of
rules which that vertex represents. For example, let f be the Family element on the
right side of the path condition in Figure 4.2. Then, getRules(f) would return
{Daughter2Woman, copersons...Woman}.

This function will be used during the matching procedure of the abstraction
relation, as elements from the same rule cannot match over the same target element.
As well, this function allows the generation of the rule set represented by the
path condition, which is needed for reporting the status of contract verification
(Section 4.4).

4.1.4 Definition of the Abstraction Relation

The abstraction relation defined in Definition 20 is at the core of our symbolic
execution technique. It allows us to represent an infinite set of input-output models
with a finite set of path conditions. Contract proof can then take place on this set of

87

path conditions and the results will be extended to the set of input-output models,
as further explored in Section 4.4.

As can be seen in Figure 4.2 on page 85, path conditions represent a set of
input-output models by storing the elements that will be present in the input and
output models for that execution, along with traceability links which track how the
elements were created. The abstraction relation provides the mapping so that these
path condition elements will be present in the transformation execution, and vice
versa.

In other words, the path condition in Figure 4.2 contains the input and output
elements present when those four rules from the transformation apply. Our
abstraction relation states that for all possible input-output models where only those
four rules apply (any number of times) those input elements will be present in the
input model, and those output elements will be present in the output model.

Specifically, the abstraction relation will map:
— all input elements and traceability links in the path condition to the input-

output model;
— all output elements and traceability links in the input-output model to the

path condition.
Therefore, if the abstraction relation holds for a particular path condition and

input-output model, there is a guarantee on the elements present in the input-output
model. This information will then be used during contract proof as described in
Section 4.4 on page 126.

4.1.4.1 Formal Definition

This section will formally define the notion of abstraction of an input-output
model by a path condition. This is done through the discussion of five conditions
which are required for correctness and consistency of the abstraction relation. After
the conditions are presented, then Figures 4.4 to 4.11 on pages 94–102 will present
examples of the abstraction relation holding and not holding.

88

The abstraction relation has two main stages. The first stage is to ensure that
all input elements in the path condition can be found in the input-output model.
The second stage checks to ensure that all output elements and all rules in the
input-output model are represented by the path condition.

Definition 20. Abstraction of a Input-Output Model by a Path Condition
Let tr be a transformation. Let iom =

⟨
Input iom, Output iom, trace iom

⟩
∈ IOMtr be

an input-output model for that transformation.
Let also pc =

⟨
Inputpc, Outputpc, tracepc, VNeg, ENeg,

⟩
∈ PathCondstr be a

path condition for that transformation.
Abstracts: We have that pc abstracts iom, denoted pc ↦→ iom, if and only if the

following conditions are all true:

Condition 1: pcInput semi-injectively matches onto iomInput.

The purpose of the first condition, defined in Equation 4.1, is to enforce that the
path condition accurately represents the elements present in the input model of the
input-output model. Therefore, the elements in the path condition’s Input graph are
searched for in the Input graph of the input-output model.

∃f :
(
Inputpc →

f
Input iom) where

∀v1, v2 ∈ VInputpc :
(
f(v1) = f(v2)

)
=⇒

(
getRules(v1) ∩ getRules(v2) = ∅

)
(4.1)

Note that the morphism f we are attempting to find in Equation 4.1 is not
necessarily injective. This is because an important consideration for the abstraction
relation is that the path condition is constructed through a composition of rule
elements. Therefore, each rule component in the path condition must be found in
the input-output model, but elements from different rules may match onto the same
element in the transformation execution.

This restriction on elements matching from the same rule is presented in the last
line of Equation 4.1, where elements that overlap in the input-output model cannot

89

belong to the same rule in the path condition, as given by getRules. This condition
can be seen in the fourth example in Figure 4.6 on page 98, where rule components
overlap in a successful abstraction.

Note that this definition allows for extra elements that may be present in the
input-output model but not matched over by the path condition. These extra
elements represent elements not matched by the rules which symbolically applied in
the path condition. This case is seen in Figure 4.4, where the empty path condition
abstracts over an input-output model with extra input elements.

As well, it is important to note that the Input graph of the path condition may
contain negative elements. In this case, the morphism f between the path condition
and the input-output model is extended to match both the PAC and NAC, which is
extracted from the Input graph as in Section 3.2.2. An example of negative elements
in the path condition is presented in Figure 4.10 on page 101.

Condition 2: iomOutput surjectively matches onto pcOutput.

The surjection relation g defined in Equation 4.2 enforces that all elements in the
Output graph of the input-output model must be matched onto the Output graph of
the path condition. The surjective nature of the relation means that each element
in the path condition Output graph must be matched by at least one element.

∃g : Outputpc
surj
◀
g

Output iom (4.2)

This condition represents the constraint that elements produced by execution of the
transformation (the Output graph of the input-output model) must be represented
by a path condition that contains those output elements.

Note that there may be multiple copies of an element in the Output graph of the
input-output model, but the path condition represents the production of the element
fewer times. In this case, these elements in the input-output model may match
over the same element in the path condition. This multiplicity abstraction allows
for a path condition to represent rules applying multiple times, without explicitly
representing each application.

90

Examples of this rule multiplicity abstraction are presented in Figure 4.7 on
page 99.

Condition 3: pctrace semi-injectively matches onto iomtrace.

The purpose of the third condition is to ensure that the rule application represented
in the path condition reflects the actual rule application performed in the input-
output model. As defined in Equation 4.3, traceability links in the path condition
must injectively match onto links in the input-output model using the morphism j.

∃j : tracepc
link→
j

trace iom | ∀e1, e2 ∈ tracepc :

j(e1) = j(e2) =⇒ getRules(e1) ∩ getRules(e2) = ∅ (4.3)

Note that again we cannot have two traceability links from the same rule in the
path condition matching over the same traceability link in the input-output model.
Instead, both traceability links must be uniquely found.

Condition 4: iomtrace surjectively matches onto pctrace.

Traceability links in the input-output model must surjectively match onto links in
the path condition with the morphism k defined in Equation 4.4.

∃k : tracepc
link
◀
k

trace iom (4.4)

This condition is to ensure that there is no rule application in the input-output
model which is not represented by the path condition. If there is a link that is
not found in the path condition, then this path condition does not represent the
application of that rule.

Condition 5: Consistency.

The morphisms (f,g,j,k) used in the above conditions must be consistent with each
other and agree over common elements.

91

For example, if a traceability link in the path condition is matched to a traceability
link in the input-output model with one morphism, then the source and target of
those traceability links must be matched together with the other morphisms.

We refer to Section 2.3.2.5 on page 40 for the precise definition of consistency,
Equation 4.5 and Equation 4.6 extend this definition to all four morphisms.

tracepc
link→
j

trace iom =⇒ ∀l ∈ tracepc :
(
f(t(l)) = t′(f(l))

)
(4.5)

tracepc
link
◀
k

trace iom =⇒ ∀l ∈ trace iom :
(
g(s(l)) = s′(g(l))

)
(4.6)

As an example of consistency in the abstraction relation, consider the example
of rule multiplicity in Figures 4.7 on page 99. Let the elements tlinkpc, Apc, and Xpc

denote the traceability link and connected A and X elements in the path condition.
As well, let their counterparts in the input-output model be denoted tlinkiom, Aiom,
and Xiom.

Note that two morphisms from the path condition involve these elements, the
element morphism f and the traceability link morphism t. The consistency condition
therefore requires that if the traceability link morphism j maps tlinkpc to tlinkiom ,
then the element morphism f must map the A and X elements to their counterparts.
That is, j(tlinkpc) = tlinkiom =⇒

(
f(Apc) = Aiom ∧ f(Xpc) = Xiom

)
.

4.1.5 Examples

In this section, we provide a number of examples to demonstrate different facets
of the abstraction relation:

1. Empty Path Condition
— The empty path condition abstracts all input-output models where no

rules apply.

2. Non-overlapping Rule Components
— Different rules do not contain similar elements so the matching is injective.

92

3. Overlapping Rule Components
— Different rules do contain similar elements so the element matching is

semi-injective.

4. Multiple Rule Application
— Rules apply multiple times in the path condition and/or the input-output

model.

5. Indirect Links
— Indirect links are present in the path condition.

6. Negative Elements
— Negative elements are present in the path condition.

7. Families-to-Persons Example
— A path condition and an input-output model from the Families-to-Persons

transformation are presented.

In each figure in this section, the path condition pc is on the left-hand side, and
an input-output model iom is on the right-hand side.

Figure 4.3 – Legend for abstraction relation figures.

Figure 4.3 presents the legend for the morphisms in the following figures. These
morphisms will show potential matches between elements. An X placed over the
morphism arrow means it cannot be satisfied, while an ∅ symbol means that an
empty morphism was found. The presence of these matches allow the conditions of
the abstraction relation to hold.

93

We also note that the abstraction relation must also match over the associations in
the path condition and input-output model. However, this matching is not included
in the figures to improve visual clarity.

4.1.5.1 Example 1 – Empty Path Condition

The first example in Figure 4.4 demonstrates how an empty path condition will
abstract over all input-output models where no rules apply. In Figure 4.4a, the empty
path condition abstracts the input-output model. However, in Figure 4.4b the empty
path condition does not abstract the input-output model because of rule application
in the input-output model producing elements not found in the path condition.

(a) Abstraction relation holds. (b) Abstraction relation does not hold.

Figure 4.4 – Abstraction relation of input-output models by the empty path
condition.

The Input graph of the path condition represents the pre-conditions for the path
condition to be true, depending on which rules have symbolically executed in the
transformation. Since the Input graph is empty, the empty path condition represents
all input-output models where no rules have applied.

The first condition for the abstraction relation is to determine whether a
morphism can be found between the Input graph of the path condition and the Input
graph of the input-output model. Note that in both Figure 4.4a and Figure 4.4b, an
empty morphism satisfies this condition, denoted by the blue arrows and ∅ symbol.

94

The second condition for the abstraction relation is whether a surjective morphism
can be found from the output model to the output graph of the path condition.
This is represented by orange arrows in Figure 4.4a and Figure 4.4b. This relation
is surjective as there may not be any elements in the output model that are not
represented by the path condition’s output graph.

The empty Output graph of the path condition defines no post-conditions on the
Output graph of the input-output model, as no rules have executed. Note that an
(empty) surjective morphism can be found between the Output graph of the input-
output model in Figure 4.4a and the path condition. This is intuitive as the lack
of elements in the Output graph of the input-output model means no rules have
executed, which corresponds to the lack of a post-condition defined by the path
condition.

In contrast, in Figure 4.4b no surjection morphism can be found between the
elements of the Output graph of the input-output model and the path condition. As
the input-output model has elements in the Output graph, at least one rule must
have applied. However, the path condition does not represent that a rule has applied
and thus it cannot abstract over this input-output model.

Note that this empty path condition is of great interest to our contract proving
approach. It represents all input-output models where the input model does not
contain elements sufficient for any transformation rules to apply. As well, all
input-output models not abstracted by another path condition will necessarily be
represented by the empty path condition. This is employed by our proof sketches
in Section 4.3.2 to argue that all input-output models are abstracted by a path
condition.

4.1.5.2 Example 2 – Non-overlapping Rule Components

This second example shows the abstraction relation between path conditions and
input-output models with the presence of elements in the path condition. However,
we restrict the elements to be distinct, such that no match element of the same type
appears in multiple rule components.

95

Note that to properly represent the conditions of the abstraction relation, two
figures are displayed for the following examples. The first will demonstrate the
matching performed on elements for both the input and output graphs, while the
second figure focuses on the matching of the traceability links.

(a) Abstraction relation holds on non-

overlapping elements.

(b) Abstraction relation holds on trace-

ability links.

Figure 4.5 – Abstraction relation for non-overlapping rule components.

Let us first examine how the morphism operates between the Input elements in the
path condition and the input-output model in Figure 4.5a. Note that the morphism
can be found from the elements in the path condition’s Input graph successfully.
Similarly, there is a surjection morphism that can be found between the Output
elements of the input-output model and the output graph of the path condition.

We now examine Figure 4.5b to resolve whether the traceability links (and
connected elements) in the path condition can be found in the input-output model.
This matching is represented by the arrows, where each link is highlighted in a bold
outline and differentiated by colour. We note that each traceability link in the path
condition can be successfully found in the input-output model.

As well, there is a matching step from each individual traceability link in the
input-output model onto the path condition. In Figure 4.5b the links in the input-
output model are successfully matched onto the path condition.

96

Finally, we note that consistency is maintained in Figure 4.5. The source and
target of each traceability link are matched to the connected elements in a consistent
manner with the other morphisms.

4.1.5.3 Example 3 – Overlapping Rule Components

For this example, we allow path conditions which contain rule components with
elements of the same type. Our goal is to illustrate the interaction of rule elements,
where the path condition elements may match over the same or different elements in
the input-output model.

For example, the two rule components in Figure 4.6a correctly match over the
input-output model shown. The abstraction relation holds due to the fact that,
while the elements of the same component cannot match over the same element in
the input-output model, elements from different rules do not have any constraint.

In other words, the path condition in Figure 4.6a represents the application of
two rules which may or may not match over the same element in the Input graph of
the input-output model.

The flexibility of this matching allows our technique to avoid having to create
‘disambiguated’ path conditions where this combination of elements is explicitly
produced, as in the thesis of Barroca [19].

Figure 4.6b shows the mapping from the traceability links of the path condition
to the input-output model. Each traceability link and the connected components
are matched and found. The traceability links from the input-output model are also
matched back onto the path condition.

Again, this is to ensure that no traceability links are found in the input-output
model that have not been represented in the path condition. Three matches are
performed in this step as denoted by the three arrows in the bottom of Figure 4.6b.

In contrast, Figure 4.6c shows an example where the abstraction relation does
not hold. Note that one rule component in the input graph of the path condition
contains two B elements. Both of these elements must be matched for the rule to

97

(a) Abstraction relation holds with overlap-

ping elements.

(b) Abstraction relation holds on traceability

links.

(c) Elements cannot overlap within a compo-

nent.

(d) Traceability links cannot be found.

Figure 4.6 – Abstraction relation with overlapping rule components.

apply, and thus it is not correct for them to match to the same element in the input-
output model. Thus, a mapping cannot be found and the path condition does not
abstract the input-output model.

As well, it is informative to examine Figure 4.6d. Note the one of the matches from
the input-output model attempts to match over a:A and y:Y elements, connected by
a traceability link. Examination of the path condition shows that this traceability
link is not present in the path condition. Therefore, this path condition cannot
accurately represent this input-output model.

4.1.5.4 Example 4 – Multiple Rule Application

Multiplicities must be correctly handled in our approach, such that a path
condition can abstract over input-output models where a rule applies multiple times.

98

Recall from Section 4.1.3 that rule application is represented as either not
occurring, or as a lower bound in the path condition. That is, if a rule does not
appear in a path condition, the rule does not apply in the input-output model. If
the rule appears once, it applies one or more times in the input-output model. If the
rule appears twice, it applies two or more times, and so on.

Figure 4.7 shows an example of the abstraction relation where the rule applies
multiple times in the input-output model.

Note that the elements of multiple copies of the rule in the path condition can be
matched over the input-output model in Figure 4.7a, as long as the rule multiplicity
in the path condition is a lower bound for the input-output model.

The surjective match also holds in Figure 4.7b, where one rule has applied twice
in the input-output model but only once in the path condition. The presence of extra
rule application in the input-output model is handled by the surjective nature of this
match, as there does not need to be a unique (injective) mapping.

Note that the consistency condition is required to ensure that the f and j

morphisms select the same elements (the a’ → x’ elements).

(a) Representing a lower bound of rule

application.

(b) Traceability links surjectively match on

the input-output model.

Figure 4.7 – Example of successful abstraction relation with multiple rule application.

In contrast, Figure 4.8 demonstrates how the abstraction relation will not hold if
the rule is applied fewer times in the path condition than the input-output model.
This is because the elements from the duplicated a → x rule cannot be surjectively
matched over by the output elements in the input-output model.

99

(a) Cannot surjectively cover more applica-

tions than are in the input-output model.

(b) Traceability links also cannot be covered.

Figure 4.8 – Example of unsuccessful abstraction relation with multiple rule
application.

The traceability link matching shown in Figure 4.8b also demonstrates how it is
not possible to find an surjective match in this case. Thus, a path condition which
represents more rule applications than the input-output model cannot abstract over
that input-output model.

4.1.5.5 Example 5 – Indirect Links

Figure 4.9 presents a path condition that includes rules with indirect links, where
the links are shown as dashed lines between the elements. Note that the indirect
link between elements a : A and b : B in the input-output model are added by
the transitive closure we have defined in Section 2.3.2.3. This closure creates links
between all nodes connected by a non-looping path.

(a) Matching on the link created. (b) Matching over traceability links.

Figure 4.9 – Abstraction relation with indirect links.

100

In this case, for the abstraction relation to hold, the elements at both ends of the
indirect link must be found, and there must be a link created between the matched
elements by the transitive closure.

4.1.5.6 Example 6 – Negative Elements

We show an example of a path condition in Figure 4.10 where the path condition
represents rules containing negative elements.

When negative elements are present in a rule component, we rely on the same
mechanism as for rule application that was discussed in Section 3.2.2. The path
condition’s Input graph is divided into a positive application graph (PAC) and
a negative application graph (NAC) using the extraction process presented in
Section 3.2.2. Then, for the path condition to abstract the input-output model,
the PAC must match over the input model, and the NAC must not match.

(a) Cannot match the negative elements. (b) Traceability links do match.

Figure 4.10 – The negative element makes the abstraction relation not hold.

In Figure 4.10, the PAC consists of the A element, while the NAC consists of
the B element, the A element, and the connecting association. Note that in this
case, both the PAC and the NAC match, so this path condition cannot abstract this
input-output model.

4.1.5.7 Example 7 – Families-to-Persons Example

Finally, Figure 4.11 demonstrates the abstraction of an input-output model in
the Families-to-Persons transformation (Section 2.2) by a path condition. Note that

101

(a) The elements of the path condition are found in the input-output model

(b) Traceability links match as well.

Figure 4.11 – Abstraction of a path condition on an input-output model for the
Families-to-Persons transformation.

the two Family elements in the path condition are matched onto the same Family
element in the input-output model.

This particular abstraction example will become important when we discuss
how a contract is satisfied by both a path condition and an input-output model
in Section 4.4.2.

102

4.1.6 Other DSLTrans Constructs

We must also consider the presence of other DSLTrans constructs to be able to
handle all DSLTrans transformation. Namely, this section discusses attributes and
Any/Exists elements as introduced in Section 2.2.5.

Attributes. The rules in DSLTrans may also include attributes on the match or
apply elements in rules. As path conditions are composed of rule components, these
attributes will also be present on path condition elements.

Therefore, we take a similar approach to attribute resolution as in Section 3.2.3
on page 59. We assume that there is a proper solver that can determine the status
of this attribute matching. Then, for elements in the path condition to abstract over
the elements in the input-output model, we submit these elements to the resolver to
determine if the matching succeeds.

Any/Exists Elements. The Any/Exists elements denotes different semantics for
the matching of multiple executions of the same rule, as discussed in Section 3.2.6
on page 65.

These semantics are represented in the abstraction relation by restricting the
matching of Exists elements in the path condition over elements in the input-output
model. This restriction is on the morphism f in the first condition of Definition 20.
Specifically, Exists elements in multiple applications of a rule in a path condition
must be resolved as in Section 3.2.6.

4.1.7 Partitioning of Input-Output Models

The abstraction relation partitions the infinite set of input-output models into
separate path conditions based on which rules have symbolically executed in the
path condition, and therefore which elements will be present in the input and output
models of those input-output models.

However, these partitions may overlap as path conditions represent a lower bound
on the number of times a rule applies. For example, one path condition pc could

103

abstract all input-output models where rule A applies at least once, while another
path condition pc′ could abstract all input-output models where rule A applies two
or more times. Thus, the set of input-output models abstracted over by pc ′ would
be a subset of those abstracted by pc.

This overlapping has two consequences. First, there will be an ordering of
path conditions based on the abstraction of the multiplicity for rule application.
Second, an input-output model may be abstracted by multiple path conditions. In
Section 4.5.4 on page 142 we will discuss how this ordering affects the contract
verification process, which relies on the abstraction relation to extend the contract
proof result on a path condition to the input-output models it abstracts.

4.2 Building Path Conditions

This section describes our symbolic execution approach for building path
conditions. The algorithm examines interactions of rules, such that all rules in the
transformation are combined into path conditions by examining each layer in the
transformation. At the end of this process, each path condition will abstract over
an infinite set of input-output models using the abstraction relation presented in the
previous section.

Note that the current implementation of this approach in our contract proving
tool SyVOLT is discussed in Section 5.3.4 on page 188.

4.2.1 Path Condition Generation Overview

The aim of the path condition generation process is to create a set of path
conditions PCSet which symbolically represents the DSLTrans transformation under
study. This set is built by iterating through each layer in the transformation, as
outlined in Figure 4.12.

This process will begin with PCSet as containing only the empty path condition.
Then, the path conditions in PCSet will be iteratively combined with rules from
the next layer to determine the symbolic execution of each rule. This combination

104

Figure 4.12 – Previous path conditions are combined with rules.

process will produce a new set of path conditions as the PCSet for the next layer.
Once all layers of the transformation have been examined, a complete set of path
conditions for the entire transformation will have been produced.

The combination step in Figure 4.12 is the core of our technique, where each
path condition in PCSet is examined to determine how it combines with the current
layer’s rules. This combination is based on determining how the rules match over
the input and output elements present in the path condition, and whether the rule
may or must apply on that path condition. Based on this classification, which is
explained in Section 4.2.2, new path conditions will be created which contain the
rule’s elements.

An example is shown in Figure 4.13a, where the rules in a layer are classified as
may combine, must combine, or does not combine with a path condition. Figure 4.13b
shows how new path conditions are created by the combination of the rules with that
path condition.

In Figure 4.13, the B rule is discarded as it does not combine with this path
condition. The C rule must combine with the path condition, while the A rule may
or not combine. Thus, a path condition is created where the rule A is combined, and
one where it does not. Note that this may combine set leads to an explosion in the
number of path conditions.

105

(a) Classifying rules depending on the path condition.

(b) Creating new path conditions based on rule

classification.

Figure 4.13 – The path condition creation process for one path condition.

4.2.2 Rule Classification Sets

We will now discuss the rule classification step, which partitions the rules in a
layer into those that may combine with a particular path condition, and those that
must combine.

Let pc be the path condition selected from layer n− 1, and rl be a rule selected
from layer n.

When pc and rl are combined, there are four possibilities based on the restrictions
defined by the backward links and negative elements present within rl :

1. rl has no restrictions

2. rl has restrictions and cannot apply on pc

3. rl has restrictions and may apply on pc

4. rl has restrictions and must apply on pc

106

We add rl to the set mustpc if rl must symbolically execute over pc, or rl will be
added to the set maypc if the rule may or may not execute over pc.

4.2.2.1 Rule Combination Matcher and Rewriter

The decisions for how a rule could combine with a path condition are based on
whether there is a morphism that can be found between the rule’s matcher and the
path condition.

We construct this matcher – denoted ⌈rl⌉ – for the rule rl by following
Definition 13 on page 49. As explained in that section, this matcher is composed of
the Match elements in the rule, along with backward links and any Apply elements
connected to those backward links.

As mentioned in Section 2.2.4, backward links enforce that the elements matched
by the rule’s Apply graph have been previously created by the connected elements
in the Match graph. In the context of combining a rule and a path condition,
these backward links define dependencies between the rule and the element creation
represented by the path condition.

Note that the rule matcher will also contain negative elements, which define
dependencies on which elements are not present within the path condition.

The rewriter for the rule – denoted ⌊rl⌋ – for the rule rl is constructed by following
Definition 14 on page 50. However, we also retain in the path condition rewriter the
negative elements in the rule. As described in Section 4.2.3.3, this allows the path
condition to store negative elements.

4.2.2.2 Must Combine Set

Definition 21 defines the mustpc set, which holds all rules which must combine
with the path condition pc.

Definition 21. Path Condition and Rule Combination – Must Combine
Given a path condition pc and a DSLTrans layer l:

mustpc =
{
rl ∈ l | (rl back ̸= ∅ ∧ ¬containsNegativeElements(rl) ∧ ⌈rl⌉↣ pc)

}
107

This definition selects those rules from the layer where a) the rules specifies
dependencies through backward links, b) the rule doesn’t contain negative elements
(or associations), and c) the rule’s matcher (which includes the backward links)
matches over the path condition using the typed graph split morphism ↣. Therefore,
all elements required by the rule to execute are present in the path condition and
thus in all abstracted transformation executions through the abstraction relation.

Note that if negative elements are present in the rule, then we cannot guarantee
that the rule can match. This is because an input-output model abstracted by that
path condition may contain extra input elements not captured in the path condition.
Therefore, the rule is considered to may match, and so will be placed in the set
maypc.

4.2.2.3 May Combine Set

Definition 22 creates the set maypc which holds all rules which may combine with
the path condition pc.

Definition 22. Path Condition and Rule Combination – May Combine
Given a path condition pc and a DSLTrans layer l:

maypc =
{
rl ∈ l | rl back = ∅ ∨

(
rl back ̸= ∅ ∧ rl back

link→ pc
)}

This definition selects those rules where either a) the rule specifies no
dependencies through its backward links, or b) there are dependencies specified and
they match over the path condition.

Therefore, the set maypc will contain rules where the dependencies specified are
satisfied by the path condition, but all input elements may or may not be in the path
condition. Therefore it may be possible that the rule applies for this path condition,
but it may not.

4.2.2.4 Does Not Combine Set

The last rule set created, notpc contains the rules that do not combine with the
path condition. As shown in Definition 23, this set contains the rules not contained
in mustpc or maypc.

108

Definition 23. Path Condition and Rule Combination – Does Not Combine
Given a path condition pc and a DSLTrans layer l:

notpc =
{
rl ∈ l | rl ̸∈ mustpc ∧ rl ̸∈ maypc

}
Note that this set is created only for completeness, and the rules contained will

not be combined with the path condition.

4.2.2.5 Creation of Path Condition Set

The steps in Section 4.2.3 will take a path condition pc and a set of rules, and
produce a must combine mass production p∗must , and a set of may combine mass
productions p∗may . These mass productions will combine the elements from the rules
with the path conditions.

Algorithm 1 – Building path conditions for a layer.
Input: The set of path conditions from the previous layer, and the set of rules for the current layer
Output: The set of path conditions for this layer
1: function CreatePathConditions(PCSet, rules)
2: newPCSet ← ∅
3: for each pc ∈ PCSet do
4: mustRuleSet ← findMustMatch(pc, rules) ▷ mustpc

5: mayRuleSet ← findMayMatch(pc, rules) ▷ maypc

6:
7: mustMassProd ← createMassProd(pc, mustRuleSet)
8:
9: oldPC ← copy(pc)
10: pc ← apply(mustMassProd, pc)
11:
12: mayPowerSet ← createPowerSet(mayRuleSet)
13:
14: for each combo ∈ mayPowerSet do
15: prod ← createMassProd(oldPC, combo)
16: pcCopy ← apply(prod, pc)
17: Add pcCopy to newPCSet

18: return newPCSet

To create the new set of path conditions newPCSet to be presented to the next
layer, these productions created are applied to the path condition. This application

109

is performed in Algorithm 1, which takes the path conditions from the previous layer,
and combines them with rules from the current layer.

Algorithm 1 begins by iterating through each path condition in the set. The first
step is to divide up the rules in the layer into the mayRuleSet and the mustRuleSet
on Lines 4 and 5. Then the must combine mass production can be created out of
the rules in the total rule set on Line 7. This mass production creation is discussed
in Section 4.2.3.1.

The path condition must be copied on Line 9 before applying the must combine
mass production on the next line, such that the creation of the may combine mass
production is not affected.

Then, we create the power-set out of the rules in the may combine rule set on
Line 12. Note that this function would handle rule multiplicity and overlapping rules
as in Section 4.2.3.2.

The last step is to iterate through the combinations created in the power-set. For
each combination, a mass production is created and applied to the path condition.
This is discussed in Section 4.2.3.3.

Note that the path condition itself is not modified, but instead a copy is made
before application of the production. This is because each may combine mass
production must apply over the same path condition, which was created by the
application of the must combine mass production on Line 10. Each of these new
path conditions is placed in a set on Line 17, which is returned as the output of the
function on Line 18.

Attribute Setting. The setting of attributes for rule elements is also symbolically
executed in path condition construction. In our implementation of path condition
construction, we store in the path condition the equations stating the values for the
attributes as they are assumed by the rules. In subsequent rules, we then check for
value compatibility of the match elements being matched. If the conditions on the
attributes on the path condition element and the rule element are conflicting, no
path condition is generated.

110

4.2.3 Rule Combination

Definitions 21 and 22 create the sets of rules to be combined with that path
condition, defining whether the rule may or must combine with the path condition.
Following this, the new set of path conditions for the layer can be created, which will
then be the input to the combination step for the next layer.

Note that there may be rules present in the layer that are in neither set. This is
because rules may specify restrictions (using backward links) that cannot be satisfied
by the path condition, and thus they will not be considered to combine with the
path condition. This is the main way that the growth of the path condition set is
restricted such that only feasible representations of the transformation’s executions
are permitted.

Note that the following figures will depend on the matcher and rewriter for
an example rule rl. The rule rl is shown in Figure 4.14a, the matcher ⌈rl⌉ in
Figure 4.14b, and the rewriter in Figure 4.14c.

4.2.3.1 Must Combine Set

The must combine possibility represents the cases where the rule rl must match
over the path condition. Therefore, the elements required by the rule’s matcher are
present in the path condition, and the rule necessarily applies at least once.

The elements from the rule rl will be added into the path condition pc using the
rewriter in Figure 4.14c. Note that by definition of the must combine set, the rule
does not contain negative elements.

An example of the rule being added to the path condition is seen in both sub-
figures in Figure 4.15. Note that this addition process is based on the double-pushout
approach, such that new elements are created connected to where the rule’s backward
links overlap with the path condition’s elements [50].

As well, multiple matches of the rule on the path condition will cause multiple
additions as seen in Figure 4.15b.

111

(a) The rule rl.

(b) The matcher for the rule. (c) The rewriter for the rule.

Figure 4.14 – The matcher and rewriter structures created for a rule used in building
path conditions.

112

(a) Satisfied at one location.

(b) Satisfied at multiple locations.

Figure 4.15 – Rule r ’s dependencies are satisfied by path condition pc’s elements.

113

Must Combine Mass Production. We create a mass production p∗must from the
rule set mustpc following the definitions in Section 3.2.5.1 and Ehrig et al. [50]. Note
that it is permissible in DSLTrans to combine various rules together into one mass
production as DSLTrans rules are confluent, as discussed in Section 3.4.

In this case, the production p∗must is composed of the productions of all the rules
in the mustpc set, with each rule represented as many times as it matches over the
path condition pc. As an example, the rule executes once in Figure 4.15a and twice
in Figure 4.15b.

This mass production is then applied to the path condition pc in Section 4.2.2.5.
This will combine the path condition with all rules in the layer that must apply due
to the elements in the path condition.

Note that this application is performed after the mass production for the set of
may combine rules has been created, but before that mass production is applied, as
stated in Algorithm 1 on page 109. This is done such that the elements produced by
the application of the must mass production are not considered by the construction
of the may mass production.

4.2.3.2 May Combine

Once all the rules which must execute on the path condition have been gathered
into a path condition, the rules which may combine must be considered. This set of
rules, denoted maypc, is slightly more complicated to handle. This is because there
is a possibility that each of the rules in this set does not apply on the input-output
models abstracted by that path condition.

As seen in the must combine case, the objective is to generate mass productions
which can be applied to the path condition pc to create appropriate rule elements
and thereby symbolically execute rules. These mass productions are created out of
the power-set of rule combinations from maypc.

However, before we can generate all the may combine mass productions to be
applied on the path condition, we must handle two cases in the power-set of rules in
maypc.

114

First, we must determine if we need to add extra rule applications to satisfy
dependencies on the multiplicity of rule application, and second, we must examine
whether the application of one rule subsumes the application of another. These cases
are discussed in the following sections, along with a discussion on rules containing
negative elements.

Multiple Rules. In our technique, we are abstracting over the number of times that
a rule applies to an input-output model. However, the contract we wish to prove
may require particular rules to have applied more than once. Alternatively, the
dependencies on a rule (the backward links) may require the application of another
rule more than once.

In either case, this multiplicity information for rules must be decided before path
condition construction begins. Then, the number of times a rule applies can be
decided at this stage, during the may combine mass production creation.

We note that a relatively simple static analysis is sufficient to detect these
situations and report which rules need to be duplicated. This analysis is implemented
in our contract verification tool SyVOLT, where it is also used to detect invalid rules
and contracts as discussed in Section 6.4.1. Each element and link in the contract
and rules are searched for in other rules in the transformation. This allows us to
determine which rules need to be duplicated (and how many times) to generate the
appropriate number of elements for following rules to apply.

If rule application needs to be replicated, we add new rule combinations to the
power-set which duplicate the rule in question. For example, if we want to duplicate
the number of times that rule r applies to a path condition, we will duplicate all
sets in the power-set with r, and add an extra (differentiated) copy of r within those
sets. This ensures that we represent the multiple application of this rule.

Rule Subsumption. If there are two rules on the same layer, and one subsumes
the other, then we must investigate rule combinations concerning these rules.

115

For example, consider rule A with a Family element and a Member element, and
rule B with a Family element and two Member elements. It is clear that rule B can
only apply on input models where rule A also apply as rule A has a subset of the
element of rule B. Therefore, we can remove rule combinations from the power-set
where rule B applies but rule A does not.

Note that detecting subsumption and removing the invalid combinations is not
an optimization. It is instead a necessary operation for correctness, as it reflects the
valid combinations during DSLTrans transformation execution.

The determination of rule subsumption can be made before the path condition
creation process in a static analysis.

Negative Combination. Note that the set of rules maypc that may combine with
the path condition contains rules with negative elements. The presence of these
negative elements indicates that there are input models with elements such that
those rules cannot apply. As such, these rules are not placed in the rule set mustpc

as they are not guaranteed to apply.
It would be preferable to remove as many invalid rule combinations as possible to

create the minimum number of future path conditions. Therefore, we attempted to
determine in what cases a rule with negative elements could not combine with other
rules.

However, a guiding principle of our symbolic execution approach is that we are
representing which elements in the input model will definitely exist when those rules
apply. The abstraction relation (as discussed in Section 4.1) explicitly allows for
the addition of extra elements in the input model which do not appear in the path
condition. This means that it is incorrect to reason about which elements do not
appear in an input model based on a path condition.

We present an example in Figure 4.16 of two rules that seem to be contradictory.
The first rule is a Country element connected to a Townhall element, which produces
a ManagedCommunity element in the output graph. The second rule is a Country

116

element connected by a negative link to a negative TownHall element, which produces
an UnmanagedCommunity.

Figure 4.16 – Two rules which may execute on the same input graph.

It is a tempting thought that these two rules would not be able to execute on the
same input model, and therefore could not be present in the same path condition.
However, it is trivial to construct an input model with two Country elements, one
connected to a TownHall and one not connected. In this case, both rules would
apply.

Nonetheless, future work will explore this area more fully to determine if there are
conditions where a rule can be said to definitively not apply based on the presence
of negative elements.

4.2.3.3 Creating the May Combine Mass Production Sets

Once the power-set has been examined for possible rule overlap and insufficient
rule multiplicity, we construct the set of may combine mass productions p∗may through
the application of mass production construction on each rule combination in the
power-set.

Recall that a mass production is simply composed of the matchers and elements
to be written for the rules in this set. The matcher for the may combine combination
case will be empty, as we intend for the elements of the rule to be added to the path
condition, without binding to any part of the existing path condition.

117

The elements to be written will be the same as in the must combine combination
case. That is, the graph to be produced will be the rule’s elements, along with
traceability links added as discussed in Section 3.1.4.2. However, unlike the rewriter
for rules during the execution of a DSLTrans transformation, the structures for adding
elements to path conditions may contain negative elements.

4.2.4 Considering Further Layers

Section 4.2.3 and Algorithm 1 describe how multiple path conditions are created
for the combination of a set of path conditions with a set of rules for a layer. This
working set of path conditions obtained is then itself combined with the rules in the
next layer, to produce yet another set of path conditions. This process will then
continue in this layer-by-layer fashion through the transformation.

After all layers have been processed, the path condition set of the last layer
contains all the possible path conditions of the transformation. Through our
abstraction relation defined in Section 4.1, this set of path conditions will represent
every feasible transformation execution. Section 4.4 discusses our approach to
proving contracts on these path conditions, and thus on all executions of the
transformation.

4.3 Representation and Coverage of the Technique

This section presents our arguments that our path condition building algorithm
builds path conditions that both represent and cover the infinite set of transformation
executions.

Representation means that each path condition represents at least one valid
transformation execution.

Coverage means that every transformation execution is abstracted by at least one
path condition.

These properties are essential for our contract-proving technique as discussed in
Section 4.4. In particular, these properties ensure that our building of path conditions

118

is proper, that the construction reflects the semantics of DSLTrans as discussed in
Section 3.2, and that the contract proving approach in Section 4.4 is valid.

4.3.1 Representation

Proposition 3. Every path condition abstracts at least one valid transformation
execution.

Proof. Let tr ∈ Transforms be a DSLTrans transformation. We wish to
demonstrate that for all path conditions, there exists a transformation execution
(represented by an input-output model) that the path condition abstracts through
the abstraction relation. That is: ∀pc ∈ Pathconds : (∃iom ∈ IOMs | pc ↦→ iom)

Note that this abstraction is bound by the restriction that getTransforma-
tionPC (pc) = tr = getTransformationIOM (iom). That is, we are only concerned
with path conditions and input-output models for the same transformation.

This representation property will be proved by performing induction on the
number of rules represented by a path condition pc. That is, rules will be added one-
by-one to the rule set abstracted by the path condition. This explanation will follow
the pattern of construction in Section 4.2, and the DSLTrans semantics presented in
Section 3.2.

4.3.1.1 Base case:

The base case is when pc is the empty path condition ϵpc. That is, the set of
rules represented by the path condition is empty. Section 4.1.5.1 demonstrates that
the empty path condition abstracts any empty input-output model, as well as any
input-output model for which no rule applies.

This is due to no input elements or traceability links in the path condition missing
in the input-output model, and no output elements or traceability links in the input-
output model missing in the path condition.

4.3.1.2 Inductive case:

Assume that a path condition pc abstracts at least one input-output model. Then
the inductive step adds a rule r to the rule set which pc represents, resulting in a

119

path condition pc′. The representation property will be shown to also hold for this
new path condition pc′.

This proof will depend on how the rule rl combined with the original path
condition pc. There are three cases of rule combination to consider, depending on
the rule’s dependencies:

1. Rule rl cannot execute.

2. Rule rl has no dependencies or may execute.

3. Rule rl will execute.

The property holds for Case 1 as the path condition pc′ is not changed from pc

and therefore the original input-output models are still abstracted.
When Cases 2 or 3 occur, new elements are added to the path condition pc to

form pc′. Both cases are based on combining a path condition with a rule, as laid
out in Section 4.2.2.

Adding a Rule. We start by picking an input-output model iom such that the
original path condition pc abstracts iom, which exists by our induction hypothesis.
Another input-output model iom′ is then built by adding input elements such that
the rule rl executes. Let us now demonstrate iom′ is abstracted by the path condition
pc′, where pc′ is formed by combining the rule rl with pc.

Below we examine how the addition of the rule affects the conditions of the
abstraction relation explained in Section 4.1.4.1:

1. a semi-injective morphism must exist between the input elements of the rule
components in the path condition and the input of the input-output model

2. a surjective morphism must exist between the output of the input-output
model and the output part of the path condition

3. a semi-injective morphism must exist between the traceability links of the
path condition and the input-output model

4. a surjective morphism must exist between the traceability links in the input-
output model and the path condition

120

5. the morphisms for the above conditions must be consistent with one another
according to Equation 2.1 on page 41

Our arguments are based on the fact that if the morphisms hold in the above
conditions before addition of the rule elements, then they will also hold after. Note
that our arguments are applicable both when the rule may and must combine with
the path condition. This is because both additions add the elements from the rule
without removing any.

Condition 1. Let us start by arguing for why Condition 1 holds for the new path
condition pc′ and the new input-output model iom′.

The application of the rule rl in the input-output model iom′ means that the
elements present in the rule’s matcher ⌈rl⌉ were present in the input-output model.
The rewriter of the rule ⌊rl⌋ then creates the output elements of the rule in the
input-output model.

For the path condition pc′, these are exactly the elements added during path
condition construction. Whether the rule may or must combine with the path
condition, all rule elements (including added traceability links) are added during the
application of the mass productions (Section 4.2.2.5). Therefore, there will continue
to be an injective morphism found between the added elements in pc′ and the added
input elements in iom′.

Condition 2. A similar argument for Condition 1 is used for Condition 2.
Traceability links will be created in the input-output model iom′ when the rule
rl applies, as they are created for the rule’s rewriter (Section 3.1.4.2).

During path condition construction, these traceability links are explicitly added
to the rule elements, before the elements are added to the original path condition
pc (Section 4.2.2.5). Thus, it will be possible to make an injective match on the
traceability links in the path condition pc′ to the traceability links in the input-
output model iom′.

121

Condition 3. The argument for Condition 3 follows the argument for Condition 1.
As the application of the rule rl in iom′ has produced output elements, these elements
must be represented in the path condition pc′ through a surjection relation. These
elements exist, as the combination of pc′ and rl adds all elements from the rule.
Therefore, the same output elements created in iom′ are also created in pc′, and the
surjection relation continues to hold.

We must also consider the repeated application of the rule in the input-output
model iom′. For each application of the rule, output elements will be created in
the output component of the input-output model iom′. However, the nature of the
surjection relation allows multiple elements in the input-output model to match over
the same element in that path condition, as seen in the examples in Section 4.1.5.
Therefore, the surjection relation will continue to hold after the rule applies multiple
times in the input-output model.

Condition 4. Condition 4 states that there must be a surjective morphism from
the traceability links in the input-output model iom′ to the traceability links in the
path condition pc′. As with Condition 3, the traceability links in the input-output
model are created when the rule applies in the transformation. These applications
are directly represented in the path condition when the rule (with traceability links
added) is combined with the path condition.

As well, the surjective nature of the morphism means that repeated rule
application in the input-output model will match over fewer representations in the
path condition. Thus, a surjective match can be found.

Condition 5. Finally, Condition 5 refers to the need for all morphisms in the
abstraction relation to have consistent mappings. This consistency is defined in
Equation 2.1 on page 41, where all mappings originating from a source element must
map onto the same target element in the morphisms from the other conditions.

We assume that the morphisms are consistent before the addition of the rule
to both the path condition and the input-output model. The rule with the same

122

elements is then added to both sides. Therefore, the consistency of the morphisms
is retained.

4.3.2 Coverage

Proposition 4. (Coverage) Every input-output model is abstracted by at least one
path condition.

Proof. Let tr ∈ Transf be a DSLTans transformation. We wish to demonstrate
that, for all input-output models iom for the transformation, there exists a path
condition pc such that iom is abstracted by pc. That is:

∀iom ∈ IOMs : (∃pc ∈ PathConds | pc ↦→ iom)

Note that this proof involves the claim that the abstraction relation is sufficiently
powerful enough to allow for a path condition to abstract the input-output model.
This claim is based on our abstraction relation’s definition being intertwined with
the building of each path condition, such that symbolically executing a rule in a
path condition directly mirrors the application of a rule in a input-output model.
This replication of DSLTrans’ semantics (Section 3.2) mirrors Proposition 3, where a
path condition will always abstract at least one input-output model. Therefore, our
claim is that no input-output model can be created that is not abstracted by a path
condition.

First, to discuss coverage let us examine the set of input-output models where no
rules apply. These input-output models can contain either an empty input model,
or an input model such that no rule matches. As discussed in Section 4.1.5.1,
these input-output models are represented by the empty path condition ϵpc and are
therefore covered.

In the rest of this proof we are thus considering only those input-output models
where a set of transformation rules have applied. To assert that these input-output
models are covered by at least one path condition, we will examine the possibility of
a counter-example. Therefore, we provide a proof by contradiction.

123

Assume there exist two input-output models which represents two sets of rules
which differ by the application of a rule rl. One input-output model is abstracted by
some path condition, while the input-output model of interest iom is abstracted by
no path conditions. To show that iom cannot exist, we examine how the application
of the rule rl could have led to a failure of the abstraction relation:

The rule was not symbolically executed during path condition construction.

The first possibility of not building an appropriate path condition for iom goes to the
heart of our technique, where we consider the case that the application of rl has not
been represented on the path conditions created. Note that during path condition
construction (Section 4.2) that our technique is not conservative about building path
conditions. This is required as the set of path conditions must cover every possible
input-output model.

In particular, we examine every rule to determine if there is a possibility of
symbolic execution or not. We only consider a rule rl to not symbolically execute on
a path condition pc if the rule enforces dependencies which are not found in the path
condition. That is, rl ∈ notpc. This is correct as these dependencies must be satisfied
for the rule to apply, which mirrors the presence of the elements in the abstracted
input-output models.

In all other cases, the rule is considered to potentially (or definitely) apply, and
the rule is placed in maypc or mustpc. In this case, multiple path conditions are
generated with that rule symbolically applied. Therefore, if a rule has not been
applied on a path condition, then that rule cannot have applied in an input-output
model.

The rule was not symbolically executed the appropriate number of times.

The second possibility for no path condition abstracting an input-output model is
that the multiplicity of the rule application in the input-output model has not been
properly considered. This case may arise sure to dependencies between rules, such

124

that one rule may need to be applied multiple times for another rule to be applied.
This is discussed in Section 4.2.3.2 on page 115

In our symbolic execution technique, we rely on the verification user to explicitly
define how many times each rule should symbolically apply. This information can be
obtained with our rule dependency analysis as discussed in Section 6.4.1 on page 238.
Therefore, we assume that all rules have been duplicated an appropriate number of
times to create suitable path conditions such that rule multiplicity does not cause
abstraction issues.

Elements are present in the Input graph of all path conditions, but are not

present in the Input graph of the input-output model. For the third case, where
no path condition represents the input-output model, we consider a possibility where
all path conditions have too many elements in their input graph. That is, the input-
output model has strictly fewer elements in its input graph than all path conditions.
This case cannot arise due to the iterative approach to build up the set of path
conditions. In this iterative approach, a path condition is created for each possibility
when rules may or may not apply (Section 4.2.3.2).

Therefore, there will always exist a path condition with a subset of those elements
present in the input-output model. In the base case, the empty path condition ϵpc

will represent the input-output models with no input elements.

Elements are present in the Output graph of the input-output model, but

are not present in the Output graph for any path condition. The fourth
case regards the output elements in the input-output model. Due to the out-
place semantics of DSLTrans, these elements must have been created through the
application of rules.

Therefore, as long as there exists a path condition which captures the application
of those rules, then all output elements will be properly represented by that path
condition. This case thus also depends on the correct building of all possible
transformation executions taking into account rule multiplicity and dependencies.

125

Given that all executions are represented, then the output elements will be
represented in at least one path condition.

4.4 Contract Proof

The algorithm presented in Section 4.2 produces all possible path conditions
for a particular DSLTrans transformation, representing all possible input-output
models. This section will detail another contribution of this thesis: a method to
prove structural contracts on the transformation by creating a set of path conditions
where the contract does hold, and a set where the contract does not hold.

The abstraction relation presented in Section 4.1 can then be used to extend the
contract proof result to the infinite set of input-output models for the transformation.
A positive result for contract proof means that the contract will hold on all abstracted
input-output models, while a negative result means that the contract will fail on at
least one abstracted input-output model. This is further explored in Section 4.5.

4.4.1 Structure of a Contract

Contracts intentionally use a similar structure to DSLTrans rules, input-output
models, and path conditions, as detailed in Definition 24. However, in contracts we
allow the possibility of using indirect links in both the input and output graphs.
As well, we must forbid the use of negative elements in contracts. As explained in
Section 4.5.1.1, this is due to the abstraction relation allowing a path condition to
represent a lower bound for abstracted input-output models.

Figure 4.17 shows two examples of contracts for the Families-to-Persons
transformation. As with structures like path conditions and input-output models, the
top half of a contract is the Input graph, while the bottom half is the Output graph.
Two types of backward links connect elements in the Input and Output graphs, and
are used to define dependencies on element creation.

Contracts form a pre-condition/ post-condition structure to be proven on path
conditions. When the elements in the Input graph (and elements in the Output

126

(a) Pos_FourMembers contract – No counter-examples found.

(b) Neg_DaughterMother contract – Counter-examples found

Figure 4.17 – Contracts proved on the Families-to-Persons transformation.

127

graph connected by pre backward links) matches over a path condition, then the
entire contract structure must match over that path condition for the contract to be
satisfied. Otherwise, the path condition becomes a counter-example to the contract.
This is further discussed in Section 4.4.2 where we precisely define satisfaction of a
contract.

Definition 24. Contract
A contract c is a five-tuple⟨
Input , Output , backpre , backpost , (sback, tback), Eindirect,

⟩
, where:

— Input ,Output ∈ TG

— Input and Output may be empty and are disjoint
— backpre and backpost are two sets of backward links for the contract

— Ebackpre and Ebackpost are disjoint from EInput and EOutput

— (sback, tback) is a pair of functions sback : Ebackpre ∪ Ebackpost → VOutput and
tback : Ebackpre ∪ Ebackpost → VInput that respectively provide the source and
target vertices for each backward link

— EIndirect ∈ EInput is the set of indirect links.

The set of all contracts for a transformation tr is termed Contractstr.
We also define a utility function getTransformationContract : Contract →

Transforms. This function returns the transformation that the contract is defined
for. The purpose of this function is to restrict contracts to only be applicable for a
particular transformation.

Backward Link Types. Note that in a contract we have two types of backward
links, which are used to check for the creation of elements in the path condition.
The first type of backward link, termed pre backward links and stored in Ebackpre ,
are those backward links that must be present in the pre-condition for the contract
to hold. The second type of backward links, termed post backward links and stored
in Ebackpost will be present in the post-condition of the contract. The two contracts

128

in Figure 4.17 (and throughout this thesis) contain the post type of backward links.
Figure 4.18 shows the visual syntax for the two backward link types.

Figure 4.18 – Visual syntax for pre versus post backward links in contracts.

To illustrate the difference in the two types of backward links, we present in
Figure 4.19 a graphical representation of the ChannelProduction contract from
Section 7.1 on page 251. Note that the backward link present in the contract is
a post backward link. Therefore, the contract represents the informal statement, ‘If
there exists a Channel element in the input model, then an ATOM element should
be produced in the output model, connected to two other elements’. Note how the
existence of the ATOM element in the output model is only checked in the post-
condition of this contract.

Figure 4.19 – The Channel Production contract for the RSS-to-ATOM transforma-
tion.

In contrast, if the backward link in Figure 4.19 was a pre backward link, the
informal statement would be ‘If there exists a Channel element in the input model

129

which has produced an ATOM element in the output model, then that ATOM
element should be connected to two other elements’. Therefore, the use of the two
backward link types allows the contract to pre-suppose the application of rules within
the transformation, and gives the contract language further expressibility. Other
contract constructs are discussed in Section 4.6.

4.4.2 Contract Satisfaction

The section will detail the conditions necessary for an input-output model and
path condition to satisfy a contract. This satisfaction is determined by matching
the contract’s pre-condition matcher, and potentially the contract’s post-condition
matcher on the input-output model and path condition.

This section begins by discussing how to build the contract’s pre-condition and
post-condition matchers. Then, we examine how a contract is satisfied by an input-
output model and path condition in Section 4.4.2.2.

Result Symbol Explanation

Not Applicable |> The contract’s pre-condition does not match on
the input-output model/ path condition.

Does Not Satisfy >/ The contract’s pre-condition does match, but the
contract’s post-condition does not match.

Satisfies >| The contract’s pre-condition and post-condition
both match.

Table 4.1 – Results for contract proof on an input-output model or path condition.

Table 4.1 shows the three results for satisfaction, along with the symbols which
represent these results. For example, a path condition pc not satisfying a contract c
would be written pc >/c. These three results will be used in Section 4.4.3 to divide the
set of path conditions for the transformation, and in Section 4.5 to discuss how the

130

result of contract proof on a path condition represents the result of contract proof
on the input-output models abstracted by that path condition.

4.4.2.1 Contract Matchers

The structures for the contract’s pre-condition and post-condition are created
from the contract structure defined in Definition 24. Recall that a contract c is a
five-tuple

⟨
Input , Output , backpre , backpost , (sback, tback), Eindirect

⟩
.

Definition 25. Contract Pre-condition Matcher
We define the contract c’s pre-condition matcher, noted ⌈c⌉pre , to be a typed graph
four-tuple ⟨V pre, Epre, (spre, tpre), τ, Epre

indirect⟩, where:
— V pre = VInput ∪

{
v ∈ VOutput | {∃e ∈ Ebackpre |sback(e) = v}

}
— Epre = EInput ∪ Ebackpre

— spre = sInput ∪ sback, tpre = tInput ∪ tback

— τ = τInput ∪ τOutput

— Epre
indirect = Eindirect ∩ Epre

The pre-condition for the contract is created in Definition 25. It consists of the
elements in the Input graph of the contract, as well as the backward links marked
pre and Output elements attached to those pre backward links. As well, the set of
indirect links in the pre-condition is restricted to those edges retained.

Definition 26. Contract Post-condition Matcher
We define c’s post-condition matcher, noted ⌈c⌉post , to be a typed graph four-tuple
⟨V post, Epost, (spost, tpost), τ, Epost

indirect⟩, where:
— V post = VInput ∪ VOutput

— Epost = EInput ∪ EOutput ∪ Ebackpost

— spost = sInput ∪ sOutput ∪ sback, tpost = tInput ∪ tOutput ∪ tback

— τ = τInput ∪ τOutput

— Epost
indirect = Eindirect

131

The post-condition for the contract is created in Definition 26. It consists of all
Input and Output elements from the contract, along with all backward links marked
as post.

4.4.2.2 Input-Output Model Satisfaction

Given the matchers for the contract defined in Definitions 25 and 26, we detail
here how an input-output model satisfies a contract. Due to the common structure
between contracts, path conditions, and input-output model, this satisfaction is based
on whether the contract’s matchers can be found in the input-output model using a
morphism.

Definition 27. Contract Satisfaction by an Input-Output Model
Let c be a contract in Contracts(tr) and iom be an input-output model in IOMs(tr)

for a transformation tr.
The input-output model iom satisfies the contract c, which is written iom >| c, iff

∃f, g morphisms such that:

(⌈c⌉pre →
f

iom ∧ ⌈c⌉post →
g

iom) ∧ (∀v ∈ V, e ∈ E : f(v) = g(v), f(e) = g(e))

The input-output model iom is not applicable for the contract c, written iom |> c,
iff ∄f . As well, the input-output model iom does not satisfy the contract c, written
iom >/c, iff ∃f but ∄g.

Definition 27 states that an input-output model satisfies the contract if the
contract’s pre-condition matcher and post-condition matcher can both be found in
the input-output model through two morphisms. Note that these morphisms must
also be consistent, such that the same element in the matcher must match to the
same element in the input-output model for both morphisms.

As well, the input-output model is said to not satisfy the contract if the f

morphism is found for the contract’s pre-condition matcher, but the g morphism
cannot be found for the contract’s post-condition matcher.

132

4.4.2.3 Path Condition Satisfaction

As there exists an infinite number of possible input-output models for the
transformation, it would be impossible to prove contracts by enumerating these
input-output models. Our technique thus relies on the finite set of path conditions
created for the transformation, such that we prove contracts on these path conditions
and extend the results to all input-output models.

Definition 28. Contract Satisfaction for a Path Condition

Let c be a contract in Contracts(tr) and pc be a path condition in
PathConds(tr) for a transformation tr.

Path condition pc satisfies contract c, written pc >| c, iff ∃f, g typed graph split
morphisms such that:

(⌈c⌉pre ↣
f

pc ∧ ⌈c⌉post ↣
g

pc) ∧ (∀v ∈ V, e ∈ E : f(v) = g(v), f(e) = g(e))

The path condition pc is not applicable for the contract c, written pc |> c, iff ∄f .
As well, the path condition pc does not satisfy the contract c, written pc >/c, iff ∃f
but ∄g.

The principle behind the satisfaction relation in Definition 28 is similar to the
satisfaction relation between a contract and an input-output model in Definition 27.
Whenever the contract’s pre-condition matcher is found in the path condition, then
satisfaction is based on whether the post-condition matcher of the contract is also
found.

Note that the morphisms are different in Definition 27 and Definition 28. When
checking for satisfaction of a contract by an input-output model, the morphisms f

and g are isomorphisms as defined in Definition 4. This forces the elements in the
contract to be found with their structure in the input-output model. However, when
checking for satisfaction of a contract by a path condition, we instead use a typed
graph split morphism, as defined in Definition 5 on page 37. This allows for the
elements in the contract to “split” over multiple elements in the path condition.

133

4.4.2.4 Satisfaction Example

For example, Figure 4.20 shows how the pre-condition of the Neg_-
DaughterMother contract is matched over an input-output model and a path
condition. The backward link in the Neg_DaughterMother contract is a post
backward link. Therefore, the contract’s pre-condition matcher consists of only
the Family element, the two Member elements, and the mothers and daughters
associations.

Figure 4.20a shows how the contract is satisfied by an input-output model. The
elements and associations in the contract’s pre-condition matcher are isomorphically
found in the input-output model.

In contrast, Figure 4.20b demonstrates the matching process of the contract’s
pre-condition matcher on a path condition using the typed graph split morphism.
Note how the edges in the contract are matched injectively to the path condition’s
edges, but the vertices in the path condition are matched to two vertices in the
input-output model. This allows the Family element in the contract’s pre-condition
matcher to ‘split’ over the two Family elements in the path condition.

As seen in Section 4.1.5, there is an abstraction relation between the input-output
model in Figure 4.20a and the path condition in Figure 4.20b. In Section 4.5, we
shall examine how all these morphisms commute to allow the result of proving a
contract on a path condition to extend to the abstracted input-output models.

4.4.3 Transformation Verification

Section 4.2 describes how the set of path conditions PathConds(tr) is built
for a transformation tr. With the definitions from the last section of how a path
condition satisfies a contract, we can then build two sets of results for each contract
c in Equations 4.7 and 4.8.

The first set satc is those path conditions which satisfy the contract, while
the second set nonsatc is those path conditions that do not satisfy the contract.

134

(a) Matching over an input-output model using an injective morphism.

(b) Matching over a path condition using the typed graph split morphism.

Figure 4.20 – Two different morphisms used when matching the Neg_-
DaughterMother contract.

These sets are returned from the contract proof algorithm as the result, and their
examination gives insight into the interactions of transformation rules.

sat c = {∀pc ∈ PathConds(tr) | pc >| c} (4.7)

nonsat c = {∀pc ∈ PathConds(tr) | pc >/c} (4.8)

135

Note that a third set notapplc of path conditions could be created out of those
path conditions that are not applicable for the contract. However, this set is not
relevant for verification by definition.

Additional Verification. Note that in our current implementation of the contract
prover, we have developed initial support for providing detailed information to the
user at the end of contract verification, as presented in Section 6.4.3. These analyses
allow the user to precisely determine in which cases the contract holds, and in which
cases it does not hold, such that they have assurance that the result is as intended.

As well, we also perform static checks on the transformation and the contract.
These analyses are discussed in Section 6.4, and involve determining whether required
contract elements exist in the transformation, and that rules are symbolically
executed an appropriate number of times for the contract to be proved. Our prover
can also report if the contract’s pre-condition matcher does not match over any path
conditions which indicates an invalid contract. These checks allow us to determine
if there are potential errors with either the contract or the transformation, and have
already led to a number of errors being resolved in our case studies (Chapter 7).

4.5 Validity of Contract Proof

Section 4.3 discusses the representation and coverage properties of the path
condition building technique, while Section 4.4 examines how contracts are proved on
those path conditions. This section takes the next step of proving that this contract
proof algorithm will produce valid results, as specified in Proposition 5.

Proposition 5. (Validity) The result of proving a contract on a path condition
represents the result of proving the contract on all input-output models abstracted
by that path condition.

Recall from Section 4.1 that pc ↦→ iom means that the path condition pc abstracts
the input-output model iom.

136

Let tr ∈ Transforms be a transformation and c ∈ Contracts(tr) be a
contract for tr. Then, ∀pc ∈ PathConds(tr), the following three implications must
be satisfied.

4.5.1 Implication 1 - Positive Satisfaction

∀iom ∈ IOMtr : (pc ↦→ iom ∧ pc >| c) =⇒ iom |> c ∨ iom >| c (4.9)

Equation 4.9 states the first implication, which is that if the path condition
satisfies the contract, then all abstracted input-output models must either be not
applicable to the contract, or they must satisfy the contract.

This can be proven by examining the commutativity of the contract proof
morphisms, which determine how path conditions and input-output models satisfy
the contract (Section 4.4.2.2 and 4.4.2.3).

Element Existence. The key insight to our argument is that the path condition
represents all the relevant elements present in those input-output models abstracted
through the abstraction relation (Section 4.1). The examples in Section 4.1.5 show
the representation between the elements in the path condition and in the input-
output model. In particular, the path condition will represent the application of the
same rules as the input-output model as was argued in Section 4.3.

The contract proof morphisms are checking whether the elements in the contract
are present in the path condition. Therefore, by composing the morphism between
the contract and the path condition, and the path condition and the input-output
model, we know that the elements are present in the input-output model. These
morphisms are shown for a concrete example in Figure 4.11 and Figure 4.20b.

Element Overlapping. Both the input and output elements in the input-output
model are guaranteed to be in the path condition through the abstraction relation.
However, there is an issue of determining whether the composition of morphisms
retains the structure required.

137

Note that the split morphism is used in matching the contract over the path
condition (Definition 28). This morphism allows one element in the contract to
match over two elements in the path condition. As well, the morphism used to
match path conditions over input-output models (Definition 20) allows two elements
from different rules in the Input graph of the path condition to match over the same
element in the input-output model.

This splitting and joining of elements from composing these morphisms means
that the exact structure present in the Input graph of the path condition may not
be present in the input-output model. As the matchers of the contract require an
injective matching (Definition 27), this means that there is a possibility that the
contract’s pre-condition matcher may not match on the input-output model, even if
the matcher did match on the path condition. However, this is acceptable, as this is
the definition of the input-output model being not applicable to the contract.

If the pre-condition matcher of the contract matches over the input-output model,
then the issue is whether the path condition has accurately represented the elements
present in the input-output model’s Output graph. The abstraction relation indicates
that the elements present in the Output graph of the path condition must be a subset
of the elements present in the input-output model, through a surjection relation from
the input-output model to the path condition. Thus, if the post-condition matcher
of the contract is satisfied by the path condition’s Output elements, it will also be
satisfied by the abstracted input-output model Output elements.

4.5.1.1 Negative Contract Elements

As discussed in Section 4.1, the abstraction relation allows for more input
elements in the input-output model than the path condition. This means that
other than the elements explicitly disallowed by the negative elements in the path
condition, any other element may be present in the input-output model.

This means that we cannot (currently) support negative elements in the contract.
If the contract contains negative elements, and it matches over the path condition,

138

it may still fail on an abstracted input-output model that contains those elements.
Thus, this first implication cannot be satisfied.

Future research will determine if there are cases where negative elements can be
allowed in contracts. We have some initial work in propositional joining of contracts
which does have a negation operator. However, the semantics of this operator means
that we are verifying that the elements are not always present in all abstracted
input-output models, as further explained in Section 4.6.2.

4.5.2 Implication 2 - Negative Satisfaction from Path

Condition

Equation 4.10 states the second implication where if the contract fails to hold on
a path condition, then the path condition abstracts an input-output model where
that contract will also fail to hold. Thus the path condition will serve as a counter-
example to the contract.

pc >/c =⇒
(
∃iom ∈ IOMtr | pc ↦→ iom ∧ iom >/c

)
(4.10)

The input-output model iom which fails the contract can be easily constructed
to be a duplicate of the path condition pc. That is, the input model of the input-
output model will be composed of the elements present in the input model of the
path condition such that the rules applied and the output elements will be the same
in both. This is allowed by the abstraction relation, as elements in different rules are
not required to overlap with each other.

In other words, contract satisfaction is specified as a morphism for both
satisfaction on input-output models (Definition 27) and for path conditions
(Definition 28). For input-output models, this is an injective morphism, while
for path conditions the contract’s matchers are matched by the typed graph split
morphism. This morphism is unique, but has the advantage that it can also act as
an isomorphism. Thus, if an input-output model is created as a copy of the path

139

condition, the contract’s matchers will fail to match on the input-output model as
well, generating the counter-example.

4.5.3 Implication 3 - Negative Satisfaction from an Input-

Output Model

Finally, Equation 4.11 states the third implication, where if the contract fails
to hold on a input-output model, then the contract must fail to hold on the path
condition which abstracts it.

This implication is imperative to ensure that contract verification can correctly
examine the set of path conditions to find counter-examples that reflect how the
contract holds on the infinite set of input-output models abstracted.

∀iom ∈ IOMtr : (iom >/c ∧ pc ↦→ iom) =⇒ pc >/c (4.11)

If the contract fails to be satisfied by an input-output model, then the contract’s
pre-condition matcher has matched over the input-output model, but the contract’s
post-condition has failed to match. We will argue how the path condition reflects
these matching results for the contract’s pre-condition matcher, and the post-
condition matcher.

Pre-Condition Matcher. The abstraction relation allows for the Input graph of
the input-output model to contain more elements than the input graph of the path
condition (Section 4.1.4.1). Therefore, it is possible that the pre-condition matcher
would match over the input-output model and not the path condition. However,
this failure of representation is solely due to our abstraction over the multiplicity of
rule application. As mentioned in Section 4.5.4, it is entirely possible that the path
conditions created have not applied a rule enough times to satisfy the contract. As
well, the contract may be matching over an element which is not present in any rule
in the transformation.

We handle these multiplicity and out-of-transformation concerns in a step prior
to path condition construction. A number of checks (detailed in Section 6.4) ensures

140

that rules are set to be symbolically applied the correct number of times, and that all
required contract elements are present in the transformation. Failure of these checks
indicates a situation where the user is required to intervene and fix the transformation
or contract.

During contract proving, we require that these concerns have been addressed.
Therefore, a path condition will exist with the proper rule multiplicity, that path
condition will abstract the input-output model in question, and the contract’s pre-
condition matcher will match on the path condition.

Post-Condition Matcher. If the contract’s post-condition matcher fails to match
on the input-output model, then this means there is an issue with finding the
traceability links or Output elements in the input-output model. The multiplicity
assumption defined above allows us to state that the number of traceability links
in the path condition will be a sufficient lower bound to those in the input-output
model. Thus, the issue is that the elements in the input-output model’s Output graph
could not be found.

If the output elements cannot be found in the input-output model, they will not
be present in the path condition through the surjection relation in the abstraction
relation. This surjection relation ensures that the Output elements in the input-
output model are a superset of those found in the path condition. Thus the failure
of the post-condition to match on the input-output model is reflected in the failure
to match on the path condition.

An example of this case can be seen in Figure 4.11 on page 102 and Figure 4.20b
on page 135. Note that the contract’s post-condition contains a Man element which
is not found in either the input-output model or the path condition. The abstraction
relation ensures that the Output elements in both structures consists of solely Woman
elements, and therefore the contract will not be satisfied by either structure.

141

4.5.4 Partitioning of Transformation Executions

As explained in Section 4.2.3.2, our abstraction of rule multiplicities implies a
partitioning of the input-output models by path conditions. In fact, path conditions
can abstract over the same subset of input-output models, which has consequences
for contract proving.

In particular, our contract proving technique must be careful about how this non-
unique abstraction relation and sensitivity to rule multiplicity affects the counter-
examples produced.

Let pcsuper be a path condition that abstracts one or more applications of rule A,
and pcsub be a path condition that abstracts two or more applications of rule A. In
this case, the input-output models that are abstracted by pcsuper are a superset of
those abstracted by pcsub due to this abstraction over the multiplicity of A.

The core issue discussed here is how to reason about the cases where the result
of proving a contract c on pcsuper and pcsub differs.

Recall that in the definition of a contract, we have disallowed negative elements,
which is motivated in Section 4.5.1.1. As well, DSLTrans rules cannot delete elements
when applied. Therefore, if a path condition satisfies a contract before application
of a rule, then it must still satisfy it after, as elements can only be added.

Thus the case of interest is when pcsuper does not satisfy c and pcsub does satisfy
c. This would be due to the addition of elements required by c which are produced
by the repeated application of rule A.

In this case, our contract proving approach would report pcsuper as a counter-
example to the contract and pcsub as a set of input-output models where the contract
is satisfied. This is correct reasoning, as the applications of rules represented by
pcsuper does not satisfy the contract, and further application of the rule is required.

This situation raises a key criticism of our approach. As discussed for path
condition construction (Section 4.2.3.2), our approach must determine the number
of times to symbolically apply each rule in the transformation such that a contract

142

can be proven. If a rule is not symbolically applied an appropriate number of times,
then a path condition that satisfies the contract will not be constructed.

Note that in our implementation of the contract prover, we provide an analysis
on the dependencies of rules and contracts to ensure that each rule is applied enough
times. This is discussed in Section 6.4.1.

4.6 Contract Expressiveness

This section discusses the three elements of the contract language. The first
element is a small language for creating and matching attribute values. The second
element is a contract itself comprised of a pre-condition/ post-condition pair, which
is here termed an atomic contract. The third element is a set of propositional logic
constructs which can be used to compose atomic contracts into larger contracts.

This section also presents example contracts using the case studies examined
in Chapter 7. In particular, we present examples for attribute checking, the
propositional logic constructs, and a preliminary classification of contracts by
intention.

4.6.1 Attributes

As the DSLTrans language offers the ability to set (String) attribute values for
the output elements, the contract language has constructs to construct and match
these values. Modelled on the constructs available in DSLTrans (Section 2.2.5 on
page 30), the contract language can refer to attribute values, concatenate values,
and employ atoms (literals).

For example, the MotherFather contract for the Families-to-Persons transforma-
tion in Figure 7.10 on page 265 contains attribute value checks in the post-condition.
These checks determine if the full name of the produced Person elements has been
correctly created from the last name of the Family and the first name of the Member.

However, there is a concern in how the matching of the contract’s attribute-setting
equations is performed over a path condition. Recall that path conditions represent

143

the application of a set of rules on an arbitrary input model. Therefore, there are no
concrete values given to the firstName or lastName elements in the path condition
when the contract is matched.

As described in Section 3.2.3 on page 59 and touched upon in Section 4.1.6, we
rely on the presence of an attribute solver which is able to resolve whether or not the
attribute equations match. Our current implementation of this solver is discussed in
Section 6.2.2 on page 201.

In the case of the MotherFather contract, the pattern equation is modelled as
a concatenation of an attribute reference to the firstName value and a reference to
the lastName value. The equation which is placed on the Member elements by the
symbolic execution of the Father2Man or Mother2Woman rules is similar. Therefore,
the solver must be able to parse these equations and determine that they both contain
the same attribute references.

Note that to allow for more flexibility with the value of an attribute, a
Wildcard element also exists within the contract language. This Wildcard element
is demonstrated in the AssignmentInstance contract (Figure 7.16) for the mbeddr
transformation, where it is used to check whether the name of various elements ends
with particular strings. In our solver implementation, these wildcards are resolved
with regular expressions which are able to match on a non-empty set of characters.

4.6.2 Propositional Logic and Pivots

The thesis of Selim [135] defined propositional contract logic constructs (And, Or,
If-Then, and Not), along with pivots which can be used to enhance the expressiveness
of the contract language. These constructs are heavily used in the GM-to-AUTOSAR
and UML-to-Kiltera case studies (Sections 7.2 and 7.3).

Note that this thesis offers an extension over that earlier work, in that we have
redefined the semantics of these constructs to include the explicit result of a contract’s
pre-condition not being found in a path condition, making the contract not applicable
for that path condition. This allows for the easy division of path conditions into the
success and failure sets given by the contract proving technique (Section 4.4.3).

144

As well, we clarify the semantics of the Not construct, which has unintuitive
semantics. Recall that the success of a contract means that the contract’s elements
are always present in the path condition. Therefore, the negation of that contract
succeeds when the elements are not always created.

Contract Satisfaction. Section 4.4.2.3 on page 133 formalizes the satisfaction of
a contract over a path condition. That is, whether the elements in the contract are
present in the path condition.

Table 4.2 repeats the three possibilities for when a contract is matched over a
path condition. As well, we introduce new symbols to be employed in the truth
tables in this section, which have been selected for visual clarity.

Result Symbol Description

Not Applicable ∅ The path condition is not applicable to the contract
when the pre-condition of the contract does not
match.

Does Not Satisfy × The path condition does not satisfy the contract
when the pre-condition matches, but the post-
condition does not.

Satisfies ✓ The path condition satisfies the contract when
the pre-condition and the post-condition of the
contract both match over the path condition.

Table 4.2 – Possibilities for contract proof on a path condition.

Atomic Contract. In the context of our propositional logic, contracts are referred
to as Atomic Contracts when they contain no propositional constructs. For example,
all contracts for the Families-to-Persons transformation (Section 7.4) are Atomic
Contracts, such as the AssocCity contract in Figure 4.21.

145

Figure 4.21 – AssocCity contract for the Families-to-Persons transformation.

In the case studies in Chapter 7, contracts are presented along with the path
conditions which satisfy and do not satisfy them.

Logic Constructs. Table 4.3 details the constructs available in our contract
language, along with a brief informal description.

Construct Description

And Both sides must satisfy for the construct to satisfy

Or Either side must satisfy for the construct to satisfy

If-Then If the first side is not satisfied, then the construct
does not apply

Not The results of contract satisfaction are reversed

Table 4.3 – The propositional logic operators available in the contract language.

Our propositional logic constructs are created in a recursive fashion. For example,
the left-hand side of an And construct may be any other construct including another
And construct. The terminal construct of this recursion is the Atomic Contract.
Based on how each terminal Atomic Contract is satisfied by the path condition in
question, we then build up our propositional logic with the following truth tables.

146

And Construct. The And construct is satisfied by a path condition if both sides
of the construct are satisfied by that path condition. Note that this construct is
commutative with respect to the two contracts on either side, and the sides are
therefore denoted A and B instead of LHS and RHS.

Side A Side B Result

✓ ✓ ✓

✓ × ×
✓ ∅ ∅
× × ×
× ∅ ×
∅ ∅ ∅

Table 4.4 – Truth table for the And construct.

An example for this construct can be seen in the M6 contract (Figure 4.22) for the
GM-to-AUTOSAR transformation. This contract is of the form IF M6_if, THEN
M6_then1 AND NOT M6_then2, where the If-Then and Not constructs are used
to join three Atomic Contracts.

Figure 4.22 – M6 contract.

In terms of the And construct, the right-hand side of the M6 contract will only
be satisfied when the M6_then1 contract is satisfied by the path condition, and the
M6_then2 contract is Not satisfied by the path condition. If either M6_then1 or
M6_then2 is not applicable, then the right-hand side cannot be satisfied.

147

Or Construct. The Or construct is satisfied by a path condition if either side of
the construct is satisfied by that path condition. Like the And construct, the Or
construct is also commutative.

Side A Side B Result

✓ ✓ ✓

✓ × ✓

✓ ∅ ✓

× × ×
× ∅ ∅
∅ ∅ ∅

Table 4.5 – Truth table for the Or construct.

The MM10 contract, described in the thesis of Selim [135], contains an example
of the Or construct.

If-Then Construct. The If-Then construct is satisfied by a path condition if both
the left-hand (LHS) and right-hand (RHS) sides are satisfied by that path condition.
If the LHS is satisfied, but the RHS is not, then the If-Then construct is not satisfied.
Otherwise, the construct is not applicable.

Note that a dash – for the RHS means that the result does not matter.

LHS RHS Result

✓ ✓ ✓

✓ × ×
✓ ∅ ×
× - ∅
∅ - ∅

Table 4.6 – Truth table for the If-Then construct.

This If-Then construct does not correlate to a logical implication construct, as a
failure to match the LHS means that the If-Then construct does not apply.

148

Figure 4.23 – Entry Content contract for the RSS2ATOM transformation.

There are multiple examples of this construct in Chapter 7. For example,
the EntryContent contract for the RSS2ATOM transformation in Figure 4.23
demonstrates how this construct can be used to check statements of the form if
an element exists, then that element is connected this way.

Note that to ensure that the element mentioned is the same in both the left-hand
and right-hand side of the If-Then construct, it is necessary to use pivots.

Pivots. The EntryContent contract for the RSS2ATOM transformation also
demonstrates the use of pivots within contract constructs. These pivots are modelled
as an association between contracts, marked with the text equals 1.

These pivots represent elements that must be the same in both contracts for
the construct to be satisfied. For example in Figure 4.23, the Entry element must
be successfully matched by both the left-hand and right-hand side of the If-Then
construct, and that matching must be on the same element in the path condition.

This resolution of pivot values is possible because the matching procedure returns
a set of possible matches. Within our contract prover implementation, we then have

1. Note that in the thesis of Selim [135], these pivots were modelled as attributes in the elements.
However, inconsistencies in naming the pivots led to faulty contracts. These errors are avoided in
our current implementation approach as pivot values are automatically generated in the elements
connected to the equals association.

149

a resolver which determines if the pivots are compatible for the And and If-Then
constructs, and merges the sets of pivots for the Or construct.

Not Construct. The Not construct reverses the satisfiability of the contract against
the path condition.

Value Result

✓ ×
× ✓

∅ ∅

Table 4.7 – Truth table for the Not construct.

As explained in Section 4.6.3.2, contracts may employ the Not construct to
check for the multiplicity of elements. For example, the M6 contract in Figure 4.22
has the informal statement ‘If a System element exists in the output model, then
that System element should be connected to a SystemMapping element, and not
(always) connected to two SystemMapping elements’. Note the always qualifier in
that statement, which can lead to confusion.

Recall the discussion in Section 4.5.1.1 about forbidding negative elements from
appearing in a contract. The reason is that the abstraction relation (Section 4.1)
allows a path condition to abstract over a transformation execution which contains
more input elements and rule executions. Therefore, it is impossible to say which
elements will not be present in the input-output models abstracted by a path
condition, only which elements will be present.

This representation may lead to misunderstanding of what a contract represents
when the Not construct is used. When a contract is satisfied by a path condition, it
is because the contract’s elements are present in the path condition. The negation
of this statement is that the elements are not present in the path condition as it is
represented. This is not the same as guaranteeing that the elements are not present
in any abstracted transformation executions.

150

For example, the third part of the M6 contract checks for the presence of two
SystemMapping elements connected to a System element. If these elements are found,
then the Not construct will not be satisfied. If the elements are not present, then
the Not construct will be satisfied. However, as the path condition only represents
how many SystemMapping elements must be present in that path condition, the Not
construct can only fail if two SystemMapping elements must be present.

Therefore, the full contract checks whether the SystemMapping element is
connected to at least one SystemMapping element, and not (always) connected to
two SystemMapping elements.

4.6.3 Types of Contracts

The thesis of Selim [135] partitions the intention of contracts into four types:
rule reachability contracts, multiplicity invariants, syntactic invariants, and pattern
contracts. This section will briefly discuss each type.

4.6.3.1 Rule Reachability

These rule reachability contracts determine whether a rule has been symbolically
applied. The application of each rule is crucial to proper creation of the set of
path conditions, as the contract or the application of other rules may depend on
its application. The absence of a rule’s application indicates either an error in the
transformation or the requirement that a rule should be symbolically applied more
than once. This is discussed in Section 4.2.3.2 and Section 4.5.

However, during development of our contract prover, it was found to be more
effective to have this check performed during path condition construction. At the
end of every layer, the set of path conditions is examined to ensure that every rule
in the transformation from the previous and current layers is present in at least one
path condition. If not, an error message is raised.

Thus, this type of contract is now automatically checked during path condition
construction as described in Section 6.4.2 and no contract language construct is
provided.

151

4.6.3.2 Multiplicity Invariants

Contracts can be used to express multiplicity invariants for either the source or
target meta-model. This is done using the propositional logic and pivots from the
contract language.

For example, as discussed above, the M6 contract for the GM-to-AUTOSAR
transformation in Figure 4.22 on page 147 has the informal statement ‘If a System
element exists in the output model, then that System element should be connected
to a SystemMapping element, and not (always) connected to two SystemMapping
elements’.

This contract is built using an If-Then construct, an And construct, and a Not
construct. However, as previously described, the abstraction of our path condition
construction means that the contract cannot guarantee the strict absence of those
elements, only that they will not always be created.

Our path condition construction approach also has consequences in terms of
multiplicity in that rules are not symbolically applied an infinite number of times.
As discussed throughout Section 5.3.4, the number of times a rule will symbolically
applied must be set at the beginning of the generation process. If the rule is not
set to apply a sufficient number of times, then multiplicity contracts may fail to be
applicable or counter-examples may fail to be detected.

Note that our implementation of the contract prover now includes a mechanism
for determining if rule application needs to be repeated, as discussed in Section 6.4.1.

4.6.3.3 Syntactic Invariants

Syntactic invariant contracts check whether the path condition is well-formed
with respect to the input or output syntax. These contracts therefore have either an
empty pre-condition or an empty post-condition.

An example of this type of contract is the SS1 contract in Figure 4.24 for the
UML-to-Kiltera transformation. The informal statement for this contract is ‘if there
is an Inst element, then that Inst element has a similar name to a ProcDef element.’
The defining feature making this contract a syntactic invariant is that this contract

152

Figure 4.24 – SS1 contract.

only constrains elements in the output model of the path condition, without making
reference to the input model.

4.6.3.4 Pattern Contracts

The final category of contracts described by Selim are pattern contracts. In these
contracts, the elements in the input model are related to elements in the output
model. Put another way, these contracts are of the form, ‘If these elements exist in
the input model, then these elements must exist in the output model.’

Thus, the intention of these contracts is to verify that the rules in the
transformation are interacting in a valid and predictable way to produce the correct
output elements. This verification is difficult to perform from manual inspection of
the rules themselves.

All the contracts presented in Section 7.4.1 for the Families-to-Persons
transformation are examples of pattern contracts.

4.6.4 Limitations

Section 7 presents contracts for each of our case studies, which demonstrates their
use in understanding and detecting errors in a transformation. However, there are a

153

number of significant limitations to our contract language, mainly due to its organic
creation during our case studies.

First, our contract language is currently limited to represent only structural
conditions and not arbitrary expressions. Thus, it is much less powerful than other
constraint languages such as OCL [170]. In particular, it is impossible to represent
such constructs as sets operations, non-string attributes, or helper functions in our
contract language. The lack of a for-all operator means that our contract language
may not even be as powerful as first-order logic [71],

The nature of the symbolic execution approach also restricts the contracts which
can be written. As discussed in Section 4.6.3.2, the contract prover symbolically
executes rules a particular number of times. A contract may be incorrectly satisfied
or not satisfied based on this limit, and the user must be extremely careful about
the use of multiplicity invariants and the Not operator.

Another restriction on our contract language imposed by the symbolic execution
approach is the lack of validation of input or output attributes. As the contract prover
operates on the transformation specification, without a defined input model, path
conditions can only refer to abstract input attributes. Therefore, it is impossible
to write a contract to validate that (as an example for the Families-to-Persons
transformation) all Family elements have a lastName that starts with a capital letter.

The notion of time or order is also difficult to express in our contract language,
if not impossible. For example, we attempted to design a contract for the mbeddr
transformation which would determine in which order elements were connected in the
output model. However, as the semantics of DSLTrans rules means that all output
elements are created at essentially the same time (Section 3.4.1), there is no order
to how connections were made.

One way of approaching the notion of time or order is to have contracts that are
checked at the end of each layer during path condition construction, rather than once
the entire transformation has been symbolically executed. However, it is unknown
how this would meaningfully increase the expressibility of the contract language.

154

We note that it may be useful to determine how intermediate structures are built,
but this is less useful when element deletion is not represented. As well, there is a
performance cost, as intermediate contracts would have to be proved against every
path condition.

Another avenue to explore in future work is the integration of constructs
from other property languages. In particular, the property language of the
ProMoBox approach [103] employs temporal patterns which express constraints
such as eventually or until. It is a future research question whether these types
of properties are relevant to the translation transformations which our approach
verifies, and how our approach can verify them.

While our contract language allows for the definition of a wide variety of structural
conditions, the limitations discussed here do restrict the expressibility. Future
research into contract expressibility will attempt to align (or replace) our approach
with that of Guerra et al. [69], where the authors use PaMoMo as the basis for their
contract language. This specification allows the authors to define a variety of visual
contracts to express both negative and positive contracts in an elegant approach.

4.7 Conclusion

This chapter has presented our technique for proving pre-condition/ post-
condition contracts on a DSLTrans transformation. This technique relies on the
notion of symbolic execution, which creates path conditions which represent valid
combinations of rules during a transformation execution. This representation is
through the abstraction relation (Section 4.1), which defines how the elements in a
path condition imply the existence of elements in an input-output model pair.

The path condition generation process is discussed in Section 4.2. This process
moves through the layers in a transformation to build the path conditions by resolving
the dependencies present between path conditions and rules, and combining them in
different ways. In this thesis, the path condition generation process is placed in the
double-pushout approach. This approach allows the creation of mass productions

155

for rules and layers, which simplifies the explanation considerably. As well, this
approach allows the integration of additional constructs, such as indirect links,
negative elements, and the representation of multiple applications of each rule in
the path condition. These constructs are critical to define as they have consequences
for contract proving.

This chapter also presented our technique for matching contracts on path
conditions (Section 4.4), which is done through the typed graph split morphism.
This morphism allows for a node in the contract to be ‘split’ over multiple nodes in
the path condition. The use of this morphism allows our technique to forego the use
of explicit representation of all nodes merging, which was seen in past work to be
computationally expensive.

The abstraction relation allows the results of contract proof on a path condition
to be correctly extended to the input-output models represented (Section 4.5). Our
technique can prove contracts on a finite set of path conditions, and obtain the set
of path conditions where the contract is satisfied, and path conditions where it is
not satisfied. These path conditions can then be examined to better understand the
transformation.

Finally, this chapter discussed the constructs available in the contract language
in Section 4.6. Examples are provided from the case studies we examine in this thesis
to illustrate the use of each construct.

156

Chapter 5

SyVOLT Design and Work-flow

This chapter discusses the SyVOLT tool, which is our implementation of the
symbolic execution process mentioned in Section 4.2 and the contract proving
approach discussed in Section 4.4.

The guiding principle of the Modelling, Design, and Simulation Lab of McGill
University (msdl.cs.mcgill.ca), where our transformation verification research
originated, is that all tools and processes are explicitly modelled at multiple levels
of abstraction with multiple formalisms. This complexity management is the driving
force of multi-paradigm modelling (MPM) [104, 60], which is an approach to leverage
numerous modelling languages and tools to decompose complex problems. This
principle ensures that essential complexity is the main object of software development
and that accidental complexity is mitigated as much as possible.

This chapter explains the work-flow of the SyVOLT tool, highlighting where
the principles of multi-paradigm modelling have been applied. For example,
Section 5.1 provides an overview of our tool in graphical form as a Formalism
Transformation Graph and Process Model (FTG+PM). This diagram allows the
succinct representation of the work-flow of the tool, as well as the myriad of
formalisms that are employed.

The FTG+PM also relates how many of the model manipulations within the
SyVOLT tool are encoded as model transformations. In particular, the underlying

157

msdl.cs.mcgill.ca

representations of the artefacts (DSLTrans transformations, the SyVOLT contracts,
and the path conditions produced) are all modelled explicitly and manipulated by
the T-Core framework [145] (Section 5.3.2). Initial research presented by Lúcio
and Vangheluwe [99] explains how we use model transformations to verify model
transformations.

We present these details of the prover for a variety of reasons. First, this provides
groundwork for the discussion of algorithmic optimizations in Chapter 6, which are
a contribution of this thesis. Second, we aim to promote the use of model-driven
development within modelling tools, which increases modularity, and with proper
formalization our algorithms and optimizations can be transferred to other model-
manipulating tools.

As an example of the benefit of this approach, the modularity of the SyVOLT
prover allows us to easily create new front-ends to build transformations and
contracts for verification (Section 5.2). As an example, we have created a
higher-order transformation to generate transformations automatically from ATL
(Section 5.2.1), as well as graphical editors in the Eclipse (Section 5.2.2) and MPS
environments(Section 5.2.3).

These front-ends allow for the user to easily create DSLTrans transformations
and contracts for verification. The SyVOLT tool implementation (Section 5.3) is
then started from within the front-end. The results produced are then returned to
the user, allowing quick iteration of transformations and contracts.

Figure 5.1 on the following page shows a high-level overview of the architecture
of SyVOLT. The grey boxes represent the top frontends and the backend.

Thus, this chapter answers our fourth research question: What is the design and
work-flow of a contract verification tool?

5.1 FTG+PM

The SyVOLT contract prover operates on many different artefacts (matchers,
rewriters, meta-models) in a variety of formalisms (Ecore, Himesis) as each

158

Figure 5.1 – Overview of the front-ends and back-end of the SyVOLT architecture.

representation has a specific focus. To represent this diversity and establish a
user’s work-flow to prove contracts, we present in Figure 5.2 a graphical depiction of
SyVOLT’s operation.

The Formalism Transformation Graph and Process Model (FTG+PM) [95] has
the aim of representing the entirety of the model-driven engineering process by a)
representing the domain-specific formalisms and the transformations between them,
and b) representing the process and data flow from the start to the end of the
modelling activity. The intention is that by explicitly modelling and uniting these
flows, users can better understand the system under study. As well, the diagram
itself could be treated as a model for the purpose of automation. A case study for
the automotive domain is presented in [106].

The top portion of Figure 5.2 is the Formalism Transformation Graph (FTG).
This graph represents the formalisms present in the process as white labelled
rectangles, while the transformations between them are represented as labelled ovals.
Note that here the term transformations is used rather loosely, as it may include not

159

Figure 5.2 – The FTG (top) and PM (bottom) of the contract proving process.

160

only a model-to-model transformation, but also model-to-text transformations, a
manual editing activity, or other model changes. The transformations are divided
into two colours: the grey ovals represent manual activities that need human
intervention, while the yellow ovals are automated transformations. The arrows
between the formalisms and the transformations represent the formalisms that the
transformations takes as input instances and produces as output instances.

The Process Model (PM) on the bottom of Figure 5.2 precisely specifies both
the process and data flow of the contract proving activity using the UML Activity
Diagram 2.0 language [115]. For the process flow, the rounded rectangles represent
executions of the transformations with the same label in the FTG side of the
figure. As in the FTG, grey symbols represent transformations requiring human
intervention, while yellow symbols represent automatic transformation execution.

Control flows along the thick black lines, where it may fork and join at thin black
bars. As well, diamonds represent decision points in the activity. Along with the
control flow, the data flow is also represented by the PM. Thin blue lines represent the
instances of the formalisms which are produced and consumed by the transformations
in the activity.

The SyVOLT contract prover currently has three components: an Eclipse front-
end, a MPS front-end. and a Python back-end. To represent these three components,
we have separated both the FTG and the PM in Figure 5.2 into three marked sections.
A further explanation of the technology, reason for adoption, and images for both
front-ends is available in Section 5.2.2 and Section 5.2.3.

Transformation and Contract Construction. We begin our explanation of the
FTG+PM in Figure 5.2 with the PM side on the bottom. First, the user must decide
if they wish to convert an ATL transformation [3] into the DSLTrans language using
a higher-order transformation (Section 5.2.1). This automatic transformation takes
as input a transformation written in the ATL language, and produces a DSLTrans
transformation.

161

The second decision for the user is whether they wish to edit the transformation
and contracts within the Eclipse environment or within the MPS environment. Note
that the user can also decide to export the transformation and contracts from Eclipse
to MPS at a later time, but that the reverse direction is not implemented at this
time.

The user then works within the Eclipse or MPS environments to create or edit
the transformation and contract artefacts as they wish. In Eclipse, users are also
able to directly edit the input and output meta-models files, which are stored as
Ecore files [141]. On the MPS side, a transformation is available to import Ecore
files as a language within the MPS editor so that this language can be edited as
desired. The advantage of this approach is that the transformation and contracts are
then strongly-typed by the meta-models, which has been instrumental in detecting
a number of errors with our case studies. This is further discussed in Section 5.2.3.

Following the editing activities, the user can then begin the contract proving
process itself. On the Eclipse side, the transformation and contracts undergo a
transformation using the Eclipse Generation Language (EGL) [6, 130] which produces
the required artefacts for the Python back-end. In MPS, the model-to-text language
is integrated directly into the specifications of the transformation and contract
languages.

SyVOLT Tool Implementation. The SyVOLT tool is represented by the grey
container at the bottom of both the FTG and PM in Figure 5.2. Note that all
artefacts and formalisms in the back-end are implemented in Python code.

The generation processes from the front ends will produce the two types of
artefacts required for the SyVOLT back-end. The first type is a configuration file,
which contains details about the proving process such as the transformation’s layers
and the contracts to be proved. The second type is a set of attributed typed graphs
to represent the rules in the transformation and the contracts. These typed graphs
are stored in the Himesis format (Section 5.3.1), which efficiently encodes the input,
output, and linking structures that we use throughout the proving process.

162

Our implementation requires the use of T-Core matchers and rewriters
(Section 5.3.2), which are transformation language primitives used to detect when
rules can combine with other rules and to create the typed graphs representing
the path conditions themselves. The PyRamify transformation (Section 5.3.3)
creates these matchers and rewriters directly from the Himesis representation of
the transformation rules.

Next, the path condition construction process (described in detail in Section 5.3.4)
will operate on the Himesis typed graphs, the configuration file, and the T-Core
matchers and rewriters to generate the set of path conditions for the transformation.
Our technique can then find counter-examples by applying the matchers for the
contracts and producing those path conditions which succeed or fail for each contract.
Finally the contract debugger transformation produces debugging output for the user
to understand the counter-example results. At this point, the user may then modify
the transformation or contracts as needed to iterate on this process.

5.2 Transformation and Contract Construction

The starting point for operating our transformation verification tool is the
construction of the DSLTrans transformation and the contracts to be verified on that
transformation. As shown in Figure 5.2. there are numerous ways to accomplish this.
In this section, we will describe a) our approach to converting transformations from
the Atlas Transformation Language (ATL) [74] to DSLTrans using a higher-order
transformation, b) our plug-in developed for the Eclipse ecosystem [5], and c) the
development of the DSLTrans and contract language within the Meta-Programming
System (MPS) [8]. Included in each section is a discussion of the technologies involved
and the reason for developing that approach.

The Eclipse and MPS plug-ins are used to interface with the back-end of the
SyVOLT tool, which is discussed in Section 5.3. Generation scripts in both plug-ins
are available to automatically produce the artefacts required and begin the contract
proving process.

163

5.2.1 Higher-order Transformation from ATL

A core benefit to employing a model-driven engineering process is the ability to
develop higher-order transformations which take as input one modelling language
and produce another [28, 164]. The usability of our tool has been extended by
defining one of these higher-order transformations to one of the most prominent
model transformation languages in the model-driven engineering community, which
is the Atlas Transformation Language (ATL) [3, 74]. In fact, ATL has become a
de-facto standard for implementing model transformations. The success of ATL is
due to many factors: the flexibility and expressiveness of the language, support for
the main meta-modelling standards, high usability, excellent tool integration with
the Eclipse environment, and active research and development communities.

It is understood by the ATL community that improving the verification
methods available would allow more widespread adoption into industrial and
academic practices. To this end, we have previously developed a technique to
convert declarative ATL model transformations 1 into an equivalent DSLTrans
version [113]. This conversion process is possible through the definition of a higher-
order transformation which is also written in ATL. The produced transformations
are then available for further editing or proving activities in either the Eclipse or
MPS front-ends.

This section will briefly describe ATL by presenting selected rules from the ATL
version of the Families-to-Persons transformation, which is discussed in Section 7.4.
Following this, we will briefly discuss the higher-order transformation itself and the
research questions which have been answered by our previous works.

5.2.1.1 Atlas Transformation Language

The ATL transformation language is similar to other transformation languages,
in that a transformation is composed of rules which match elements in an input

1. Declarative transformations lack the imperative constructs (assignments, loops, if statements)
discussed in the ATL User’s Guide: https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_

Language#ATL_imperative_code

164

https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language#ATL_imperative_code
https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language#ATL_imperative_code

model and produce or rewrite elements in an output model. However, ATL is far
more expressive than the DSLTrans language.

For example, the DSLTrans language is strictly an out-place transformation
language, meaning that the transformation language cannot change the input
model. ATL does not have this restriction, making it possible to write simulation
transformations. Another difference is that ATL is neither layer-based or guaranteed
to terminate like DSLTrans (Section 3.4). Finally, ATL includes the Object
Constraint Language (OCL) [170] to define set operations and complicated traversals
when matching and setting attribute values.

Listing 5.1 on the next page shows three selected rules from the ATL version
of the Families-to-Persons transformation. As ATL operates on typed graphs, the
input and output meta-models Families and Persons are specified at the top of the
transformation.

The matching portion of an ATL rule is located under the from text, and is
called the in-pattern. It contains in-pattern elements along with an optional filter
on attributes. These in-pattern elements will match over the elements in the input
model as long as they satisfy the filter. The rewriting portion of the rule is under the
to text, and this out-pattern contains the out-pattern elements which will be created
or modified in the output model. These out-pattern elements have bindings, which
are used to initialize the attributes or references of the the out-pattern elements.

For example, the Country2Community rule in Listing 5.1 matches over a Country
element from the Families meta-model, and produces a Community element from the
Persons meta-model. On the output model, there are a number of references created.
The townHalls references are set from the later execution of a rule which creates
TownHall instances from City elements. The set of persons references are created
by performing the union of four collect operations, which collect all fathers, mothers,
daughters, or sons who belong to Families in the matched Country. Finally, the
associations references are set from the Association produced from those Companies
which are in Cities belonging to the matched Country.

165

Listing 5.1 – Families-to-Persons ATL Transformation
1 module Families2Persons;

2 create OUT:Persons from IN:Families;

3

4 rule Country2Community { --R1

5 from

6 c: Families!Country

7 to

8 cmm : Persons!Community (

9 townHalls <- c.cities ,

10 persons <- c.families ->collect(f|f.fathers),

11 persons <- c.families ->collect(f|f.mothers),

12 persons <- c.families ->collect(f|f.sons),

13 persons <- c.families ->collect(f|f.daughters),

14 associations <- c.cities ->collect(cty|cty.companies

15 -> collect(cmp|Tuple{ct=cty ,cm=cmp})) -- navigation

16)}

17

18 rule Father2Man { --R2

19 from

20 p : Families!Parent

21 (p.family.fathers.includes(p)) -- filter

22 to

23 m : Persons!Man (

24 fullName <- p.firstName + " " + p.family.lastName -- attribute setting

25)}

Notable in the Father2Man rule is the attribute setting of the fullName on the
last line of Listing 5.1. The new value of the attribute is set as the concatenation of
the firstName of the person and the lastName of the family of the person.

Another important construct in ATL (which is not shown here) is a call to a lazy
rule, which can perform complicated computations similar to a function call in a
programming language.

5.2.1.2 Higher-order Transformation

As ATL transformations conform to the ATL language, it is possible to
manipulate them by means of a higher-order transformation (HOT) [28]. Figure 5.3
shows the meta-models involved in this operation. Dashed arrows represent a

166

‘conforms to’ relationship, while solid arrows represent the input and output of the
transformation. On the left is the ATL transformation which conforms to the ATL
meta-model which contains the constructs in the ATL language. The higher-order
transformation, which also conforms to the ATL meta-model, is able to parse the ATL
transformation and create an equivalent DSLTrans transformation. This DSLTrans
transformation conforms to the DSLTrans language, which contains concepts such as
layers, rules, MatchModels, and so on.

Figure 5.3 – Conformance and data relationships between a ATL model
transformation and the higher-order transformation which produces a DSLTrans
version of that transformation.

The higher-order transformation matches elements in the ATL transformation
such as filters, OCL expressions, and lazy rules, and produces the equivalent versions
in the DSLTrans specification. Examples of these conversions are seen in Figure 5.4.
In Figure 5.4a, the ATL code is selecting those City and Company elements where
the Company is found in the City. Figure 5.4b shows how OCL constraints can
be used to select elements. In that example, the fathers of a Family element are
selected.

Further details on these example are found in our previous work [113], including
a detailed description of the conversion of the Families-to-Persons transformation
from ATL to DSLTrans.

167

(a) CityCompany2Association match graph

created from filter elements.

(b) copersons[..] rule created from OCL

bindings.

Figure 5.4 – Examples of converting ATL rules to DSLTrans match elements.

5.2.1.3 Transformations Produced

For our research on converting ATL transformations to DSLTrans, we were
guided by two important research questions. The first was, Is our higher-order
transformation technique applicable to complex ATL transformations?, while the
second was, does the version of the transformation produced by our higher-order
transformation differ significantly from a hand-built transformation?.

For the first research question, we answered in the affirmative as we have
conversion results for a variety of transformation and meta-model sizes [113]. In
fact, the higher-order transformation is able to convert many ATL transformations,
given a short list of restrictions: transformations must be terminating, confluent,
declarative. out-place, not use unique lazy rules, and not have complex attribute
setting.

Note that these restrictions are not significant for the domain of translation
transformations. For example, using the declarative part of ATL normally results
in clearer, more readable and more maintainable model transformations than when
the imperative part of the language is used. As well, the out-place use of ATL is
significantly more common [151] than the in-place refining mode [150].

We answered the second research question in the negative, based upon our
case studies. With the permission of our collaborators at Queen’s University, we

168

were able to convert the ATL representations of the GM-to-AUTOSAR and UML-
to-Kiltera transformations to DSLTrans. Note that these are the transformation
versions presented in Section 7.2 and Section 7.3. These automatically-converted
transformations were compared to the hand-built versions presented in the previous
work of [137] and [135]. The produced transformations were very similar, and
produced identical verification results for the contracts. Thus, we declared that the
higher-order transformation can produce DSLTrans transformations of equivalent
quality to hand-built transformations.

In the future, we intend to integrate the higher-order transformation more closely
within the DSLTrans front-ends in Eclipse or MPS, such that it is automatically
invoked whenever the user wishes to load an ATL transformation. This would
increase usability and adoption of our tools.

A second direction of research is to improve the higher-order transformation
itself. Currently, the higher-order transformation is quite complicated and consists
of 2257 lines of ATL code. This complexity makes it extremely difficult for a user
not versed in ATL to maintain, and precludes the higher-order transformation from
being transformed itself into a DSLTrans transformation.

5.2.2 Eclipse Plugin

This section describes the plugin for the Eclipse environment which allows the
user to build transformations and contracts using a graphical editor, and then begin
the contract proving process.

The Eclipse platform offers a rich ecosystem with opportunity for customization
and a vibrant developer community [5]. As well, there are multiple
model transformation tools offered as plugins, including ATL [3], a DSLTrans
transformation engine [21], the Epsilon modelling framework [6], VIATRA [25] and
EMF-IncQuery for performing model queries [153]. These tools benefit from being
integrated with the Eclipse Modelling Framework (EMF) [141], which is a structured
meta-model for the Eclipse environment such that multiple tools and work-flows can

169

build on a common modelling and code generation framework and inter-operate more
freely.

In collaboration with Cláudio Gomes from the University of Antwerp, we have
developed a graphical interface to build transformations and contracts directly within
the Eclipse editor, as seen in Figure 5.5. On the right-side side of the editor is the
palette, which contains the objects and connections used within the artefacts. These
elements can be created and edited freely on the canvas.

(a) Families-to-Persons transformation. (b) MotherFather contract.

Figure 5.5 – Editor for DSLTrans transformations and contracts within Eclipse.

5.2.2.1 Technology

The technology behind the plugin is the Graphical Modelling Framework
(GMF) [7]. This framework allowed us to quickly create visual editors for the
transformation and contract language, based on model representations of those
languages built using the EMF. With this plugin, transformations and contracts
can be quickly created.

170

However, a criticism of this effort is that the editors lack polish, and no
consistency checks are made between the artefacts and the input and output meta-
models. This lack of consistency led to a number of errors in our case studies,
such as the name of an element being slightly different in the contract versus
the transformation. In this case, the contract could not be satisfied by any path
condition. In contrast, our plugin for the MPS platform (Section 5.2.3) has these
consistency checks, which we note to improve the creation time and decrease errors
for transformations and contracts.

5.2.2.2 Artefact Generation

Once the transformation and the contracts have been created by the user the
generation of artefacts for the contract prover back-end (Section 5.3) can begin. This
process is orchestrated by the Ant build tool [1], which can orchestrate the multiple
loading and generation steps required. The Epsilon Generation language [130], which
is a template-based model-to-text language, creates the artefacts required for the
SyVOLT prover. The Python script then begins prover operation. The prover’s
output appears in the Eclipse output pane, showing the user the current status,
counter-examples as sets of rule names, and the contract result analysis information
(Section 6.4.3).

5.2.3 Meta Programming System (MPS)

As our contract proving technique is aimed towards model-driven engineering, we
have also developed a plugin for a development environment focused on the language
engineering and verification community. This environment is the Meta Programming
System (MPS) editor [8] from Jetbrains, which is designed for the rapid creation
and use of domain-specific languages (DSLs), which can ease the development of
software [159].

The language verification plugin provides the DSLTrans transformation language
constructs necessary to build transformations and rules, along with the SyVOLT

171

language constructs for building contracts. The plugin is available from within the
MPS plugin repository under the name DSLTrans, or at the repository site [96].

5.2.3.1 Building Domain-Specific Languages

MPS is a language workbench in that languages can be easily created and
extended [53]. As part of our research, we re-created the DSLTrans and contract
languages within MPS to provide the necessary concepts to build transformations
and contracts. Each language contains powerful and built-in aspects, allowing the
building of powerful domain-specific languages.

For example, a language definition in MPS contains different aspects for:
— Structure - The structure aspect is essentially a class definition with attributes

and references.
— Editor - The editor aspect defines the visual presentation of each element in

the editor.
— Constraints - The constraints aspect allows for the definition of arbitrary

constraints using a Java-like language on the values for element attributes/ref-
erences.

— Behaviour - Arbitrary Java-like code for use by actions or plugins is defined
in the behaviour aspect.

— TextGen - The text generation aspect provides built-in support for model-to-
text generation.

As an example of a language definition, we present in Figure 5.6 an MPS window
with the DSLTrans language definition open. In the left-hand pane are the aspects
for the DSLTrans language, which allow us to define the constructs in the language,
their visual appearance, and constraints. In the right-hand pane is the structure
aspect of the Transformation concept within the DSLTrans language. Note that
the transformation contains a set of layers, a pair of input and output models (for
executing a transformation), and a reference to the set of contracts to prove on this
transformation.

172

Figure 5.6 – Language definition aspects in MPS and the Transformation concept.

5.2.3.2 Projectional Editing

MPS is a projectional editor [54], which means that the user does not edit the
underlying abstract source tree of a program, but instead a projection. The advantage
of this approach is that it is possible to reason about each component of the abstract
source tree at a higher level than just editing text, enabling advanced constraint
checking and auto-completion. This projectional editing also combines with the
power of explicit modelling of languages to provide a number of desirable features,
such as auto-completion and type checking in the projectional editor.

We have developed constraints for the DSLTrans language in MPS such that
elements in the match and apply models of each rule must be instances of a concept
in the input or output languages, which are explicitly modelled within MPS.

173

Figure 5.7 – Editing the Father2Man rule with auto-complete in MPS.

For example, Figure 5.7 demonstrates the Father2Man rule, which includes a
Parent element and a Family element. In the figure, the user is in the process of
adding an attribute to the Family, and the auto-complete pop-up indicates that
the Family concept includes the name and lastName as valid attributes. Thus, all
elements and attributes in the transformation and contracts are typed according to
the input and output languages. We (and others [168]) note that this deep integration
of languages allows for quick and accurate creation of code/transformations.

Figure 5.7 also shows an example of a constraint defined in the DSLTrans
language. At the top of the figure, the rule name is highlighted in red as it violates
the constraint that rule names may not contain an underscore. This constraint is
present purely for technical reasons, but it showcases how arbitrary constraints can
be written for elements. Each element in the language can be passed to a constraint
method, where a Java-like language determines whether the element value is allowed
or not.

174

5.2.3.3 Plugins Created

An alternative to the creation of transformations and rules by hand within MPS
is to employ a DSLTrans importer [96] that we have created as part of this work.
This plugin is able to parse a DSLTrans transformation or contract file and create
the appropriate transformation or contract model.

The MPS framework allows the plugin to directly instantiate elements of the
input and output languages such as attributes and associations to place within the
model. This allows for the creation of powerful higher-order transformations to be
distributed as editor plugins.

Another contribution of this research has been the development of the
EcoreImport [109], which is able to quickly import a meta-model stored in an Ecore
file into the structure file of an MPS language. This improves the inter-operability
of the SyVOLT tool with other modelling frameworks.

5.2.3.4 Artefact Generation

The generation of artefacts for the prover back-end in the MPS environment is
similar to that performed in the Eclipse environment (Section 5.2.2). However, as
opposed to the Eclipse Generation Language scripts, the model-to-text generation
step is defined by the DSLTrans language in the TextGen aspect.

After model-to-text generation has created the configuration file and Himesis
artefacts for the transformation, rules, and contracts, the back-end of the prover is
started. The contract proving results and analysis will then appear in MPS as a
pop-up window.

175

5.3 Proving Process Implementation

This section will discuss multiple facets of the implementation of our contract
prover. In particular, we will discuss both the high-level components as well as the
low-level format that our prover manipulates.

We begin our description with the low-level Himesis format in Section 5.3.1,
which is the representation for typed graphs. Following this, we explain the T-Core
framework for model transformation primitives in Section 5.3.2. This framework
offers the Matcher and Rewriter concepts necessary to manipulate the Himesis graphs
and create path conditions.

We then explain the crucial PyRamify component of our contract prover in
Section 5.3.3. This component is primarily responsible for taking the Himesis files
which represent rules in the transformation, and creating their respective T-Core
Matcher. As explained in that section, a Matcher is produced for each rule which
would successfully match over that same rule. Thus, the PyRamify component
implements a form of RAMification [85], which creates a pattern specification
language for a meta-model. In this case, a language is produced which can match
over rules themselves.

Finally, in Section 5.3.4 and Section 5.3.5 we provide a few details on the
implementation of the path condition construction process and contract proving
steps defined in Section 4.2 and Section 4. In particular, we discuss how the T-
Core Matchers and Rewriters are employed to build up the set of path conditions
and prove contracts.

5.3.1 Himesis Format

The Himesis framework is a graph-based kernel implemented in Python, as
discussed in the Master’s thesis of Provost [122]. Himesis contains concepts for
representing pre- and post- conditions for graph matching, as well as efficient
algorithms for isomorphic graph matching. Significant emphasis in the design and

176

implementation of Himesis was placed on performance, especially that of attribute
matching [144].

Himesis is an essential part of our contract prover implementation, as all rules,
contracts, matcher graphs, rewriter graphs, and path conditions in our contract
prover are represented in Himesis. Therefore, the next section will show an example of
the Himesis format to ground further discussion of operation of T-Core (Section 5.3.2)
and the split morphism matching algorithm (Section 6.2).

5.3.1.1 Himesis Example

The Himesis format is based on that of igraph format [11], which is a widely-used
open-source graph library. As an example, we will show the Python code which
generates the Himesis graph for the Father2Man rule in Listing 5.8 on the following
page. The Father2Man rule itself is shown in Figure 5.9 on page 179 for reference.

The Lines 1-8 are for initialization, where the proper modules are imported, the
class is defined, and the rule is initialized with the proper name and global ID. Note
that the graph is instantiated as its own class, which is a subclass of the Himesis class.
An interesting facet of the Himesis format is that the nodes and edges for the graph
can be created at initialization time. This allows the file to be loaded dynamically
by the contract prover and facilitates the use of model-to-text generation languages.

Lines 10 to 15 create the nodes for the MatchModel and ApplyModel for this rule.
These nodes are container nodes for the rule elements within the match and apply
components of the rule. Note that the mm__ attribute denotes the type of the node
in the rule meta-model.

As well, there is a paired_with node defined on Lines 16-19. This node will be
attached by edges to both the MatchModel and ApplyModel nodes to indicate that
they belong to the same rule. This is important as multiple rules can exist within a
path condition. An example of attribute setting for a node is seen on Line 20, where
the rule’s name is stored in the attr1 attribute for the paired_with node.

The Parent and Family elements for the match model are created in Lines 21 to
26, while the Man element in the apply model is created on Lines 28 and 29.

177

1 import uuid
2 from core . himesis import Himesis
3 class HFather2Man (Himesis) :
4 def __init__ (self) :
5 super (HFather2Man , self) .__init__ (name= 'HFather2Man ' , num_nodes=0, edges=[])
6 self ["mm__"] = ['HimesisMM ']
7 self ["name"] = """Father2Man"""
8 self ["GUID__"] = uuid .uuid3 (uuid .NAMESPACE_DNS , 'Father2Man ')
9

10 # match model node
11 self . add_node ()
12 self .vs [0] ["mm__"] = """MatchModel"""
13 # apply model node
14 self . add_node ()
15 self .vs [1] ["mm__"] = """ApplyModel"""
16 # paired with re la t ion between match and apply models
17 self . add_node ()
18 self .vs [2] ["mm__"] = """paired_with"""
19 self .vs [2] [" a t t r 1 "] = """Father2Man"""
20
21 # match c lass Parent node
22 self . add_node ()
23 self .vs [3] ["mm__"] = """Parent"""
24 # match c lass Family node
25 self . add_node ()
26 self .vs [4] ["mm__"] = """Family"""
27 # apply c lass Man node
28 self . add_node ()
29 self .vs [5] ["mm__"] = """Man"""
30
31 # match associat ion Parent−−family−−>Family node
32 self . add_node ()
33 self .vs [6] [" a t t r 1 "] = """ family"""
34 self .vs [6] ["mm__"] = """directLink_S"""
35 # match associat ion Family−−fathers−−>Parent node
36 self . add_node ()
37 self .vs [7] [" a t t r 1 "] = """ fathers """
38 self .vs [7] ["mm__"] = """directLink_S"""
39
40 # Add the edges
41 self . add_edges ([
42 (0 , 3) , # matchmodel −> match_class Parent
43 (0 ,4) , # matchmodel −> match_class Family
44 (1 ,5) , # applymodel −> apply_class Man
45 (3 ,6) , # match_class Parent −> associat ion family
46 (6 ,4) , # associat ion family −> match_class Family
47 (4 ,7) , # match_class Family −> associat ion fathers
48 (7 ,3) , # associat ion fathers −> match_class Parent
49 (0 ,2) , # matchmodel −> pairedwith
50 (2 ,1) # pairedwith −> applyModel
51])
52
53 # Equations for node a t t r i bu t e s
54 self [" equat ions "] = [((5 , ' fullName ') , (' concat ' , ((3 , ' f i rstName ') , (4 , ' lastName ')))) ,]

Figure 5.8 – The Himesis file for the Father2Man rule.

178

Figure 5.9 – A graphical representation of the Father2Man rule.

Lines 31-38 create the nodes to represent associations in the graph. As these
associations are typed, they must be created as nodes in Himesis so that their type
may be stored and matched by the match algorithm. Note that the attr1 attribute
stores the type of the association, while the mm__ attribute denotes that these are
typed as directLinks for the Source component of the rule.

The edges for this graph are added in Lines 40-51 as source/target pairs between
nodes. Edges are created between the match model and the match elements, and
the apply model and the apply elements, to denote which elements are in which
component.

Note that associations are present as two graph edges. The first edge is from the
source node to the association node, while the second edge connects the association
node to the target node. This representation of nodes and edges has complexity
consequences for matching algorithms. In particular, it is quite expensive to iterate
through the list of edges and find the nodes which are adjacent to a particular node

179

through an association. This is further discussed in Section 6.2 when we present the
matching algorithm used in the contract prover.

Finally, Line 54 defines the equations for this rule. These equations are our
implementation of defining how attributes are set on the produced nodes when the
rule is executed. In this example, the fullName attribute of node 5 (the Man element)
is set as the concatenation of the firstName of the Parent element and the lastName of
the Family element. These equations are resolved during the matching and rewriting
steps, as discussed in Section 5.3.4.

Note that we have made changes to the Himesis format during the course of our
research, as compared to the versions used in [122] and [145]. These changes were
made for speed and space optimization.

In particular, we noted that attribute storage was very space-inefficient, in that
if one node had a value for an attribute, then all nodes would reserve space for
that attribute. For example, if the value Father2Man was stored in the attribute
name for only one node in the graph, all other nodes would reserve space for the
attribute name 2. This was extremely space-intensive, and had severe performance
repercussions in certain cases.

Our work-around for this issue is to assign new names to the attributes, such
that they follow the form attr1, attr2, etc. As many nodes only need one or two
parameters, a minimum number of these empty attributes is created. This technique
is employed in Listing 5.8 on page 178 on Lines 19, 33, and 37.

5.3.2 T-Core

For increased usability and performance, we determined that the SyVOLT
contract prover must be built upon a framework to provide a precise level of control
in model manipulation. To this end, we have built our contract prover upon the T-
Core model transformation library [145], which was built as a means to rapidly build
high-level model transformation languages. As such, it offers a collection of model

2. The value is set to None, which is the Python equivalent of null

180

transformation primitives such as the Matcher, PreConditionPattern, Iterator, and
Rewriter constructs.

The work of Syriani [145] discusses how these primitive constructs can be
combined with a control logic language to successfully de-construct and reconstruct
several model transformation languages. In fact, the DSLTrans language itself has
been implemented using T-Core primitives [91].

We provide a brief discussion here about the T-Core primitives used within our
approach. Section 5.3.3 will discuss how these primitives are built from the artifacts
produced by the frontends, while Section 5.3.4 and Section 5.3.5 discuss their use
within the prover.

5.3.2.1 T-Core Primitives

The essential unit of information in T-Core is the Packet. These Packets hold
the result of matching, rewriting, or iterating. As such, they are composed of a
graph, as well as extra information such as the PreConditionPattern primitive that
was matched on the graph, along with the locations of the matches.

The Matcher primitive in T-Core represents the matching concept, as it stores a
PreConditionPattern graph to be matched onto a Packet. This PreConditionPattern
is composed of a graph to match as well as an optional negative application condition
(NAC) graph. As in the semantics of DSLTrans, if the NAC matches then no match
can be found (Section 3.2.2).

When a packet is passed to the Matcher, the Matcher will determine the positions
of any PreConditionPatterns, and whether the NAC would also match. For further
control, it is also possible to specify the number of matchings allowed by the Matcher.
In the contract prover, the Matcher primitive will be used to find if rules can be
combined with path conditions, or if the contract can match over the path condition.

Once the Matcher has determined the set of mappings of the PreConditionPattern
onto the packet graph, an Iterator primitive then selects one of the matches found
by the matcher. This selection of the next match can be ordered or random, non-
deterministic or deterministic, but must be reproducible.

181

It is possible to successively refine matches by employing another Matcher
primitive after the first, or instead to use a Rewriter primitive to transform the
matched elements. The Rewriter primitive stores a PostConditionPattern to apply
on each match located in the packet. In our contract prover, this is used to add rule
elements into the path condition, as discussed in Section 4.2.1 and Section 5.3.4.

The chaining together of Matcher primitives thus produces a Query on the model
to find elements (as in Figure 5.10a), while the combinations of Matcher and Rewriter
primitives forms an Application of a transformation rule (Figure 5.10b). Note that
these examples are written in a Python implementation of T-Core, termed Py-T-
Core. This is discussed in the next section.

(a) T-Core query. (b) T-Core rule matching and rewriting once.

Figure 5.10 – Examples of T-Core usage (from [145]).

In Figure 5.10a, the Query is a subclass of the Composer primitive, which contains
other primitives and thus gives hierarchical structure to the transformation [145]. In
the query’s initialization method, the Matcher M is created with the input LHS set
as the pattern. As well, it is specified that only one match should be made of this
pattern. Next the Iterator I is created with only one iteration (as there will be only
one match).

The Query is activated when the packetIn method is called, with the target graph
stored in the packet argument. First M will store the found match in the packet.
Then the iterator I will select the only match.

182

Figure 5.10b shows how the addition of the Rewriter W to a query creates an
Application of a rule. The rewriter is created from the input RHS to the rule. When
the rule is activated, the Matcher and Iterator select one match location, before R
rewrites the matched location with the RHS.

5.3.2.2 Py-T-Core

Note that the T-Core primitives shown above do not define an implementation.
In fact, it is possible to use them outside of the graph-transformation paradigm of
our contract prover [145]. Our contract prover makes use of the implementation of
T-Core in Python, termed Py-T-Core [142].

Py-T-Core implements T-Core within a graph transformation paradigm operating
on the Himesis format. Therefore, the matching algorithm used is a sub-graph
isomorphism, and the rewriting operation is the single push-out approach. This single
push-out approach is similar to the double-pushout approach (Section 3.2.1.1), but
does not include the interface graph in between the matching and rewriter graphs.
Therefore, there can be no issues with dangling edges, where a vertex that is the
source or target of an edge is deleted and the edge is not.

5.3.3 PyRamify

For the path condition generation steps detailed in Section 5.3.4, our contract
prover requires T-Core Matchers and Rewriters for each rule in the transformation.
Specifically, we require a Matcher to determine whether a rule can combine with a
path condition, as discussed in Section 4.2.

For example, we will require these Matchers when we are examining whether the
rule Father2Man (described in Figure 5.7 and Listing 5.8) can combine with a path
condition during path condition construction. To accomplish this, the PyRamify
operation constructs a Matcher which contains a PreConditionPattern, where the
elements in that pattern can match over Father and Family elements. Thus, the
pattern needs to be able to match over concepts from both the input language and
output language.

183

The PyRAMify operation therefore automates the creation of patterns to match
over rules, given those rules as input. This allows the SyVOLT prover to directly
manipulate rules as graphs through matching and rewriting.
First, this section details the operations involved in the RAMification technique,
which creates a pattern language from meta-models. Then an explanatory figure
is provided to motivate how the operations we perform are a superset of those in
RAMification. Finally, we will detail the Matchers and Rewriters produced by
PyRamify which are necessary for contract prover operation.

5.3.3.1 RAMification

The RAMification technique takes as input a meta-model, and creates a pattern
language to match over that meta-model. It can also be used to create property
languages in other modelling-based approaches, such as ProMoBox [103]. The
term RAMification [85] stands for the relaxation, augmentation, and modification
operations performed on the meta-model to produce the pattern language.

— Relaxation: A pattern may not entirely conform to its language due to
multiplicity or abstractness constraints. For example, an abstract class in
the meta-model may be required in the pattern language, and therefore these
constraints must be relaxed. Kuehne et al. [85] suggest the removal of the
lower bound on multiplicities on elements, allowing abstract classes to be
made concrete in the pattern, and the removal of any constraints which check
for completeness.

— Augmentation: In the augmentation step, any extra attributes or links
required for the transformation purpose are added to the pattern language.

— Modification: The modification step differs on how the RAMification
technique is being used to create a pattern language for the negative
application condition/left-hand side of a rule, or the right-hand side of a rule.
For the first case, each element attribute in the original language is replaced
by a constraint on that attribute in the pattern language. In the second case,

184

the attributes are replaced by actions, which can change the attributes of the
matched-over element when the rule applies. An example is described below.

The RAMification approach may also involve changing the concrete syntax (visual
representation) of the meta-model. Note that this is not applicable to PyRamify, as
SyVOLT does not display or manipulate the concrete syntax of languages.

PyRamify Details. In our application of RAMification, we augment each element
in the pattern language with two new attributes: a flag to indicate modification by
a rewriting operation, and a label for identifying nodes in the match mapping.

Note that Kuehne et al. [85] suggest storing sub-typing information on each node
in the pattern language, such as storing that a Person matches over both a Parent
and a Child on every Person node. This is very inefficient in terms of storage. In
our current implementation, this information is stored once as an attribute at the
graph level for each instantiated pattern where it can be accessed by the matching
algorithm.

As well, during the modification stage of RAMification, for the negative
application and pre-condition pattern language, PyRamify adds the string
MT_pre__ to each attribute for elements in the language so that these attribute
are marked as constraints on that attribute.

For example, consider a directLink_S association with an attribute name and a
value of fathers, then the respective directLink_S node in the PreConditionPattern
will have an attribute MT_pre__name with a value of ‘return attr_value ==
fathers ’. During matching, this code will check the constraint on the node it is
matching over.

5.3.3.2 Explanatory Figure

The RAMification technique takes as input a meta-model, and produces a pattern
language to match onto that meta-model. In contrast, the PyRamify technique takes
a rule in the DSLTrans language, and produces a matcher which matches over that
particular rule. This section includes figures to illustrate these concepts.

185

In Figure 5.11a, the usual case for the RAMification technique is shown which
is described in the original RAMification work [85]. On the left, there is an input
model which is typed by a meta-model. The RAMification technique takes the meta-
model and produces a pattern language through the relaxation, augmentation, and
modification operations. This pattern language created through RAMification then
types any number of matchers, which represent the left-hand side of rules in that
they are able to match over models of the original language.

(a) Creating a pattern language from a meta-

model.

(b) Creating a pattern language to match

over DSLTrans rules.

Figure 5.11 – Examples of RAMification for creating pattern languages.

Figure 5.11b displays how we apply the RAMification procedure to artefacts to
create matchers for them. As seen in Section 5.3.1, the contract prover operates on
DSLTrans rules, which are represented as a model in the Himesis formalism. The
path condition generation process requires matchers which can match over these rules
and path conditions to resolve dependencies (as in Section 5.3.4).

The RAMification procedure is therefore performed on the meta-model which
types a DSLTrans rule. Note that this meta-model also composes the input
and output meta-models, as these elements appear in the rule. For example, in
the Father2Man rule which is presented in Section 5.3.1, the MatchModel and
ApplyModel originate from the DSLTrans language, the Father and Family types

186

are found in the Families meta-model, and the Man type comes from the Persons
meta-model (Section 2.2.1).

The RAMification procedure takes this composed meta-model, and creates the
equivalent pattern language. We can then construct a matcher which matches over
a DSLTrans rule represented as a model. In our example, the matcher would be able
to successfully match over the Father2Man rule graph shown in Section 5.3.1.

5.3.3.3 Matchers and Rewriters Created

In our SyVOLT tool, the PyRamify component takes as input the rule graph and
rule meta-model, and directly produces the T-Core Matchers and Rewriters which
are typed by the pattern language. This automatic RAMification allows for the
prover to operate directly on the rule graphs, the contract graphs, and the input and
output meta-models, without requiring further artefacts or user intervention.

There are a number of Matchers and Rewriters required for the path condition
construction and contract proof algorithms described in the next sections. We present
an overview of them in Table 5.1, including their purpose and the elements they
contain.

187

Backward Link Matcher Determines if a path condition contains the necessary
dependencies for a rule.

Contains: The backward links in a rule and the connected
elements.

Rule Matcher Determines if a rule must or may combine with a
path condition. Also used to determine if a rule will
match over another rule, which is termed
subsumption in Section 4.2.3.2.

Contains: All elements in the rule’s matcher, as defined in
Section 3.1.4.

Rule Rewriter The rewriting graph used to add elements when
combining the rule with a path condition.

Contains: The elements in the rule’s rewriter as defined in
Section 3.1.4. Note the addition of traceability links.

Contract Matchers The matchers for the contract’s pre-condition and
post-condition for contract proof.

Contains: The elements for these matchers are discussed in
Section 4.4.2.1.

Table 5.1 – The T-Core Matchers and Rewriters created by the PyRamify
component.

Note that these Matchers and Rewriters operate on typed graphs represented in
the Himesis format. As well, we have modified them to such that they can match
and rewrite equations present on the graphs as seen in a rule in Listing 5.8. This is
further discussed in Section 6.2.2 on page 201.

5.3.4 Path Condition Creation

As discussed in Section 4.2, our symbolic execution process will generate all path
conditions which represent the infinite set of all possible transformation executions.

188

Once the required T-Core Matchers and Rewriters have been produced by the
PyRamify component, the prover moves on to the path condition generation step.
This section will discuss the broad steps of the implementation including how the
Matchers and Rewriters are used.

Note that path condition generation is a complex task. As such, the algorithm
in this component has been implemented as a Python script that is responsible
for scheduling all sequences of matching and rewriting in the right order. This
programmatic level of granularity of manipulation has allowed us to optimize the
path condition generation process, for example through parallelization as described
in Section 6.3.

As in Section 4.2, the path condition construction algorithm treats each layer of
the transformation in turn. Each path condition from the path condition set from
the previous layer is examined to see if it can be combined with the rules in the
current layer.

This combination step is based on the matching results for the Backward Link
Matcher and Rule Matcher created by the PyRamify component. If the Backward
Link Matcher for a rule fails to match on the path condition, then the rule’s
dependencies cannot be met. If the Rule Matcher successfully matches then the
rule must combine, otherwise it only may combine. If the rule can combine, then
the Rule Rewriter operates on the path condition to add the rule elements.

During path condition construction, we also perform a number of algorithmic
optimizations as discussed in Section 6.3. These include the parallelization of path
conditions amongst different threads, the slicing of the transformation for a particular
contract, and the removal of invalid path conditions.

5.3.5 Contract Proof

Once the path conditions are generated, the prover will determine which path
conditions satisfy or do not satisfy the contracts to be verified. The contract proof
component of the prover requires two inputs: the path conditions set built by the

189

path condition generator and the Contract Matchers for the contract’s pre-condition
and post-condition,

This contract proof component is also implemented as a Python script that
manipulates the Contract Matchers to determine if they match over each path
condition in the path condition set. The component checks to see if the pre-condition
matcher succeeds, and if it does, whether the post-condition matcher also succeeds.
As each path condition is independent of the others, this operation has also been
parallelized amongst different threads as discussed in Section 6.3.

Based on these results, the path conditions are divided into sets as described
in Section 4.4.3. The prover then performs analysis of the results to help the user
understand the results (Section 6.4.3). These results are then returned to the user
through the front-end which began the process, allowing the user to remain in one
tool.

5.4 Conclusion

This chapter has provided a detailed discussion of the SyVOLT tool, which is our
implementation of the path condition construction and contract proving process.

SyVOLT is based on the principles of model-driven development as it operates on
formalisms and models in a modular design. This is described in Section 5.1 where
we present a diagram of the work-flow of the tool as a Formalism Transformation
Graph and Process Model.

The methods for creating DSLTrans transformations and contracts to be verified
have been presented in Section 5.2. This includes our higher-order transformation
for converting ATL transformations to the DSLTrans language, as well as plug-ins
for the Eclipse and MPS environments.

Section 5.3 has also presented a few details on the implementation of the contract
prover as Python scripts, including a presentation of a DSLTrans rule in the Himesis
format (Section 5.3.1). These Himesis graphs are manipulated by T-Core Matchers
and Rewriters during the path condition construction and contract proof algorithms.

190

As well, we have also described the PyRamify component in Section 5.3.3. This
component operates on DSLTrans rules to automatically create the Matchers and
Rewriters able to match over and manipulate those rules.

191

Chapter 6

SyVOLT Algorithms

Our symbolic execution approach has its origins in the thesis of Barroca [19].
While that formulation is valid and complete, due to the explicit nature of its
symbolic execution it is not feasible for the scale of industrial transformations we
wish to verify.

For example, in Barroca’s thesis, over 11,000 path conditions are generated
for a transformation containing nine rules. As a rough comparison, the current
implementation of the prover generates only 10 path conditions for the GM-to-
AUTOSAR transformation (Section 7.2) which is of comparable size (number of
rules and number of elements).

Our technique tackles the critical scalability problem by limiting the multiplicity
of rule application within path conditions (Section 4.2), and relying on the
abstraction relation to avoid creating explicit path conditions of all possible
input/output model pairs(Section 4.1).

An important algorithmic innovation in this thesis is the detailing of the typed
graph split morphism which was presented in Section 2.3.2.2 and is critical to our
abstraction relation and contract proving approach. As shown in Section 4.4.2, this
morphism is required to let a contract match over a path condition which represents
multiple input-output models. An algorithm and complexity analysis will be provided

192

in Section 6.2, along with experimental results of the new graph matcher compared
to a standard isomorphic matcher.

Another contribution of this work is the presentation in Section 6.3 of further
algorithmic techniques to reduce the time and space requirements of the prover
to improve the scalability of the approach. This includes standard software
techniques such as parallelization and compression, but also transformation-focused
algorithmic techniques such as slicing the transformation based on the contract to
be proved, and pruning invalid path conditions based on the transformation meta-
model. Complexity analyses and experimental results are provided for each of these
techniques.

Finally, Section 6.4 discusses our efforts to assist the user when proving contracts.
We provide three techniques to a) ensure that all rules are symbolically executed
enough times to be able to satisfy the contract, b) ensure that during path condition
construction that all rules are represented in a path condition, and c) assist the user
in understanding how rule interactions satisfy or don’t satisfy a contract.

Therefore, this chapter answers our last research question: What are techniques
for improving the scalability of the verification tool to allow for larger transformations
to be verified?

6.1 Experimental Conditions

Throughout this chapter and the next, we conduct experiments to highlight the
optimizations performed in our prover and demonstrate the feasibility of our case
studies.

Our experimental machine is a (relatively old) desktop machine, with 6 gigabytes
of memory and an Intel Core i7 CPU 920 at 2.67GHz with 8 threads on 4 cores.
The operating system is 17.10 Xubuntu, and the Python version used to run the
experiments is Python 3.6. This is the primary machine used for experiments, unless
indicated otherwise.

193

A more powerful computer was required to validate the mbeddr transformation,
due to the transformation’s large size (Section 7.5). This experimental machine was
a supercomputer located at McMaster University, and is an Intel Xeon CPU E7-
4870 at 2.40GHz with 32 threads on 32 cores and 1 terabyte of memory. The Python
version is 3.4.

When obtaining numeric results, efforts were taken to reduce variance. Each
experiment was run five times, the highest and lowest values were removed, and
the average was taken. The variance of all path condition generation experiments
was below 1%, except for the mbeddr case study where variance was below 3%.
For contract proof, variance was highest at around 5% for the Families-to-Persons
transformation, as a relatively large number of contracts were proven. The other
case studies have a variance of around 1% or less for contract proof. As well, the
original match set generation results in Table 6.1 on page 206 for the mbeddr case
study have an extremely large variance, as remarked upon in that section.

The mbeddr transformation

Note that we have not been able to build the path condition set for all 49 rules
of the mbeddr transformation (Section 7.5 on page 270) on our experimental desktop
machine, due to a lack of disk space and memory. Therefore, throughout the following
sections, we refer to each version of mbeddr as mbeddri where the i represents the
number of rules in the transformation. Thus, mbeddr22 refers to the sliced version 1

of the transformation, mbeddr34 the largest portion of the transformation that we
were able to verify on our desktop experimental machine, and mbeddr46 refers to the
full transformation.

6.2 Split Morphism Matching Algorithm

This section discusses our split morphism matching algorithm, which produces a
mapping from the nodes and edges of the pattern graph to the nodes and edges of
the target graph. In this section, the mapping will be termed a match set.

1. See Section 6.3.2 on page 222 for discussion of the slicing algorithm.

194

As discussed in previous chapters (Section 4.2.2, Section 4.1.5.3, Section 4.4.2.3)
our symbolic execution and contract proving approaches requires a matching
algorithm that is different from a standard graph isomorphism. The typed graph
split morphism is defined in Definition 5 on page 37, where sub-morphisms are used
to “split” the pattern graph over the target graph.

As an example, this morphism is employed in Section 4.4.2.3 on page 133
as a way to match contracts over path conditions, as the path conditions are
composed of individual rules which may or may not have overlapping elements.
An alternative approach is an expensive “disambiguation” operation as seen in the
thesis of Barroca [19], where explicit path conditions are created that contain every
possible overlapping of elements in the input-output models. However, this approach
is infeasible for medium or large transformations.

We note that our algorithm performs quite well on reasonably-sized
transformations, as shown in the results throughout this chapter. As well,
we conducted experiments on a database of synthetic graphs to determine the
performance relative to an isomorphic matcher. These results are presented in
Section 6.2.5.

As a caveat to these results, indirect link matching and the semantics of the Exists
element are not currently implemented. While we have an algorithm for performing
these matchings, the algorithmic complexity precludes their implementation at this
time.

Our explanation of the split morphism matching algorithm is split into two
steps. For both of these steps, a complexity analysis is performed of their current
implementation.

The first step of the matching algorithm involves iterating through both the
pattern and target graphs and generating the candidate lists where pattern elements
may match over target elements. This is presented in pseudo-code in Algorithm 2
on page 197, while Algorithm 5 showcases the algorithm for resolving the transitive
closure of a graph. As well, any typing issues and attribute constraints between

195

the pattern and target elements must be resolved, as presented in Algorithm 3 on
page 198 and Algorithm 4 on page 198.

The second step of the matching algorithm is the creation of the match set which
forms the actual mapping between pattern and target elements, which is presented
in pseudo-code in Algorithm 6.

196

Algorithm 2 – The split morphism match algorithm.
Input: Two graphs representing the pattern graph and target graph.
Output: Mappings of pattern nodes to target nodes.
1: function SplitMatchAlg(patt, target)
2: candidates ← ∅

Match all isolated nodes
3: for each isoNode ∈ patt.isolated do
4: for each node ∈ target.match do
5: if matchNodes(isoNode, node) then
6: Add node to candidates[isoNode]

7: if candidates[isoNode] = ∅ then
8: return ∅ ▷ does not match

Match all backward links
9: for each pattBackwardLink ∈ patt.backward do
10: for each traceLink ∈ target.trace do

▷ Note that backward links match over trace links
11: if matchLinks(pattBackwardLink, traceLink) then
12: Add traceLink to candidates[pattBackwardLink]

13: if candidates[pattBackwardLink]= ∅ then
14: return ∅ ▷ does not match

Match all direct links
15: for each pattDirectLink ∈ patt.direct do
16: for each directLink ∈ target.direct do
17: if matchLinks(pattDirectLink, directLink) then
18: Add directLink to candidates[pattDirectLink]

19: if candidates[pattDirectLink] = ∅ then
20: return ∅ ▷ does not match

Match all indirect links
21: closureMx ← createClosureMx(target) ▷ See Algorithm 5
22: for each pattIndirectLink ∈ patt.indirect do
23: for each targetSrcNode ∈ target.match do

▷ Test if the source node in the pattern matches the target source node
24: if matchNodes(pattIndirectLink.source, targetSrcNode) then
25: for each targetDestNode ∈ closureMx[targetSrcNode] do

▷ Check each connected node to see if the pattern target node matches
26: if matchNodes(pattIndirectLink.dest, targetDestNode) then
27: Add (targetSrcNode, ‘indirect’, targetDestNode) to candidates[pattIndirectLink]

28: if candidates[pattIndirectLink] = ∅ then
29: return ∅ ▷ does not match

Generate match sets one-at-a-time
30: for each mapping ∈ generateMappings(candidates) do
31: yield mapping

197

6.2.1 Step 1 - Candidate Generation

The candidate generation step determines each possibility for how the elements
in the pattern graph can match over the elements in the target graph. This selection
of candidate matches for each pattern element is represented by the candidates map
variable on Line 2 of Algorithm 2.

The algorithm begins by selecting candidates for each of the components in the
pattern graph: isolated nodes (match nodes with no connected edges), backward
links, direct links, and indirect links. Note that searching for candidates in a different
order may influence the run-time of the matching algorithm, based on the elements
in the pattern graph. For example, it may be preferable to search for the pattern
graph’s backward links before the isolated nodes depending on which set is smaller,
as not finding any one of the components means no match can be found. We note
that a static analysis may assist in providing heuristics on how to match a pattern
graph most efficiently.

The candidate selection depends on Algorithm 3 and Algorithm 4, which are the
functions for how individual nodes and links may match over each other.

Algorithm 3 – The function for matching a pattern node against a target node.

Input: Two nodes
Output: Boolean result whether the pattern node matches over the target node
1: function matchNodes(pattNode, targetNode)
2: typingMatch ← resolveTyping(pattNode, targetNode)
3: attributeMatch ← resolveAttributes(pattNode, targetNode)
4: return typingMatch ∧ attributeMatch

Algorithm 4 – The function for matching a pattern link against a target link.

Input: Two links (tuples of two nodes and an association)
Output: Boolean result whether the pattern link matches over the target link
1: function matchLinks(pattLink, targetLink)
2: sourceMatch ← matchNodes(pattLink.source, targetLink.source)
3: targetMatch ← matchNodes(pattLink.target, targetLink.target)
4: isBackwardMatch ← pattLink.assoc.type == ‘backward’ ∧ targetLink.assoc.type == ‘trace’
5: assocMatch ← isBackwardMatch ∨ matchNodes(pattLink.assoc, targetLink.assoc)

198

6: return sourceMatch ∧ targetMatch ∧ assocMatch

Isolated Nodes. First, the algorithm determines if the isolated nodes in the pattern
graph can match over nodes in the target graph. These isolated nodes are any that
are not connected to a link, and will therefore not be examined by matching the
other components. The matching of the isolated nodes is presented as pseudo-code in
Lines 3 to 8 in Algorithm 2. A call is made to the matchNodes function (Algorithm 3
on the preceding page) to determine if the nodes can match, based on the meta-model
types of both the pattern and target nodes, as well as any attributes defined on those
nodes. This resolution is discussed in Section 6.2.2.

If an isolated node in the pattern graph cannot match over any target graph node,
then the matching fails and an empty match set is returned from the algorithm.
Otherwise, the candidate nodes are placed in the set for each isolated pattern node.

Backward Links and Direct Links. A similar process to the isolated nodes is then
performed for the backward links in the pattern (Lines 9 to 14) and the direct links
(Lines 14 to 20). Note that instead of singular nodes being matched, instead the
entire link is matched. The matchLinks function (Algorithm 4 on the previous page)
is used to match all three elements in the link (the end nodes and the association
node). Note that a special type allowance is made such that backward links match
over trace links.

Indirect Links. The candidate selection for the indirect links in the pattern graph
is more complicated than the direct or backward links. The semantics of DSLTrans is
that indirect links must match over the transitive closure of the graph (Section 3.2.4).
Therefore, to represent this matching in path condition construction, the indirect
links in the matching algorithm must also match over the transitive closure.

The call to the function in the matching algorithm is in Line 21 in Algorithm 2.
The pseudo-code for the transitive closure function is shown in Algorithm 5, and is
based on the Floyd-Warshall algorithm [52], a dynamic-programming problem where
intermediate solutions are used to build the full solution.

199

Algorithm 5 – The transitive closure function algorithm.
Input: A graph
Output: A boolean matrix of the transitive closure of the graph. i.e. if the matrix at [i, j] is true, then it is possible

to navigate from node i to node j
1: function createClosureMx(graph) ▷ Based upon the Floyd–Warshall algorithm [52]
2: n ← graph.size
3: mx ← a two-dimensional array of n by n, filled with zeros
4: for each edge ∈ graph.edges do

▷ Mark all existing edges
5: mx[edge.source][edge.target] = 1

6: for k ← 0, n do
7: for i← 0, n do
8: for j ← 0, n do
9: mx[i, j] ← mx[i,j] ∨ (mx[i, k] ∧ mx[k, j])

10: return mx

The intuition with this algorithm is to look at an intermediate node k between the
start node i and the end node j. As k increases, the algorithm successively considers
paths that can pass through nodes up to index k. This is reflected in Line 9 in
Algorithm 5, where node i is connected to node j if there already exists a path, or
if there is a path from node i to node k, and from node k to node j.

Note that this transitive closure creation algorithm is very expensive. For the
Floyd-Warshall algorithm, the processing of the edges and three nested for-loops
means it is θ(|E| + |V |3) in time complexity. Note that the results of this function
may be cached to prevent expensive recalculation.

Once the transitive closure matrix is built, the process to find candidate matches
is similar to that of direct links and backward links. The difference is that instead of
picking a link to examine, the algorithm looks at each node and the nodes that can
be reached through the transitive closure. This is seen on Line 23 of Algorithm 2 on
page 197 where each target node is examined, and if the pattern source node matches
over that one, then the destination node is selected from the transitive closure graph
for that target node on Line 25.

200

6.2.2 Typing and Attribute Resolution

Our matching algorithm operates on typed attributed graphs, so the type and
attribute characteristics of the nodes must be examined to determine if two nodes
match.

Type Matching. Each node in our typed graphs has a meta-model type. For
example, Section 5.3.1 shows how each node and association in the Himesis graph
has its type stored as the mm__ attribute.

Therefore, during the matching of nodes during the matching algorithm
(Algorithm 3 on page 198) it must be determined whether the pattern node type
is the same or is a super-type of the pattern node type. If not, then these nodes
cannot be matched together. For example, Member nodes in a Families-to-Persons
transformation contract (Section 2.2.1 on page 23) match over Member, Parent, and
Child nodes in a path condition.

Attribute Matching. As well as resolving typing information, there may be
attribute constraints on the graph to resolve.

For example, consider a rule that defines an association with the fathers type.
In the matcher created for this rule by the PyRamify component (Section 5.3.3
on page 183), the respective pattern node will contain an attribute named
MT_pre__type with a value of fathers. This indicates that there is a constraint
on the type attribute of the target node to be found. During the attribute resolution
step, this constraint must be taken into account, and the value on the target node
checked. If the value is not correct, then the pattern node and target node cannot
match together.

Attribute values can also be represented by equations on the graph. For example,
the Father2Man rule (Figure 5.9 on page 179 in Section 5.3.1) defines equations on
the fullName attribute of the elements in the pattern, where the fullName of the
produced Man element is a concatenation of the lastName of the Family element
and the firstName of the Parent element. This equation is represented by the

201

statement ((5,fullName), (concat, ((3,firstName),(4,lastName)))), which means that
the fullName of node number five is assigned to the concatenation of the values on
node three and four.

As explained in Section 3.2.3 on page 59, we handle the resolution and matching
of values using a simple equation evaluator. The String concatenations and attribute
references in the equations are resolved, and these resolved values are compared with
the attribute values stored in the candidate node, as well as any equations in the
target graph for that node.

For example, a pattern equations may specifies the wildcard token concatenated
with a String value. This wildcard matches over any number of characters in a String,
as introduced in Section 2.2 on page 22. This is useful for matching attributes that
end or begin with a certain String. In the attribute solver, the presence of a wildcard
means that a simple regular expression is built to match the pattern expression over
the target Strings. The success or failure of the regular expression then determines
whether the two nodes match.

6.2.3 Step 2 - Match Set Creation

The first matching step (Section 6.2.1 on page 198) will create a set of candidate
matches for each element in the pattern graph. The match set is then created to
map each node in the pattern graph to a specific node in the target graph.

The complexity with the match set generation algorithm is in ensuring consistency
within the match set. For the typed graph split morphism, we must ensure that while
a pattern node can match to multiple target nodes (the ‘splitting’), a target node
cannot match to multiple pattern nodes.

Note that in the mapping produced, a pattern graph node will be matched with
a single target graph node. This restriction is for the rewriting procedure, which
may attach edges to the target node. It is not correct to rewrite the graph for each
target node matched by the pattern node, nor is it correct to ‘glue’ the various target
nodes together. Each node is left separate as required by the abstraction relation
(Section 4.1 on page 82).

202

Pseudo-code for a recursive version of this match set generation algorithm is
seen in Algorithm 6 and Algorithm 7 on the following page. The entry function
generateMappings in Algorithm 6 transforms the dictionary of candidates
matches into a list before the mappings from the recursive match set generation
algorithm are successively returned.

When the recursive algorithm generateMappingsR in Algorithm 7 on the
following page is first called, the match set is empty, the reverse match set is empty,
and there is a list of tuples which contain pattern elements and their candidate
matches. The intuition of the algorithm is that this list will shrink one element at a
time as the mapping is created from the pattern elements to the candidate elements.
The reverse mapping is stored to ensure that a target element is not mapped to more
than one pattern element.

Algorithm 6 – The entry function generateMappings for generating a match set.

Input: A dictionary of nodes and links to their candidate matches
Output: A mapping of pattern node IDs to target node IDs
1: function generateMappings(candidates)
2: candidateList ← an empty list

▷ Transform the mapping into a list
3: for each key, values ∈ candidates do
4: Add (key, values) to candidateList

▷ Call the recursive function
5: for each mapping ∈ generateMappingsR(∅, ∅, candidateList) do
6: yield mapping

The base case of the recursive algorithm is on Line 2 of Algorithm 7 on the next
page, where the list of pattern and candidate elements has been reduced to zero. In
this case, an empty mapping is returned.

In the recursive case, we begin by taking the first tuple of the candidate list using
the head operation. This tuple consists of the pattern element (Line 4) and a list of
target elements to be matched onto by the pattern element (Line 5).

The target elements are iterated through on Line 6. Before placing the target’s
IDs into the match set, it is important to make a copy of both the match set and

203

Algorithm 7 – The recursive algorithm generateMappingsR for generating a
match set.

Input: A mapping of pattern node IDs to target node IDs, a mapping of target node IDs to pattern node IDs, and
the candidate links to consider

Output: A mapping of pattern node IDs to target node IDs
1: function generateMappingsR(matchSet, reverseMatchSet, candidates)
2: if candidates.size == 0 then ▷ Base case:
3: return ∅
4: pattElement ← head(candidates)[0]
5: targetElements ← head(candidates)[1]
6: for each targetElement ∈ targetElements do

▷ Make copies of sets to avoid aliasing
7: matchSetCopy ← copy(matchSet)
8: reverseMatchSetCopy ← copy(reverseMatchSet)
9: skip ← false

▷ Elements could be a node, or three nodes in a link
10: for i← 0, pattElements.size do
11: if (targetElement[i].ID ∈ reverseMatchSet ∧
12: reverseMatchSet[targetElement[i].ID] ̸= pattElement[i].ID) then

▷ Fail, as the target element is already matched to by another pattern element
13: skip ← true
14: break

▷ Store the mapping, and the reverse mapping
15: matchSetCopy[pattElement[i].ID] ← targetElement[i].ID
16: reverseMatchSetCopy[targetElement[i].ID] ← pattElement[i].ID

▷ Check for the consistency of Exists elements
17: for exists1, exists2 ∈, existsElementPairs do
18: isCombining ← matchSetCopy[exists1.ID] == matchSetCopy[exists2.ID]
19: if (existsMustCombine(exists1, exists2) ∧¬ isCombining) ∨
20: (existsMustNotCombine(exists1, exists2) ∧ isCombining) then
21: skip ← true
22: break

23: if skip then ▷ There was a failure, consider the next target element
24: continue

▷ Get other mappings recursively
25: otherCandidates ← tail(candidates)
26: for each rest ∈ generateMappingsR(matchSetCopy, reverseMatchSetCopy, otherCandidates) do

▷ copy to avoid aliasing, update the mapping with more values, and yield it as a valid mapping
27: mapping ← copy(matchSetCopy)
28: mapping.update(rest)
29: yield mapping

204

reverse match set, to avoid aliasing problems where all iterations and recursions of
the algorithm operate on the same sets.

Then, the for-loop on Line 10 will iterate from zero to the size of the pattern
element. This is a detail to handle the fact that the elements may be individual
nodes, or they may be links.

Line 12 is crucial to detect consistency in the mapping. If the target element’s
ID is already in the reverse match set, and is not the current pattern element’s ID,
then we fail this mapping. This means that another node in the pattern graph has
already bound to this node in the target graph, and two pattern nodes cannot match
over the same node in the target graph.

If the check for consistency passes, then the mapping and reverse mapping can
be updated, as on Line 15. If not, the next target element is examined.

The presence of Exists elements in our pattern graph must also be taken into
consideration during the consistency check. This pseudo-code is presented on
Lines 17 to 22. Note that we assume the construction of a set that contains all
pairs of elements that are the Exists elements from the pattern (if applicable). If
the two elements are considered to must combine or must not combine (following the
semantics defined in Section 3.2.6 on page 65) then the algorithm checks whether
they will or will not match over the same target element, and fails the consistency
check as needed.

Finally, the rest of the pattern elements must be given mappings recursively. The
tail of the candidate list is provided by the tail operation on Line 25. Then, the for-
loop on Line 26 will iterate through all the mappings given by passing the match
set, reverse match set, and tail of the candidate list to another call of the recursive
match set generation function.

Each mapping given by the recursive function will be merged (using the update
function) with a copy of the current match set. This will be the mapping returned
to a previous call of the recursive function.

205

The recursive match set generation algorithm therefore operates in a tree-like call
pattern. The valid mappings for one combination of the pattern elements and target
elements are selected, before being combined with all the possible mappings of the
rest of the candidate list.

Comparison. The initial implementation for creating the match set depended on
first generating all possible combinations of the mapping in a brute force fashion,
then examining each mapping for consistency. This implementation was found to be
too slow to our case studies, and we now employ the recursive algorithm described
above. We provide this comparison as a justification for the recursive algorithm, and
to highlight the impact of algorithm selection in graph matching.

Table 6.1 – Effects of changing match set generation algorithm

Transformation Match Set PC Build Contract Proof

Creation Method Time(s) Time (s)

Families-to-Persons Generate all combos 7.73 17.74
Recursive solver 7.17 14.58

UMLToKiltera Generate all combos ∼2 >25 min.
Recursive solver 1.82 4.17

mbeddr22 Generate all combos 2.14 81.84
Recursive solver 2.16 0.55

The results for both the original match set generation algorithm and the recursive
version are seen in Table 6.1. Note that the recursive version is dramatically faster
for the UML-To-Kiltera and mbeddr22 transformations. In fact, the experiment was
cut short for the UMLToKiltera transformation with the original algorithm, due to
excessive delay.

As described in Section 6.1 on page 193, the variance of our experiments is around
3%. However, for this experiment, the variance for the mbeddr22 transformation under

206

the original match set generation algorithm was an extreme value of 1000 seconds,
demonstrating the instability of that algorithm.

6.2.4 Complexity Analysis

This section will discuss the complexity of each major component of the split
morphism matching algorithm, and present a brief comparison to two other matching
algorithms.

For this section, let the pattern graph be denoted as p, and the target graph
be denoted as t. For example, the number of vertices in the pattern graph will be
denoted |Vp|, while the number of edges is denoted |Ep|.

Typing Resolution. O(1) - The matching of nodes must take into account the types
of the nodes in order to perform sub-type matching, as discussed in Section 6.2.2 on
page 201. Note that while this matching could depend on the size of the meta-
models for the graphs, pre-processing can reduce this to a constant time operation
by creating a lookup table.

Attribute Resolution. O(M) - Also discussed in Section 6.2.2 on page 201 is the
resolution of equations and attribute values on the pattern and target graph.

It is difficult to provide a complexity bound for this component, as the number of
attributes for each node in the pattern graph, and the complexity of each equation
may vary widely. For example, an equation may include many concatenations and
wildcards, which requires the use of a regular expression to solve.

We therefore abstract the resolution of attributes with a general term M. Note
that in our case studies (Section 7), the vertices contain only a few attributes, and
the equations are composed of less than a dozen terms. Thus M should be a small
constant. However, note that the below complexity arguments each involve M. It
should therefore be highly optimized in graph matching algorithms.

207

Isolated Elements. O
(
(|Vp| · |Vt|) ·M

)
- Each isolated node in the pattern graph

needs to be considered against every node in the target graph, while the M term
represents the actual matching of the nodes.

Backward/Direct Links. O
(
(|Ep|·|Et|)·M

)
- Each direct and backward link in the

pattern graph is matched against their counterparts in the target graph to determine
candidates.

Transitive Closure Mx.. O(|V |3) - As mentioned in Section 6.2.1 on page 198, the
complexity of the transitive closure matrix generation step is quite high as all paths
in the graph must be considered.

Indirect Links. O
(
(|Ep| · |Vt|2) ·M

)
- For each indirect link in the pattern graph,

a source node must be found in the target graph. Then, all connected nodes in the
target graph must be examined to determine if they are a suitable destination node.

Match Set Generation. In the recursive match set creation step, the execution
forms a branching-tree pattern as each pattern element is given a mapping to a
target graph element. For each level of the tree, each target element may be
considered, which is on the order of |Vt| + |Et| elements in the worst case. As there
are |Vp| + |Ep| pattern elements (and therefore levels of the tree), the complexity is
O
(
(|Vt|+ |Et|)|Vp|+|Ep|

)
.

With the addition of Exists element resolution, we must also add a comparison
of potentially every pattern element versus every other pattern element. Therefore,
the complexity rises to O

(
(|Vt|+ |Et|+ |Vp|2)|Vp|+|Ep|

)
.

This complexity seems intractable. However, whole branches of the tree may be
pruned when inconsistent mappings are detected. As well, the entire tree does not
needed to be searched, as graph-matching often requires only one consistent mapping.

208

6.2.4.1 Conclusion and Comparison

To produce a rough time complexity for the entire matching algorithm, we sum
and simplify the above complexities in Equation 6.1. Note that for readability, we
assume that the pattern and target graph are of similar size 2.

O
(
|V |3 +M · (|E|2 + 2 · |E| · |V |2) + (|E|+ |V |+ |V |2)|V |+|E|

)
(6.1)

Equation 6.1 shows that the matching of two graphs is a very expensive
computational algorithm. However, the results throughout this chapter show that it
is suitable for the transformation sizes encountered in our case studies.

Comparison to Other Algorithms. One of the most-popular sub-graph
isomorphism matching algorithms in the literature is the VF2 algorithm [44]. This
algorithm constructs a search-tree of the pattern graph. Nodes are evaluated for
compatibility, and the algorithm will backtrack on failure. The algorithm has a best
case time complexity of θ(|V |2), and a worst-case time complexity of θ(|V |! · |V |) [44].
A new version of the algorithm, termed VF3, improves upon the speed of VF2 but
not the complexity [40].

The thesis of Syriani [142] discusses the extension of VF2 with a new node
compatibility strategy to form a new sub-graph isomorphism matching algorithm to
reside within the Himesis graph operations kernel [122]. This improvement is slower
than VF2 for small graphs, but is much faster for large graphs, with a complexity of
O(|V |!).

Note that these two algorithms focus on finding a sub-graph isomorphic mapping.
As discussed in Section 4.1 and Section 4.4, the nature of the abstraction relation
means that we must employ a non-isomorphic morphism.

2. Note that this assumption is most likely violated for most model transformation applications,
where the pattern graph is much smaller than the target graph. Therefore, this complexity is an
over-approximation.

209

The text of Provost [122] mentions that the Himesis matcher may be made non-
injective, with a complexity of O(|Vt||Vp|). This avenue will be explored in our future
development of the split morphism matcher.

6.2.5 Experimental Results

In this section, we present performance results from matching synthetic graphs
using both our split morphism matching algorithm and the isomorphic matching
algorithm from the Himesis kernel.

The experiments we performed were intended to answer the following research
questions. First, how long does the split morphism matching algorithm take to match
pairs of pattern and target graphs? Second, how does this performance compare to the
isomorphic matcher which has been created as part of the Himesis kernel [122, 142]?

Graph Characteristics. The synthetic graphs used are sourced from the MIVIA
database [48]. This database provides graphs with different characteristics such as
isomorphism or sub-graph isomorphism between pairs of graphs. The graph structure
is in two, three, and four dimensions with up to 1276 nodes, which is over four times
larger than our sizeable mbeddr case study (Section 7.5 on page 270). As each
category contains 100 pairs of graphs, this database offers hundreds of tests of our
matching algorithm.

For our experiments, we divided the graphs up into four categories 3.
— iso: Pairs of isomorphic graphs
— si2 : Sub-graph isomorphism where the sub-graph is 20% of the target graph
— si4 : Sub-graph isomorphism where the sub-graph is 40% of the target graph
— si6 : Sub-graph isomorphism where the sub-graph is 60% of the target graph
Within these four categories, graphs also varied in three other characteristics:
— Dimension: non-mesh, 2D mesh, 3D mesh, 4D mesh
— Random Edges Added :

3. See http://mivia.unisa.it/datasets/graph-database/arg-database/documentation/

for further information.

210

http://mivia.unisa.it/datasets/graph-database/arg-database/documentation/

— For the non-mesh graphs, 0.1, 0.05, or 0.01 chance of two nodes being
joined

— For the mesh graphs, 0, 20%, 40%, or 60% extra edges

Results. Figure 6.1 contains two scatter plots for our matching experiments
performed on our supercomputer machine as described in Section 6.1. On the x-
axis is the number of nodes for each graph in the pair of graphs being matched,
while the y-axis is a logarithmic scale for number of seconds for matching. Therefore
each point represents the time it took to match each pair of graphs in the database.

The different sets of data represent the coverage of the pattern graph over the
target graph. For example, the pattern graph may be a sub-morphism of 20, 40 or
60 percent of the target graph 4, or even a total isomorphism. As seen in the figure,
requiring larger coverage leads to an increase in matching time, with the isomorphism
requirement taking the longest for both matching algorithms.

Note that some artistic liberties have been taken. In particular, the x-coordinate
of each point was perturbed using a normal function to create an column effect for
each graph size.

As well, we must mention that this should not be a direct comparison between
the two matching algorithms. The split morphism allows for much greater flexibility
in how the pattern graph matches on the target graph because the structure is not
strictly maintained. In contrast, the isomorphism matcher must ensure that the
exact pattern graph must be found in the target graph. Therefore, these results are
presented only to provide a rough comparison for scalability to large graphs.

Figure 6.1 demonstrates interesting comparisons between the isomorphic matcher
results and the split morphism matcher. The split matcher has a much smaller
variance among graphs of the same size, especially for the isomorphic pairs of graphs.
This is probably due to the backtracking performed by the isomorphism matcher to
ensure that the structure of the pattern graph is found in the target graph. As

4. Note that this may not be representative of real-world pattern sizes, where the pattern graph
is often smaller than the target graph by orders of magnitude.

211

(a) The isomorphism matcher from the Himesis kernel.

(b) The split morphism matching algorithm.

Figure 6.1 – Comparing the matching times for two matching algorithms.

212

mentioned, the split morphism matcher does not have this constraint, and therefore
an earlier candidate set generated may be returned as a match.

Other than the variability, we note that the split morphism matcher tends to
require much longer than the isomorphism matcher. For example, the larger graphs
tend to take around 10 seconds to match in the isomorphism matcher, while the split
morphism matcher takes 100 to 1000 seconds. This result is expected, as the split
morphism matcher has not undergone extensive optimization. For instance, it may
be possible to integrate more of the structural or typing information of the graph
into the matcher to reduce matching time [167].

6.3 Algorithmic Optimizations

This section will detail three major algorithmic optimizations which were
implemented in the SyVOLT prover. These optimizations were performed to
decrease the time taken to prove each of the case studies (Chapter 7), and enable
efficient verification for sizeable transformations such as the mbeddr transformation
(Section 7.5) on our experimental desktop machine.

The first optimization discussed is the parallelization of the path condition
generation and the contract proving steps. This is a fairly straightforward
implementation of parallelization as the work on each path condition is independent.
However, there are interesting points to mention regarding the load-balancing of path
conditions amongst the threads, and how the time taken by the prover scales with
the number of threads used.

The second optimization, slicing the transformation, chooses the minimum set
of rules necessary for the contract to be proved. This can result in a reduction
of the number of rules in the transformation, leading to shorter path condition
generation and contract proof time as fewer path conditions are created for the
sliced transformation.

The final algorithmic optimization presented introduces the notion of pruning
invalid path conditions. In this optimization, we check if a produced path condition

213

is missing containment links which cannot be satisfied by further rules in the
transformation. If this is true, then the path condition can be discarded as it
represents invalid output models in the transformation. This has a significant effect
on the number of path conditions built by our generation technique.

For each of these optimizations, an overview will be provided along with the
algorithm and a complexity analysis. Experimental results are also shown to
demonstrate the effects of each optimization.

6.3.1 Parallelization

A classic software optimization effort is to perform parallelization on any
computational algorithms. For the SyVOLT tool, this parallelization is performed
on the path condition construction (Section 5.3.4 on page 188) and contract
proving (Section 5.3.5 on page 189) algorithms. These algorithms were selected
for parallelization as they almost totally determine execution time at 96 percent of
the total running time. As well, they operate on individual path conditions so that
parallelization was relatively easy to implement.

Therefore for parallelization, we create a number of worker threads to carry out
operations, while coordination is performed by the main thread. In the sections
below, we discuss the specifics about what is passed to and returned from each
worker thread.

6.3.1.1 Path Condition Generation

Section 4.2 presents an overview of the algorithm for generating path conditions.
In that section, the key operation is that each path condition in the path condition
set is combined with the rules for a layer to produce further path conditions.

Therefore to make the path condition generation process parallel, we create a
number of worker threads which each take a portion of the path condition set for
a layer. Each worker can then operate on one path condition at a time to combine
that path condition with the rules. The new path conditions created are collected

214

by the worker, and these new path conditions are returned to the main thread to be
merged for the next layer or contract proof. This is sketched in Figure 6.2.

Figure 6.2 – Parallelization process for the path condition generation algorithm.

In Figure 6.2, the top box represents the main thread which partitions the set of
path conditions for a layer into smaller pieces for each of the workers threads. These
worker threads are represented by the components in the middle of the figure. Finally,
the bottom box represents the collection of the new path conditions generated by
each worker thread, where this joining creates the set of path conditions for the next
layer.

Load Balancing. Two load-balancing schemes were devised to determine if there
was a benefit to balance the portion of path conditions distributed to each worker,
such that each worker did an equal amount of work.

215

The first scheme (pseudo-) randomly shuffles the path conditions amongst the
workers. The second scheme counts the number of nodes in each path condition 5,
and attempts to balance the total number of nodes per worker approximately equal
by performing bin-packing.

The results for these two schemes are presented in Section 6.3.1.3 on the following
page. As a preview, the results indicate that the bin-packing scheme is not
significantly faster.

6.3.1.2 Contract Proof

As seen in Section 4.4 and Section 5.3.5, the contract proof algorithm requires a
set of path conditions and the contract(s) to be proven on them. The result of this
algorithm are the set of path conditions which fail to satisfy the contract, and the set
that does satisfy the contract. This information will then be reported as the result of
the contract proving process, and used for further contract debugging (Section 6.4).

To make this operation parallel, we again create a number of worker threads
to match the contracts against each path condition. This process is sketched in
Figure 6.3 on the next page. Each contract prover thread is given the contracts to
be proved before it begins waiting on a queue from the main thread to the worker
thread. Path conditions are placed one-at-a-time into the queue by the main thread
represented in the top box of Figure 6.3. At the same time, the worker threads select
path conditions one-at-a-time from the queue and prove each contract.

The path conditions which satisfy or do not satisfy the different contracts are
recorded by each worker thread, and this information is passed back to the main
thread to be presented to the user, as represented on the bottom side of the figure.

The intention for this queue-based scheme was to load-balance the path conditions
amongst the various threads without explicit division of the set. However, as shown in

5. In our implementation, the number of nodes is stored in the path condition’s name. Therefore,
the path condition does not need to be loaded or de-serialized, making this load-balancing scheme
take a fraction of a second.

216

Figure 6.3 – Parallelization process for the contract proof algorithm.

Figure 6.4 on page 220 the communication overhead for passing each path condition
may be detrimental when many worker threads are used.

6.3.1.3 Results

The effects of parallelization are seen in Table 6.2 for five experiments, UML-to-
Kiltera, Families-to-Persons , and three versions of the mbeddr transformation (see
Section 7.5). Note that the experiments for the full mbeddr transformation (denoted
mbeddr46) were run on the supercomputer, the details of which are presented in
Section 6.1 on page 193. As mentioned in Section 6.1 on page 193, the variance of
these results is below three percent.

The results in Table 6.2 show the difference in path condition generation and
contract proof times when only one thread is used, and when eight threads are

217

utilized. The speedup is displayed in brackets next to the timing results. We
see that parallelization amongst the eight threads on the desktop machine offers
a significant speed-up for each component, though this result is well below the
theoretical eight times speed-up for a perfect parallelization. This result may be due
to the architecture of our desktop machine. As stated in Section 6.1, the desktop
machine has 8 threads divided amongst 4 cores. It may be that this sharing of
cores leads to interference (cache utilization, heat/power issues, etc.) that do not
allow for the potential eight times speed-up to be reached. As well, we theorize that
the increase in number of threads has a negative effect on the queue load-balancing
scheme used in contract proving.

Table 6.2 – Effects of parallelization with shuffling and bin-packing load-balancing
strategies.

Transformation Parameters Build PCs Contract Proof Memory
Time (s.) Time (s.) (MB)

UML-to-Kiltera Non-parallel 5.81 14.62 82
645 path conditions Shuffle 1.70 (3.4x) 4.31 (3.4x) 48

Bin-packing 1.78 (3.3x) 4.32 (3.4x) 49

Families-to-Persons Non-parallel 16.58 42.60 80
4916 path conditions Shuffle 5.37 (3.1x) 15.75 (2.7x) 59

Bin-packing 5.34 (3.1x) 16.12 (2.6x) 59

mbeddr22 Non-parallel 5.70 1.75 96
1012 path conditions Shuffle 1.77 (3.2x) 0.50 (3.5x) 57

Bin-packing 1.88 (3.0x) 0.49 (3.6x) 57

mbeddr34 Non-parallel 177.69 62.81 168
28018 path conditions Shuffle 65.52 (2.7x) 22.80 (2.8x) 162

Bin-packing 67.10 (2.6x) 23.33 (2.7x) 163

mbeddr46 Non-parallel 15073.37 4430.14 1958
625486 path conditions Shuffle 1297.11 (11.6x) 429.01 (10.3x) 1917

Bin-packing 1002.05 (15.04) 430.99 (10.3x) 1949

218

Table 6.2 also shows the difference for the random shuffling load-balancing scheme
versus the more sophisticated size-aware bin-packing scheme for path condition
construction.

The results show that the more advanced scheme is only more effective than the
randomized shuffle on a more powerful machine with more threads. Therefore, a
random division may be effective enough to distribute the workload in most cases.

In terms of memory usage, Table 6.2 reports a rough calculation of resident
memory usage, which we must point out is per thread. Therefore, the memory usage
for the Families-to-Persons transformation goes from 80 MB to the single-threaded
version to potentially 480 MB for the threaded version. This is due to each worker
thread consuming at a minimum around 40 MB of memory due to the large structures
involved in the proving process. Further investigations are ongoing to determine and
reduce the amount of memory being accessed by each thread.

Parallelization on Desktop Machine. Figure 6.4 graphically represents the results
of contract proof using the desktop machine on three of our case studies, when the
number of threads is varied from one to eight.

For each of the UML-to-Kiltera, Families-to-Persons , and mbeddr22 case studies,
the time taken for path condition generation time (PC Time) and contract proving
time (Contract Time) is graphed against an increasing number of threads.

For path condition generation, parallelization is beneficial when adding the first
few threads. However, after the fourth thread, there seems to be no substantial
benefit to adding threads. For contract proving time, there may even be a slight
negative effect, especially for the Families-to-Persons transformation. Again, this
may be due to the architecture of the desktop machine, and the queue-based
parallelization for contract proving.

Parallelization on Supercomputer Machine. To address the potential issues
in the desktop experiment, we then conducted another parallelization test on the
supercomputer. The results for this test are shown in Figure 6.5 where we present

219

Figure 6.4 – Parallelization amongst threads on the desktop machine.

the time taken for path condition generation time (PC Time) and contract proving
time (Contract Time) for the full mbeddr46 transformation. The x-axis is the number
of threads used, while the y-axis is the number of minutes taken.

As well, we add plots for the theoretical ideal 32x speedup if the parallelization
process was perfect amongst the 32 threads.

The result shows that the path condition generation and contract proving steps
has been successfully parallelized, decreasing the time taken from around 325 minutes
for both path condition generation and contract proof to about 35 minutes. In fact,
the parallelization curve follows very closely to the ideal curve, showing that this
parallelization could potentially scale to even larger numbers of threads.

220

Figure 6.5 – Parallelization of the mbeddr46 transformation on the supercomputer
with up to 32 threads.

221

6.3.2 Slicing

The intention of the slicing algorithm is to partition the transformation for a
given contract, such that only the rules needed to produce the correct verification
result are symbolically executed. The selection of a minimal set of rules allows for a
significant decrease in the amount of time required for the proving process, as seen
in Table 6.3 on page 227.

Our slicing technique was first introduced in 2015 [112], and expanded on in
2016 [113]. In this thesis, we also add a concrete example of the rules produced
by slicing the Families-to-Persons transformation, as well as a discussion on the
complexity of the slicing algorithm.

6.3.2.1 Slicer Overview

There are three steps in our technique to slice the transformation for a contract.
Here, we discuss these steps in the context of slicing the Families-to-Persons
transformation for the CountryCity contract.

The CountryCity contract is displayed in Figure 6.6. The pre-condition for this
contract is whether there is Country element to a City element, and the post-
condition checks for the existence of an Association element.

Figure 6.6 – CountryCity contract for the slicing process.

222

There are two steps to the slicing process: a) determine which rules produce
elements in the contract and mark them for keeping, and b) recursively determine
which rules the kept rules depend on. At the end of these steps, the rules marked as
kept will form the sliced transformation.

Finding Required Rules. The first step in the slicing process performs an
examination of all rules in the transformation to determine if any rule produces
the elements in the contracts.

The rationale behind this step is that the path conditions which the contract
matches over during contract proof are built by combining rules. Therefore, we must
discover the rules which could build the necessary path conditions.

We thus match each node and link in the contract against every node and link
in each rule in the transformation. If this match succeeds, then that rule may be
essential to the proving of the contract by producing the required node or link, and
the rule is retained in the sliced version of the transformation.

Note that if any node or link in the contract cannot be found in the full set
of transformation rules, then the contract cannot match on any path condition
produced by the proving algorithm. This indicates that either the contract or the
transformation contains errors and must be fixed. An explanation of this analysis
technique is presented in Section 6.4 on page 237.

As an example, we present the CountryCity contract in Figure 6.6 on the previous
page and the four rules it depends upon from the Families-to-Persons transformation
in Figure 6.7 on the following page. Note that the rules selected involve the Country-
City association, as well as those that produce an Association from a Country or a
City element.

Finding Rule Dependencies. The second step in the slicing procedure determines
if those rules selected in the first step require nodes or links that are produced by
earlier rules. Thus, the matching procedure is repeated again for each of these rules.
This is an iterative process, as those earlier rules may require other rules, and so on.

223

Figure 6.7 – Portion of rules selected for the CountryCity contract through slicing.

For example, the cotownHalls rule in Figure 6.7 requires a rule that produces a
Community element from a Country element. This requirement is specified by the
backward link.

This recursive step of finding rule dependencies brings the total number of rules
required for the CountryCity contract up to eight, which is less than half of the 19
rules in the Families-to-Persons transformation. Table 6.4 on page 228 shows how
this reduction in rules to be symbolically executed impacts the performance of the
contract prover.

224

All those rules not required for the contract are removed from the transformation
to be verified. Note that this new transformation may be smaller than the
original, but this depends on the specific dependencies between the contract and
the transformation rules. All rules may be potentially required for the contract to
produce the correct verification results.

6.3.2.2 Complexity

The complexity for the slicing process primarily depends on the matching
algorithm, and the number of rules in the transformation.

The rule matching step depends on the split morphism matching algorithm
discussed in Section 6.2 on page 194. Rather than checking for the presence of
all elements or links however, this matching in the slicing process is only concerned
with a single element or link being found. Despite this, the complexity remains the
same as matching the entire graph.

The contract is first matched against all rules to determine which rules the
contract requires. Then, we repeat this rule matching procedure for every rule,
against all other rules to determine the dependency tree. In the worst case, every
rule in the transformation will be compared against every other rule.

The complexity of slicing is therefore O(X · |Rules|2), where X is the complexity
of the matching algorithm (Section 6.2).

6.3.2.3 Results

This section discusses the impact of slicing the Families-to-Persons and UML-to-
Kiltera transformations for each of their contracts. Each contract was proven on the
full transformation (the ‘original’ version) and on the subset of the transformation
returned by slicing for that contract (the ‘sliced’ version).

Note that the experiments below were performed with no pruning and no
parallelization, to maximize the number of path conditions and time to generate
them.

As well, note that the time taken to perform slicing itself was less than 0.05
seconds for all contracts.

225

UML-to-Kiltera Transformation Results. The results in Table 6.3 on the
next page show the reduction in contract proving time for the UML-to-Kiltera
transformation with slicing. The full transformation contains 17 rules, while the
slicing operation generates subsets from 2 to 15 rules. These smaller sets of rules
produce at most a third of the number of path conditions generated for the full
transformation.

This reduction in path conditions generated is reflected in the decrease in path
condition generation time and contract proof time. As well, the memory needed
for the prover to operate is reduced due to fewer path condition produced. The
memory requirements then become dominated by the minimum for each worker
thread, around 40 MB.

Families-to-Persons Transformation Results. The results presented in Table 6.4
on page 228 show excellent results when the Families-to-Persons transformation is
sliced for each contract. Note that the full version of the transformation produces
4916 path conditions, while the largest slice produces only 184 path conditions. The
number of rules is reduced from 19 for the full transformation to a range of 5-11 rules
for the sliced versions.

6.3.2.4 Slicing Discussion

The slicing technique is effective in producing reduced versions of the
transformations specific to each contract. As can be seen in the tables in this section,
a fraction of the full number of path conditions are produced, reducing both path
condition construction time and contract proving time and reducing memory usage.

Table 6.5 shows a summary of how slicing affects the metrics of both
transformations presented. For example, slicing the UML-to-Kiltera transformation
reduces the path condition generation time by 73% in the worst case and by 98% in
the best case.

226

Table 6.3 – Effect of slicing on contract proving time for the UML-to-Kiltera
transformation
.

Contract Rules Path Conds. Path Cond. Contract Prove Memory

Name Build Time (s) Time (s) (MB)

Full 17 645 5.81 14.62 82

PP1 12 100 0.59 0.27 44

PP2 12 100 0.59 0.24 44

PP3 13 145 0.76 0.39 44

PP4 13 145 0.76 0.34 44

MM1 4 2 0.08 0.02 44

MM2 8 5 0.13 0.03 44

MM3 11 56 0.28 0.13 44

MM4 11 56 0.29 0.13 44

MM5 12 100 0.59 0.26 44

MM6 4 2 0.08 0.02 44

MM7 8 5 0.13 0.03 44

MM8 12 100 0.59 0.24 44

MM9 12 100 0.59 0.25 44

MM10 11 56 0.28 0.16 44

MM11 13 145 0.75 0.45 44

SS1 15 217 1.53 0.62 49

It is also important to note that the verifiability of the transformations has not
been affected. We have ensured that the contract verification results are identical
for both the normal and sliced versions for all of our case studies.

227

Table 6.4 – Effect of slicing on contract proving time for the Families-to-Persons
transformation.

Contract Rules Path Conds. Path Cond. Contract Prove Memory
Name Build Time (s) Time (s) (MB)

Full 19 4916 16.58 42.60 80

CityCompany 8 43 0.23 0.07 43

CountryCity 6 10 0.10 0.03 43

SchoolOrdFac 5 17 0.13 0.04 43

DaughterMother 9 64 0.34 0.09 43

AssocCity 9 64 0.26 0.09 43

ChildSchool 5 17 0.13 0.04 43

FourMembers 9 64 0.34 0.09 43

MotherFather 9 64 0.35 0.10 43

ParentCompany 5 18 0.12 0.04 43

TownHallComm 11 184 0.59 0.27 43

Table 6.5 – Reduction in metrics caused by slicing.

Case Study Num. PCs PC. Gen. Contract Proof Memory
Reduction Time Reduction Time Reduction Reduction

UML-to-Kiltera 66-99 % 73-98 % 95-99 % 40-46 %

Families-to-Persons 96-99 % 96-99 % 99 % 46 %

228

6.3.3 Pruning

The abstraction relation (Section 4.1) defines how our path conditions are
abstractions over input-output models for the transformation. A logical conclusion
is if invalid input-output models could be detected, then we could remove the path
conditions which abstract over those input-output models.

The pruning operation is a validity check on path conditions based on the
information in the transformation’s output meta-model. In particular, we are
interested in the presence or absence of containment links between elements, and
whether a path condition satisfies these containment links or not.

For example, consider the Families-to-Persons output meta-model in Figure 6.8.
The Community element contains Person, Man and Woman elements through the
persons relation, which is marked as being a containment link by the black diamond.
Therefore, all output models which contain a Man element must have that element
attached to the Community element through this persons relation. Otherwise, the
output model is invalid.

Community

TownHall

Committee

Association

SpecialFacility OrdinaryFacility

Facility

District

Man Woman

Person
fullName : EString

NamedElement
name : EString

1..* persons

0..* associations

committee
1..1

1..*townHalls

1..*districts

facilities0..*

workersmembers
0..*0..*

committee 1..1

Figure 6.8 – Persons meta-model for the Families-to-Persons transformation.

Our insight is that the lack of these containment links (or lack of proper
multiplicity) in a particular path condition implies the lack of this link in the

229

abstracted input-output models. These path conditions therefore do not represent
valid output models and can be removed from the set of path conditions for the
transformation.

As with the slicing operation (Section 6.3.2), removing path conditions
dramatically speeds up the creation of path conditions and contract proving.
However this pruning operation occurs during path condition construction, as path
conditions are examined and removed at the end of each layer of the path condition
construction process.

Interaction with Contract Proving. Note that pruning may not be desired by
the user, as they may be interested in examining the full range of possible rule
combinations, not just those that will produce a valid output model. In fact, the
pruning operation can prune away path conditions that would or would not satisfy
contracts.

Note that the set of pruned path conditions is a subset of the full (unpruned)
set. If a counter-example is found in the pruned set, then it will exist in the full set.
However, the reverse is not true. If a counter-example exists in the full set, it will
not exist in the pruned set if it is an invalid path condition.

The FourMembers contract for the Families-to-Persons transformation (seen in
Figure 6.9a on the next page) is an example of a contract which produces different
counter-examples whether pruning is enabled or disabled. When pruning is disabled,
counter-examples to this contract are found which do not exist when pruning is
enabled.

The reason for this difference in the counter-examples produced (indicated in
Section 7.4.1 on page 263) is that the contract is checking in the pre-condition for
the Family and Member elements, which by themselves do not enforce that the
persons relation is constructed. This persons association is a containment link, and
these associations are built in the four copersons... rules of the Families-to-Persons
transformation, one of which is seen in Figure 6.9b. This rule is not guaranteed to
apply when Families exist with Members, as they may not be placed in a Country.

230

(a) FourMembers contract for the Families-to-Persons transformation.

(b) The copersons...Man rule from the Families-to-Persons transformation.

Figure 6.9 – Contract and rule to explain the interaction of pruning with contract-
proving.

231

The post-condition of the contract checks for the presence of Men and Women
elements which are connected to the Community element with the persons relations.

As the persons association is a containment link in the meta-model, then the
pruning operation will prune away any case where these rules have not symbolically
executed and the associations do not exist.

That is, when not pruning path conditions will be created where the associations
do not exist and the contract will fail. When pruning is enabled, all path conditions
must contain the associations and the contract will succeed.

6.3.3.1 Algorithm and Complexity

Our discussion of the pruning algorithm is split into two steps. The first step
is to gather information about the containment links in the output meta-model
for the transformation. This information is used to examine all the rules in the
transformation and determine which elements in the rules require containment links,
and if any containment links cannot be found in the transformation. This first step
is performed before the path condition generation process begins.

The second step is performed during the generation process. Each path condition
is examined during path condition construction to determine which containment links
need to be built. It must be determined if the missing containment links are present
within the path condition or the remaining rules in the transformation. If the links
are not to be built, or not built enough times, then the path condition is removed.

Examining the Meta-model and Rules. The first step in the pruning process
is to examine the output meta-model to determine which pairs of nodes have a
containment relationship,. This involves iterating through all the nodes and edges
in the meta-model, therefore the complexity is O(|Vmeta−model |+ |Emeta−model |).

Next, two sets of containment links are created by examining each rule. The
first link set is the type and count of containment links that a rule requires. This is
obtained by iterating over all apply nodes in the rule not attached to a backward link,
and summing the containment links defined in the meta-model for each element. Note

232

that this summation will lead to a rule requiring multiple instances of a containment
link if multiple nodes demand it. The second link set is the set of containment links
which have already been built in the rule.

Therefore, this first step in the pruning process produces a mapping from a rule
to a set of containment links the rule requires, and a set of containment links the
rule builds. This information can then be used to determine which rules produce a
given containment link.

For example, in the Families-to-Persons transformation the Community persons−−−−→
Man containment link is required by the rules Father2Man and Son2Man, while the
link is built by the two copersons...Man rules.

As well, it must be determined if there exists a containment link in the meta-
model that does not exist in the transformation. If so, then that containment link
is not considered to be required by nodes. This handles the situations where the
transformation does not address some parts of the meta-model, or the transformation
has been sliced for a contract (Section 6.3.2).

Note that extra care must be taken with rule multiplicity while pruning to ensure
that rules are set to be symbolically executed an appropriate number of times such
that all rules have their dependencies satisfied. The dependency analysis discussed
in Section 6.4.1 on page 238 assists with this determination.

As all rules must be iterated, and each element examined in each, the complexity
of this step is O

(
(|Vr |+ |Er |) · |Rules|

)
.

Examining the Path Conditions. This containment link information can then be
used for the pruning operation during path condition construction.

In particular, the pruning process can be performed at the end of each layer during
the construction process. The aim of this is to remove as many path conditions as
possible, before they are considered for combination with the rules in the next layer.

At the end of each layer, the path conditions are examined to determine which
rules are present. Then, the sets of required containment links are summed together,
to form a set of required containment links for the path condition.

233

The next step is to ensure that each required containment link is either built
already in the path condition, or could be built by a rule in a future transformation
layer. This is handled by iterating through the built containment links for both the
rules present in the path condition and the rules yet to be symbolically executed, and
subtracting these built rules from the required set of containment links. If there yet
remains a required containment link that cannot be satisfied, then the path condition
will be invalid and it is discarded.

For example, assume there is a path condition where the rules Father2Man and
Son2Man rules have symbolically executed. This path condition would require
two Community persons−−−−→ Man links to have been, or will be built. If the two
copersons...Man rules have not been symbolically executed on this path condition,
or if their layer has already been examined so that they will not be symbolically
executed, then the path condition is not valid and it is discarded.

6.3.3.2 Results

Table 6.6 on the following page presents the results of applying the pruning
optimization on our case studies. For most of these experiments, the parallelization
and slicing optimizations were not used. The exception is the mbeddr46 case study
experiment conducted on our supercomputer machine, which uses parallelization but
not slicing.

Note that in most case studies, pruning did not have a large effect on the number
of path conditions generated. As well, there is a performance impact on generation
time due to needed to examine path conditions. It is only in the Families-to-Persons
and the larger mbeddr transformations where a dramatic reduction in path conditions
is seen, which reduces generation and proving time as well as memory usage.

The difference in efficacy between case studies may be due to the difference in
output meta-model size, as reported in Table 7.2 on page 250. We are currently
investigating in which cases the pruning operation is most beneficial.

It is also important to emphasize that this pruning approach may change
the result of contract proof, as shown for the Families-to-Persons transformation

234

Table 6.6 – Time taken for case studies with and without pruning.

Transformation Parameters Num. Build PCs Contract Proof Memory
PCs Time (s.) Time (s.) (MB)

RSS-to-ATOM No pruning 10 0.17 0.05 41
Pruning 5 0.16 0.05 41

GM-to-AUTOSAR No pruning 10 0.24 0.13 42
Pruning 9 0.25 0.12 42

UML-to-Kiltera No pruning 645 1.72 3.87 49
Pruning 558 1.97 3.72 48

Families-to-Persons No pruning 4916 16.54 42.31 80
Pruning 255 2.99 2.35 43

mbeddr22 No pruning 1012 5.75 1.79 97
Pruning 1012 6.10 1.79 97

mbeddr34 No pruning 28018 67.10 23.33 163
Pruning 14910 49.34 12.25 151

mbeddr46 No pruning 1211888 1847.19 285.07 3815
Pruning 625486 1112.48 142.00 1949

contracts in Section 7.4. Therefore, it is important for a user to be aware of this
(optional) pruning optimization, and the potential effects on contract satisfiability.

6.3.4 Conclusion

This section has presented three algorithmic optimizations: parallelization,
slicing, and pruning. Table 6.7 on the following page summarizes these optimizations.
Note that the speedup column only considers the desktop machine.

The use of the parallelization optimization is recommended in all cases, as this
optimization reduces the time taken for contract proving and has few drawbacks.
In contrast, the slicing and pruning optimizations can vary in their results. As
mentioned in Section 6.3.2 on page 222, the slicing optimization depends on the

235

Table 6.7 – Summary of algorithmic optimizations.

Optim. Name Speedup Advantages Disadvantages

Parallelization 2.6x - 3.6x -Straightforward division
of path conditions

-Hardware arch. affects effec-
tiveness

-Approaches optimal
speedup

-Queue theory should be in-
vestigated
-Difficult to profile

Slicing 3.8x - 72.6x -Large increase in prover
performance

-Effectiveness depends on
contract and transformation
interaction

-Easier to understand
counter-examples

-Non-trivial to combine with
dependency analysis and
pruning optimization

Pruning 0.9x - 14.2x -Possible decrease in
time and memory used

-Performance overhead to ex-
amine path conditions

-Focuses set of counter-
examples

-Effectiveness depends on
transformation meta-model
-Can change result of con-
tract proof

particular contract and transformation. Dependencies between the contract and the
rules may make it that no rules are removed and no benefit is seen.

The pruning optimization has even larger tradeoffs. In particular, pruning may
change the result of contract proof as invalid path conditions are removed and not
examined if they satisfy the contract. As well, there is a performance penalty when
employing pruning, as each path condition must be examined during path condition
generation to determine its validity.

236

6.4 Checks and Analysis

The algorithms described in Section 4.4, and the SyVOLT tool described in
Chapter 5 verify contracts against the path conditions created from transformations.
However, it is inevitable that errors arise during the construction of the
transformation and contracts though typos and omissions.

To ensure that the transformation/contract designer is alerted to unintentional
errors, a number of static and dynamic checks are performed during the path
condition generation process. These checks verify that DSLTrans transformations
and contracts are correctly built, in that they are consistent with each other.

The checks and analysis steps detailed in this section arose organically out of
the development of the contract verification tool, and have been quite successful in
detecting errors during our experiments. In particular, a number of typos in element
names meant that contracts could never be successfully proved for the initial version
of some of our hand-built transformations. These typos were successfully detected
by the checks detailed in this section, allowing us to correct them.

As well, once the MPS front-end to our tool (Section 5.2.3) was developed, we were
able to import our transformations and contracts. The projectional editor nature of
MPS means that transformations and contracts must conform to the meta-model
at all times. This detected further errors, suggesting that the projectional editor
approach does reduce errors and development time.

The first analysis we perform is to detect the dependencies of rules and contracts
to ensure that all needed elements can be satisfied. Second, the path condition
construction process raises an error if a rule is not symbolically executed. Finally,
upon a result for a contract (success/failure), we present an analysis report on which
rules caused the contract to succeed or fail on the path conditions. An example and
complexity discussion will be presented for each of these analyses.

The analyses discussed in this section are relatively simple, and yet offer a
groundwork for understanding the results when the contract prover process fails.
In particular, the analyses catch not only the trivial typos inherent in manual design

237

of transformations and contracts, but also provide insight on how the contract relies
on the rules in the transformation.

6.4.1 Dependency Checking

The first (and possibly most important) check we perform is on the dependencies
of the transformation rules and contracts to make sure that all rules can execute,
and that all elements in the contract could be produced.

This process begins in the same manner as is described in the slicing optimization
(Section 6.3.2 on page 222). For each link and isolated node (a node not connected
to any link) in the contract we check to see if it is present in some rule in the
transformation. As well, we ensure that all backward links in the transformation can
be satisfied by earlier rules.

The multiplicity of elements is also checked during this step. For example, a rule
may require two backward links between two types, but only one rule would produce
these elements. The dependency checker will indicate that the producing rule may
need to be symbolically executed multiple times (Section 3.2.5). This information
can be passed to the path condition construction algorithm, ensuring that the correct
path conditions are built.

This element-matching allows our analysis to check if there exists an element in
a contract or a rule that cannot be satisfied in the transformation. In this case, even
before the contract prover executes we know that there is an error with the contract
or the transformation. When this occurs, the user is alerted to the precise missing
element in the rule or contract so that it may be fixed.

Example. As an example of this analysis, we will make an intentional error in
the FourMembers contract presented in Figure 6.10a. Instead of having Woman
elements in the Output graph of this contract, let us instead have Female elements
in the erroneous version in Figure 6.10b. This represents the case where the contract
builder has unintentionally used an old meta-model or made a typo.

238

(a) Woman elements present in the

Output graph.

(b) Replacing the Woman elements with

non-existent Female elements.

Figure 6.10 – Original and erroneous FourMembers contracts.

When the contract prover is determining which rules the contract depends on,
the output in Figure 6.11 on the next page will be produced.

In the section marked a), the analysis indicates that the direct link from the
Community element to the Female element cannot be found in the transformation.
This therefore indicates that no path condition will exist where the contract’s post-
condition can be satisfied, and thus the contract will never hold.

The output marked b) states that there is also a backward link in the contract
which cannot be satisfied by the transformation. That is, there is no rule that
matches over a Member element and produces a Female element. To assist the user,
the rules where these elements are presented are indicated in sections c) and d).

The c) section mentions (a selection of) the rules that contain a Member element.
Note that these rules may contain the element as a sub-class instead. For example,
the Father2Man rule contains a Parent element which is a sub-class of the Member

239

Figure 6.11 – Dependency Analysis presented for the errorneous FourMembers
contract.

a) Error: Elements in contract FourMembers direct link are missing:

Community - directLink_T - Female

b) Error: Backward link might be missing in contract FourMembers:

Member - trace - Female

c) Looking for meta-model element: ‘Member’

Rule Daughter2Woman contains meta-model element: ‘Member’ as ‘Child’

Rule Father2Man contains meta-model element: ‘Member’ as ‘Parent’

Rule Mother2Woman contains meta-model element: ‘Member’ as ‘Parent’

Rule Son2Man contains meta-model element: ‘Member’ as ‘Child’

...

d) Looking for meta-model element: ‘Female’

Error: Meta-model element ‘Female’ not found in any rule!

element. This allows the user to focus on the rules which are likely candidates for
errors.

Finally, the section marked d) informs the user that no rule contains a Female
element. This is marked as an error, as all elements of the contract must be present
in the transformation. If not, the user must modify the contract or transformation
such that the element exists.

Complexity. The complexity for the dependency checking analysis is exactly the
same as the slicing analysis performed in Section 6.3.2. In fact, our implementation
calculates the dependency information first, and then uses that for the slicing
procedure.

Thus, the complexity of the dependency check is O(X · |Rules|2), where X is the
complexity of the matching algorithm (Section 6.2).

240

6.4.2 Rule Application

The second analysis in our tool is performed during the path condition generation
process itself, where it is detected if a rule was not symbolically executed. Note that
the work of Selim [135] defined this check as a rule reachability contract.

A rule not symbolically executing may indicate an issue with the transformation
where the required elements were not present, a multiplicity issue where a rule will not
symbolically execute enough times, or an issue with the meta-model that has caused
the pruner (Section 6.3.3) to remove all path conditions containing that particular
rule. All cases indicates an issue with the transformation which should be reported
to the user to investigate.

The current implementation for the rule reachability analysis involves checking
all path conditions to determine which rules they abstract. This examination is
performed at the end of a layer in path condition generation after the pruning step.
If a rule appears in no path condition, then it either did not execute in that layer or
it has been pruned away. An error is raised informing the user which rule did not
execute.

The complexity of this operation is linear in terms of the number of path
conditions 6. Then, each rule is checked to make sure it was symbolically executed.
Thus, the complexity is O(|PCs|+ |Rules|).

A more efficient implementation may be to keep a mapping from rules to their
path conditions during the construction process. Then this mapping would ensure
that all rules were symbolically executed.

6.4.3 Contract Result Analysis

Finally, we present our analysis component which provides detailed information
to the user at the end of contract verification to assist the user to understanding how
a contract relates to the rules in the transformation.

6. Note that care must be taken to avoid de-serializing each path condition to examine elements,
as this would be cost-prohibitive. Our current implementation is able to detect the rules involved
from the name of the path condition.

241

Recall that at the end of contract proving (Section 4.4 and Section 5.3.5), we
collect a set of path conditions where the contract holds, and a set where the contract
does not hold. Let these be the successful and failed path condition sets.

The analysis component examines these sets and provides the following
information:

— rulessuccess - The rules common to all successful path conditions
— rulesfail - The rules common to all failed path conditions, and not common

to all successful path conditions
— The precise elements and links that the contract requires from the set of rules

rulessuccess

— The contract is also tested against a failed path condition
— The elements and links that could not be found on this path condition are

reported
— The user can use this information and a visualization of the path condition

to better understand the failure of the contract, as in Figure 6.14 on
page 246

This comprehensive information allows the user to precisely determine how the
contract is succeeding or failing, and have assurance that the result is as intended.

6.4.3.1 Example

We will present the contract in Figure 6.12a as an example for the information
we present when a contract has counter-example path conditions.

Note that for this contract we expect counter-examples to be found. This contract
is from the Families-to-Persons transformation (Section 2.2), and represents the
statement ‘Every School in the input model will produce an Ordinary Facility ’. The
rule dfacilities...OrdinaryFacilityPerson which performs this production is displayed
in Figure 6.12b.

However, in the Families-to-Persons transformation, there is also the
dfacilities...SpecialFacilityPerson rule, which matches over a School element with a

242

special Service to produce a Special Facility element. Thus, the contract is expected
to fail on path conditions that include the dfacilities...SpecialFacilityPerson rule.

(a) An example contract for analysing success/failure results.

(b) Rule needed for contract success.

Figure 6.12 – Contract and rule examples for contract result analysis.

243

Figure 6.13 – Contract Result Analysis presented for the SchoolOrdFac contract.

a) Name:SchoolOrdFac

Num Succeeded Path Conditions: 6

Num Failed Path Conditions: 3

b) Explaining why contract fails: SchoolOrdFac

Good rules: (Rules in success set and not failure set)

dfacilities...OrdinaryFacilityPerson

Bad rules: (Rules common to all in failure set)

dfacilities...SpecialFacilityPerson

c) Contract requires elements from successful rules of type:

School

OrdinaryFacility

d) Examining failed pc:

Son2Man-Neighborhood2District-dfacilities...SpecialFacilityPerson

e) Elements of pattern that fail on this target:

Pattern could not find links of type:

OrdinaryFacility - trace_link - School

For the SchoolOrdFac contract, the contract prover indicates that there are six
path conditions where this contract holds, and three path conditions where it does
not. This output is seen in Figure 6.13 on the line marked a). Following this is the
contract result analysis for this case.

The contract result analysis indicates in the section marked b) that the
dfacilities...OrdinaryFacilityPerson rule is common to all the successful path
conditions. This is correct, as this rule must symbolically execute for the contract’s
pre- and post- condition to match. As well, the dfacilities...SpecialFacilityPerson
rule is common to all of the failed path conditions. This is sensible as this rule

244

produces path conditions where the School element in the contract pre-condition is
found, but the OrdinaryFacility element is not. Note that the analysis will ignore
rules that are both in the successful and failed path conditions to ignore common
rules such as the Son2Man rule.

The last two analysis precisely identify why the contract fails on the path
conditions. Based on the dependency analysis performed in Section 6.4.1, the
contract prover has a record of which elements and links the contract depends on for
each rule. In this example, the contract depends on the School and OrdinaryFacility
elements produced by the dfacilities...OrdinaryFacilityPerson rule.

As seen on the line marked d), the analysis picks a random path condition from
the failed set of path conditions to examine further. A matching is performed with
extra debugging information which indicates on the line marked e) that the School
- OrdinaryFacility traceability link could not be found in the path condition. This
path condition is represented in Figure 6.14 on the next page.

Visualization. Note that we intend to expand these analyses to better relay to
the user why a contract succeeded or failed. In particular, we are interested in the
visualization and debugging of the matching algorithm. Currently, path conditions
can only be visualized with an extremely unintuitive representation.

For example, a path condition where the SchoolOrdFac contract fails is shown in
Figure 6.14 represented as a collection of nodes and edges. This representation is
inefficient to reason about and understand why a contract fails on this path condition,
as the user must reconstruct the path condition in their heads as a combination of
the match and apply components of three rules.

Another critique of this visualization is the inability to see the structure which
would allow the contract to be satisfied. For example, the Neg_SchoolOrdFac
requires a School element connected to a Service element through an ordinary link,
not the special link shown in a pale yellow oval in the middle of Figure 6.14.

245

Match0

Apply1

Daughter2
Woman

Family3

Child

Woman

daughters

family

District

SpecialFacility

goesTo

Match10

Apply11

Neighborhood2
District

Neighborhood

Family14

schools

registeredIn

facilities

Match19

Apply20

d...SpecFacPerson

School

Service

specialstudents

members

Figure 6.14 – An unintuitive visualization of a path condition that fails to satisfy the
SchoolOrdFac contract.

In our collaborations with graph-based tool designers (such as the ModelVerse
project [158] and the AToMPM team [146]), we aim to create and promote a reusable
library for graph-matching visualization and debugging.

246

6.5 Conclusion

A primary focus of the development effort for SyVOLT has been on technical
and algorithmic improvements over the symbolic execution approach defined by
Barroca [19]. This significant effort was required because of the time and space
requirements of producing large number of path conditions for each transformation.

In a contribution of this thesis, we have presented in Section 6.2 our split
morphism matching algorithm. This algorithm is able to ‘split’ the nodes in the
pattern graph over the target graph, which is a unique property that we employ in
our path condition building and contract proving algorithms. Section 6.2 presents
a description of the algorithm along with experimental results on a database of
synthetic graphs.

A number of algorithmic techniques were also devised to decrease the time and
space taken for operation of the prover. Section 6.3 discusses the standard technique
of parallelization of the tool, as well as the domain-specific technique of slicing the
transformation and pruning invalid path conditions.

As well, we have also provided in Section 6.4 some analyses that we perform
during operation of the prover. These analyses ensure that a) the dependencies of
the contract and rules in the transformation are met, b) that all rules symbolically
execute during path condition construction, and c) the user is presented with
additional information to understand the result of contract proving.

247

Chapter 7

Case Studies

This section will describe the case studies involved in our development of the
contract prover. For each case study, we will present the origin and purpose of
the transformation, a selection of the rules and contracts involved, as well as any
relevant publications. These case studies are used in the preceding chapters of this
thesis as the tests for our performance results, such as the parallelization and pruning
optimizations in Section 6.3 on page 213.

Note that the contracts presented in this chapter have been selected to highlight
interesting features of the contract language, and to provide an intuition of what
information contracts can provide about a transformation. Future work will focus
on the process of creating contracts such that a transformation is sufficiently verified.

7.0.1 Case Study Sizes

Table 7.1 and Table 7.2 present metrics for the size and complexity of the case
study transformations and their respective meta-models. This provides an intuition
about the range of transformations that our technique can verify contracts for. Note
that the transformation may not cover the entire meta-model.

Table 7.1 on the next page contains the number of layers, rules, match elements,
apply elements, associations, attributes, and backward links for each case study.
Note that our case studies are ordered in increasing size and complexity.

248

Table 7.1 – Metrics for case study transformation size.

Num. Num. Num. Num. Num. Num.
Transformation Layers Rules Graph Elements Assoc. Attrib. B. Links

RSS-to-ATOM 7 7 Match 8 1 16 5
Apply 14 7 14

GM-to-AUTOSAR 8 9 Match 26 17 5 10
Apply 20 10 9

UML-to-Kiltera 8 17 Match 46 30 25 18
Apply 91 74 58

Families-to-Person 16 19 Match 46 39 14 24
Apply 33 14 10

mbeddr 6 46 Match 128 87 43 63
Apply 147 102 24

Table 7.2 on the following page displays information about the input and output
meta-models for each transformation, and details the number of classes, associations,
containment associations, and inheritance relationships present in each meta-model.

7.0.2 Contract Description

Contracts are detailed in this section by providing an informal statement of the
intention of the contract, a graphical representation, and how many path conditions
the contract is satisfied or not satisfied by. As well, the total time to prove each
contract will be reported, including the end-to-end time for prover operation and
only the use of the parallelization optimization. This total time thus represents the
intended use of the prover by a transformer verifier.

As in Section 4.4, a contract’s success on a path condition means that both
the contract’s pre-condition and post-condition (including backward links) matched
onto the path condition, while failure means that the pre-condition matched, but the
post-condition did not.

Note that this section will describe contracts that we expect to fail on some path
conditions for the transformation. In these cases, a brief explanation will describe

249

Table 7.2 – Metrics for case study meta-model (MM) size.

Num. Num. Num. Num. Num. Inheri.
Transformation Classes Assoc. Containment Attrib. Relations

RSS-to-ATOM
Input MM 9 16 9 45 0
Output MM 14 23 17 38 6

GM-to-AUTOSAR
Input MM 6 10 5 5 0
Output MM 13 13 9 8 3

UML-to-Kiltera
Input MM 42 51 20 6 41
Output MM 30 41 35 9 20

Families-to-Persons
Input MM 11 21 11 3 7
Output MM 12 8 6 2 9

mbeddr
Input MM 77 41 26 3 84
Output MM 66 30 24 2 71

the rule interactions that prevent the contract from holding. This information is
provided by the contract analysis component of our contract prover, discussed in
Section 6.4 on page 237.

These contracts therefore increase our confidence in the correctness of our
transformation, as the prover will produce counter-example path conditions where
the contract does not hold. As the path condition represents the application of
a particular set of transformation rules, this allows the user to reason about the
interaction between the rules, and determine whether the transformation is erroneous
or not.

250

7.1 RSS2ATOM

As our simplest case study we present the RSS2ATOM transformation. This
transformation has its origins in the ATL zoo [2], and was converted to DSLTrans
by our higher-order transformation, as described in Section 5.2.1 on page 164.

The transformation is designed to transform models from the RSS language to
the ATOM language. Both RSS [10] and ATOM [108] are structured markups for a
web feed, where a user can subscribe to receive data such as blog posts or podcasts.

For example, the RSS meta-model contains elements such as Channels with a
title and language, while the ATOM meta-model contains elements such as an Entry
with multiple Authors.

7.1.1 Transformation

The RSS2ATOM transformation is presented in Figure 7.1. Note that our higher-
order transformation (Section 5.2.1) produces DSLTrans transformations with a
particular layout, where each layer contains one rule. As such, the rules can be
grouped into two parts. The first part, consisting of the rules up to Item2Entry,
matches elements in the input graph and creates elements and attributes in the
output graph. The second part of the transformation detects previously-built
elements using backward links, and creates associations in the output model.

251

Figure 7.1 – The RSS2ATOM transformation.

252

7.1.2 Contracts

The contracts presented in this section were created by the author as simple
examples for verification of the RSS2ATOM transformation.

Channel Production

Statement: A Channel in the input model should always produce an ATOM element

connected to both an Entry and a Generator element in the output model.

Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 6

Path Conditions Failed On: 0

Path Conditions Succeeded On w/ Pruning: 4

Path Conditions Failed On w/ Pruning: 0

Total Time to Prove: 2.04 seconds

Figure 7.2 – Channel Production contract.

Explanation: The Channel2ATOM rule will produce the necessary ATOM element.

Then, as both the last two rules in the transformation only match on an ATOM element

produced by a Channel element, all three rules will necessarily execute together.

253

Entry Content

Statement: If an Entry element exists in the output model, then that Entry element

should be connected to a Content element.

Expected Result: Does not hold for all path conditions

Path Conditions Succeeded On: 5

Path Conditions Failed On: 3

Path Conditions Succeeded On w/ Pruning: 2

Path Conditions Failed On w/ Pruning: 2

Smallest Successful Rule Set: {Item2Entry, outcontentSolveRefItemEntryContent}

Smallest Failed Rule Set: {Channel2ATOM, outentrieSolveRefChannelATOMEntry}

Total Time to Prove: 2.04 seconds

Figure 7.3 – Entry Content contract.

Explanation: The successful rule set produces an Entry connected to a Content element.

In the failure rule set, an Entry element is produced that is connected only to an ATOM

element.

Note that this contract uses the If-Then construct detailed in Section 4.6 on page 143.

This means that the if contract must hold on the path condition for the then contract to

be considered, and that both components must match for the contract to hold on the path

condition. The equals line between the contracts the figure means that the same element

must be matched over by both components of the If-Then construct.

254

7.2 GM-to-AUTOSAR Transformation
The following two transformations were developed in collaboration with colleagues at

Queen’s University. This collaboration led to a number of publications and a PhD thesis,

showing how our technique is applicable to industrial case studies [137, 136].

One of the transformations produced during this collaboration was an industrial

transformation termed GM-to-AUTOSAR [137]. The transformation operates on input

models defined in a proprietary legacy metamodel used at General Motors (GM) for Vehicle

Control Software development. The output metamodel is the automotive industry-standard

AUTomotive Open System ARchitecture (AUTOSAR) [4]. Therefore, this transformation

is intended for model-evolution purposes, specifically migrating the input models to the

new standard for greater interoperability with tools.

As there are concerns with propriety information in the transformation, we refer the

interested reader to the thesis of Selim [135] for a description of the transformation, meta-

models, and the remainder of the contracts.

7.2.1 M6 Contract

This section presents the M6 contract from the GM-to-AUTOSAR transformation.

This contract was selected due to the subtle semantics implied by the use of negation in

the contract.

M6

Statement: If an System element exists in the output model, then that System element

should be connected to a SystemMapping element, and not (always) connected to two

SystemMapping elements.

Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 8

Path Conditions Failed On: 0

Path Conditions Succeeded On w/ Pruning: 8

Path Conditions Failed On w/ Pruning: 0

Total Time to Prove: 2.54 seconds

255

Figure 7.4 – M6 contract.

The M6 contract also displays the use of the propositional contract language described

in Section 4.6. In this case, the contract is made up of three sub-contracts, as shown in

Figure 7.4. The intention is that if the left contract matches, then the centre contract

should match, and not the right contract. This contract therefore uses the If-Then, And,

and Not constructs present in the contract language.

We also wish to bring attention to the always qualifier in the statement for the contract.

As explained in Section 4.6 on page 143, the presence of the Not operator subtly changes

the intention of the contract.

7.3 UML-to-Kiltera Transformation
As another case study, we examined a transformation for transforming a subset of UML-

RT state machine diagrams into Kiltera, which is a language for timed, event-driven, mobile

and distributed simulation [120].

The transformation was proposed in [117] and developed in [121]. This transformation

was previously studied in our research to obtain insights into the contract-proving

process [136], and was also a case study for earlier contract proving publications [112, 113].

Due to the size and complexity of the UML-to-Kiltera transformation, we refer the

reader to the thesis of Selim [135] for full details, including the meta-models and majority

of contracts for this case study.

256

7.3.1 Contracts

The PP3 and SS1 contracts have been selected for presentation as they demonstrate

complicated behaviour. The PP3 contract contains many input and output elements as

well as many backward links and two attributes to match. The SS1 contract is relatively

simple but produces a non-trivial set of counter-examples.

PP3

Statement: A composite State element connected to ExitPoint and Transition elements

should produce an Inst element connected to four Name elements, as well as a Trigger

element with a sh_in channel.

Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 108

Path Conditions Failed On: 0

Path Conditions Succeeded On w/ Pruning: 108

Path Conditions Failed On w/ Pruning: 0

Total Time to Prove: 6.82 seconds

257

Figure 7.5 – PP3 contract.

SS1

Statement: If an Inst element exists, there must also exist a ProcDef, where the name of

the ProcDef is the same as the letter S added to the name of the Inst element.

Expected Result: Holds for all (non-trivial) path conditions

Path Conditions Succeeded On: 621

Path Conditions Failed On: 21

Path Conditions Succeeded On w/ Pruning: 549

Path Conditions Failed On w/ Pruning: 7

Total Time to Prove: 7.16 seconds

Smallest Successful Rule Set: {State2ProcDef, BasicStateNoOutgoing2ProcDef,

BasicState2ProcDef, CompositeState2ProcDef, State2HProcDef }

Smallest Failed Rule Set: {Transition2Inst}, or {Transition2QInstOut}, or

{Transition2QInstSIBLING}

258

Explanation: If only these three rules execute (in any combination), then an Inst element

is produced but a ProcDef element is not.

Figure 7.6 – SS1 contract.

7.4 Families-to-Person Transformation
The main experiment for our contract prover development is the Families-to-Persons

transformation, as described in Section 2.2.

This case study provides excellent motivation for the use of our non-isomorphic matching

algorithm (Section 2.3.2.2 and Section 6.2). For example, multiple rules and contracts in

the Families-to-Persons transformation contain the Family element. Our contract prover

must be able to correctly perform non-isomorphic matching of the contract onto a path

condition such that if the Family element exists in two rules in the path condition, the

contract prover must resolve whether these elements match over separate elements in the

input model, or over the same element. This example is presented in the section on contract

verification in Section 4.4.2.3 on page 133.

259

As well, even though this is a synthetic (non-industrial) transformation, it is one of

the larger transformations we have studied as shown in Table 7.2. As such, it provides an

interesting case study for the implementation optimizations discussed in Section 6.3.

Figure 7.7 on the following page and Figure 7.8 on page 262 display the Families-

to-Persons transformation, which contains nineteen rules each in their own layer. This

structure is because this transformation was created automatically through a higher-order

transformation, which converts an Atlas Transformation Language (ATL) [3] transformation

into DSLTrans. This higher-order transformation is further discussed in Section 5.2.1.

260

Figure 7.7 – The first nine rules of the Families-to-Persons transformation.

261

Figure 7.8 – The last ten rules of the Families-to-Persons transformation.

262

7.4.1 Contracts

The majority of the contracts for the Families-to-Persons transformation are presented

here. While the contracts were created synthetically, they aim to cover the meta-model,

as well as provide examples for contracts that are not satisfied and examples of attribute

usage.

Note that the following division of contracts into sections is primarily for readability,

as they address different areas of the source and target meta-models.

7.4.1.1 Families-to-Persons Contracts

Pos_FourMembers

Statement: A Family with a father, mother, son and daughter should always produce two

Man and two Woman elements connected to a Community.

Expected Result: Holds for all (valid) path conditions

Path Conditions Succeeded On: 113

Path Conditions Failed On: 493

Path Conditions Succeeded On w/ Pruning: 21

Path Conditions Failed On w/ Pruning: 0

Total Time to Prove: 14.99 seconds

263

Figure 7.9 – Pos_FourMembers contract.

Smallest Successful Rule Set: {Country2Community, Father2Man, Mother2Woman,

Daughter2Woman, Son2Man, copersons...ParentCommunityMan, copersons...Parent-

CommunityWoman, copersons...ChildCommunityMan, copersons...ChildCommunityWoman}

Smallest Failed Rule Set: {Father2Man, Mother2Woman, Daughter2Woman,

Son2Man}

Explanation: Without pruning the invalid path conditions (as described in

Section 6.3.3), path conditions are produced which do not properly connect to the

Community element. Note the absence of the copersons... rules in the failure set as

compared to the success set.

In Section 6.3.3 on page 229 we describe how these path conditions are invalid because

of this missing containment link.

264

Pos_MotherFather

Statement: The full name of a produced Person is correctly created from the

concatenation of the first name of the Member and the last name of his/her Family

Expected Result: Holds for all (valid) path conditions

Path Conditions Succeeded On: 716

Path Conditions Failed On: 1004

Path Conditions Succeeded On w/ Pruning: 72

Path Conditions Failed On w/ Pruning: 0

Total Time to Prove: 14.95 seconds

Figure 7.10 – Pos_MotherFather contract.

Smallest Successful Rule Set: {Country2Community, Father2Man, Mother2Woman,

copersons...ParentCommunityMan, copersons...ParentCommunityWoman}

Smallest Failed Rule Set: {Father2Man, Mother2Woman}

Explanation: As with the Four Members contract, pruning removes those path

conditions where the output elements are not connected to the Community element.

265

Neg_DaughterMother

Statement: A Family with a mother and a daughter will always produce a Man

Expected Result: Does not hold for all path conditions

Path Conditions Succeeded On: 1592

Path Conditions Failed On: 380

Path Conditions Succeeded On w/ Pruning: 63

Path Conditions Failed On w/ Pruning: 21

Total Time to Prove: 14.82 seconds

Figure 7.11 – Neg_DaughterMother contract.

Smallest Successful Rule Sets: {Mother2Woman, Daughter2Woman, Son2Man} or

{Father2Man, Mother2Woman, Daughter2Woman}

Smallest Failed Rule Set: {Daughter2Woman, Mother2Woman}

Explanation: A Man element will not be produced from an all-female Family.

266

7.4.1.2 Location Contracts

Pos_AssocCity

Statement: A Community that contains a City with a Company should produce a

Community with a TownHall and a Committee

Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 1722

Path Conditions Failed On: 702

Path Conditions Succeeded On w/ Pruning: 170

Path Conditions Failed On w/ Pruning: 0

Total Time to Prove: 14.93 seconds

Figure 7.12 – Pos_AssocCity contract.

Smallest Successful Rule Sets: {Country2Community, Mother2Woman,

City2TownHall, cotownHalls...TownHall, tworkers...Person } or { Country2Community,

CityCompany2Association, City2TownHall, acommittee...Committee, cotownHalls...TownHall}

Smallest Failed Rule Set: {Country2Community, CityCompany2Association,

City2TownHall, acommittee...Committee, coassociations...Association}

Explanation: Note that in the failure rule, the cotownHalls...TownHall rule is not

executed. This only occurs when pruning is deactivated. In the meta-model, Associations

are contained by TownHalls by the association built in this rule. Therefore, the path

conditions where the contract fails only appears when pruning is not activated.

267

Pos_ChildSchool

Statement: If a Child goesTo a School that has a special Service, then a SpecialFacility

has to be created that has the Person created from the Child as members

Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 2024

Path Conditions Failed On: 0

Path Conditions Succeeded On w/ Pruning: 84

Path Conditions Failed On w/ Pruning: 0

Total Time to Prove: 14.65 seconds

Figure 7.13 – Pos_ChildSchool contract.

Smallest Successful Rule Set: {Country2Community, Daughter2Woman, Neigh-

borhood2District, City2TownHall, copersons...Woman, cotownHalls...TownHall, tdis-

tricts...District, dfacilities...SpecialFacilityPerson }

268

Neg_SchoolOrdFac

Statement: An OrdinaryFacility should be created from each School

Expected Result: Does not hold for all path conditions

Path Conditions Succeeded On: 2024

Path Conditions Failed On: 1012

Path Conditions Succeeded On w/ Pruning: 84

Path Conditions Failed On w/ Pruning: 42

Total Time to Prove: 13.96 seconds

Figure 7.14 – Neg_SchoolOrdFac contract.

Smallest Successful Rule Set: {Country2Community, Son2Man, Neighbor-

hood2District, City2TownHall, copersons...Man, cotownHalls...TownHall, tdistricts...District,

dfacilities...OrdinaryFacilityPerson}

Smallest Failed Rule Set: {Country2Community, Son2Man, Neighborhood2District,

City2TownHall, copersons...Man, cotownHalls...TownHall, tdistricts...District, dfacili-

ties...SpecialFacilityPerson }

Smallest Successful Rule Set without Pruning: {Son2Man, Neighbor-

hood2District, dfacilities...OrdinaryFacilityPerson}

Smallest Failed Rule Set without Pruning: { Son2Man, Neighborhood2District,

dfacilities...SpecialFacilityPerson }

269

Explanation: A School will be transformed into a SpecialFacility if it provides a special

Service. Also of note is that when pruning is deactivated, the path conditions indicated

precisely specify the problematic rules.

7.5 mbeddr
The mbeddr transformation is a selection of rules from the open-source mbeddr

project [9]. The aim of the mbeddr project is to provide high-level constructs for the

incremental, modular, and domain-specific extension of C with a focus on embedded

software development [169]. C code is mixed with mbeddr code inside the Meta

Programming System editor [8] to define constructs such as interfaces and components,

and then C code is generated using transformation rules. This approach has been shown

to increase the quality of software by raising the level of abstraction [168].

This case study is currently under development in collaboration with itemis AG, fortiss

GmbH, and Cláudio Gomes at the University of Antwerp.

7.5.1 Transformation

The mbeddr transformation is presented in Figure 7.15 on the next page. Note that

we consider this transformation to be quite large, as it contains 46 rules of non-trivial

complexity. As such, it is not feasible to explain every rule, and we present the figure only

to provide a sense of scale and complexity.

Full Verification. Table 7.3 on page 272 shows the time and space characteristics when

the AssignmentInstance contract is verified on the full mbeddr46 transformation on the

supercomputer. Note that the parallelization optimization was enabled to reduce time

taken.

This shows that while the full mbeddr transformation can be verified, a powerful

computer is required. Note that over 1.2 million path conditions were generated, which

required 17 gigabytes of disk space. Our efforts will continue to bring these metrics down

such that contract verification can occur on a desktop machine.

270

Figure 7.15 – The mbeddr transformation.

271

Table 7.3 – Performance when verifying the AssignmentInstance contract on the full
mbeddr46 transformation on the supercomputer.

Transformation Num. Build PCs Contract Proof Memory Disk Usage
PCs Time (s.) Time (s.) (MB.) (MB.)

Without Pruning 1211888 1847.19 285.07 3815 17949
With Pruning 625486 1112.48 142.00 1949 7452

272

7.5.2 Contract

Figure 7.16 shows the complicated AssignmentInstance contract for the mbeddr

transformation.

Figure 7.16 – AssignmentInstance contract.

Contract Intention. The mbeddr transformation defines a mapping between a high-level

language and the C language, allowing a developer to abstract over concepts such as binding

components to ports. This intention of this contract is to ensure that the transformation is

correctly translating a binding between ports in the input model to a binding in the output

model.

In the pre-condition of the contract, an AssemblyConnector element connects a source

RequiredPort with the target ProvidedPort.

If these elements are present in the input model, then there must be an AssignmentExpr

element produced. As well, the left association of the AssignmentExpr must be connected

to a GlobalVariableDeclaration, a StructDeclaration, and a Member. Note that all three of

273

these elements must have certain strings at the end of their name, as the Kleene star in

Figure 7.16 indicates a Wildcard element.

The right association of the AssignmentExpr must also connect to another

GlobalVariableDeclaration. produced from the ComponentInstance connected to the

ProvidedPort in the input model.

Assignment Instance

Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 2

Path Conditions Failed On: 2

Explanation: The failure of this contract was unexpected when we were developing this

case study. The contract analysis (Section 6.4) indicates that the critical rule which must

execute for this contract to hold is layer1rule10, seen in Figure 7.17a on the next page. This

rule connects the StructDeclaration element to the Members produced by the RequiredPort.

Another useful tool in the analysis of contracts is the prover’s ability to determine

the dependencies between rules. This feature is used in slicing, which reduces the

transformation to only those rules needed for a particular contract (Section 6.3.2).

For this contract, the dependency analysis indicates that the layer1rule10 rule depends

on the layer0rule7, layer0rule9, and layer0rule10 rules. The latter two rules are shown in

Figure 7.17b. The critical observation here is that while the layer0rule9, and layer0rule10

rules produce the necessary Member elements, the layer1rule10 rule still requires the

contents association between an AtomicComponent and the RequiredPort. Thus, there

are possible transformation executions where the layer1rule10 rule does not apply.

We are in the process of relating the insights gained through this contract debugging

process back into the mbeddr transformation itself. In particular, the contract proof result

highlights how critical the layer1rule10 rule is. We are working with the transformation

designer to determine if the transformation is at fault and needs to be changed to enforce

that this rule always applies. Another solution is that the transformation is correct, and

the contract must be changed such that the layer1rule10 rule is assumed to always execute.

274

(a) The layer1rule10 rule.

(b) Rules producing Members from

RequiredPorts

Figure 7.17 – Rules critical to the proving of the AssignmentInstance contract.

275

Chapter 8

Related Work

This section will describe literature related to the topics presented in this thesis. First,

comparisons between DSLTrans and other model transformation languages will be made.

Second, works related to the proving of pre-condition/post-condition contracts will be

presented. And finally, tools and algorithms related to various facets in our SyVOLT

contract prover tool are highlighted.

8.1 DSLTrans
DSLTrans is a graph-based model transformation language. As such, it is similar to

many other languages that also manipulate typed graphs in a rule-based way. This list

includes AGG [147], VIATRA2 [18], ATL [74], and VTMS [92], which will be discussed

throughout this section.

8.1.1 Graph Transformation Formalism

In this thesis, we have described the semantics of DSLTrans in the double-pushout

approach, which is not the only formalism seen in the model transformation language

literature [148].

For example, a conceptually-similar method to the double-pushout approach is the use

of a triple-graph grammar (TGG) [134, 80]. A TGG relates structures in the source and

target meta-models through a explicitly defined correspondence model. This approach

276

allows the source and target model to be synchronized at all times, or to find the

correspondences between a given input and output model. Many transformation languages

use this underlying formalism [67] and a variety of tools exist to define and execute TGG

transformations [61]. TGGs also support the use of attribute matching and rewriting in

both the forward and backward direction [90, 68].

Note that this correspondence graph is similar to the traceability and backward links

(Section 2.2.4) in DSLTrans. However, in TGGs the use of this correspondence graph

allows bi-directional transformation, where the transformation can execute in one direction

or the other. In DSLTrans, the transformation is restricted to execute only in the forward

direction.

Future work will determine if the semantics of DSLTrans can be placed within the

TGG approach. However, the double-pushout approach used in this work appears to be

more applicable to the matching and rewriting steps performed in the contract verification

portion of this research. In particular, it is unclear how the typed graph split morphism

can be used in the TGG approach.

Models and transformations may be defined in a textual notion as well [45]. For example,

the PETE transformation framework [132] can be used to create declarative, relational

transformations in Prolog form.

The Maude language and framework provides a transformation language which is based

on rewriting logic [42]. This logic can operate on state and non-deterministic concurrent

computations by rewrite terms [128]. This logic may not be terminating or confluent, but

Maude plug-ins provide analysis for these properties, as well as reachability and temporal

logic properties. Riveria et al. also discuss the conversion of graph-based transformation

specifications into Maude to benefit from Maude’s analysis capabilities [129].

8.1.2 In-place versus Out-place

As described in Section 2.2, DSLTrans is an out-place and non-deleting language. This

means that rules are permitted to only create elements in an output model, which must

be different from the input model. This precludes the use of DSLTrans for simulation or

refinement transformations [102], and as such we target translation transformations for our

case studies (Chapter 7).

277

Other transformation languages do not have this restriction. For example, AGG is also

based on algebraic graph transformations like DSLTrans, but allows for element deletion

and model rewriting [147]. As well, Henshin [14] can execute endogenous (same input and

output meta-models) and in-place transformations on EMF models.

Section 5.2.1 describes how ATL [74] can be used as an out-place translation language

with similar semantics to DSLTrans. Our previous research of Oakes et al. [113] shows how

a higher-order transformation can be made to convert declarative ATL transformations into

an equivalent DSLTrans version. However, ATL can function in both the in-place and out-

place modes, and any ATL transformation defined as an in-place (refining) transformation

cannot be converted.

8.1.3 Control Flow

Some transformations languages and frameworks offer flexibility in the way that rules

are scheduled. This provides the user with more expressiveness than the layering approach

of DSLTrans, but then confluence and termination may not be guaranteed. For example, the

T-Core transformation primitives described in Section 5.3.2 on page 180 allow for complex

combinations to compose transformation languages.

The GreAT transformation language [77] is rule-based like DSLTrans, but has additional

features such as a control flow language containing constructs for sequencing of rules, non-

deterministic parallel firing of rules, hierarchy, recursion, and conditional branching. As

well, the Fujaba tool [57] (which is based on the Progres graph transformation language)

allows transitions in a control flow language with constructs such as repeating rules or

applying a rule when another matches.

8.1.4 Confluence and Termination

Model transformation verification techniques may require that the transformation be

confluent and/or terminating for proper analysis. However, these properties can be shown

to be undecidable for graph-based transformation languages [118, 119].

As mentioned in Section 3.2, DSLTrans’ transformation are terminating and confluent

by construction. This is achieved through construction, as the out-place semantics and

layer-based operation means that models can only monotonically grow, and that there are

no looping constructs.

278

For other languages, different confluence criteria and analysis techniques are found in

the literature [72, 87, 88]. For example, techniques for critical-pair analysis (Section 3.4.1)

are found within the Henshin [33] and AGG tools [131] to identify those rules that conflict

by removing or adding elements that other rules depend on. The work of Lambers et

al. investigates the difficult notion of confluency when rules contain negative application

graphs [89].

The problem of determining termination has led to a number of proposed criteria, as well

as criteria analysis techniques, for transformations written in graph based transformation

languages [47, 51, 166, 35].

An example of termination criteria is the creation of subsets of rules to examine

termination dependencies, as present in the work of Bisztray and Heckel [31]. In that

work, a graph is created to represent the interaction of rule negative application conditions

with element creation and deletion. An acyclic dependency graph then demonstrates that

the transformation will terminate.

The work of Biermann et al. [30, 29] focuses on formulating Eclipse Modelling

Framework (EMF) model transformations [141] as typed graph transformations. The

difficulty is that EMF models have containment relations such that there must be a path

from a node to a root node. Therefore, Biermann et al. specify refactoring rules as algebraic

graph transformations which obey the containment relation constraints. These refactoring

rules are then shown to be confluent and terminating.

8.2 Model Transformation Verification
This section will discuss approaches for verification of model transformations. Properties

of interest include termination, confluence, deadlocking or the guarantee that the

transformation will preserve attributes of the original model.

However, the verification procedure is complicated by a number of factors, such as

extremely large models or transformation, the wide variety of languages used to create

transformations, and state-space explosion in determining all possible rule executions [123].

In this thesis, we tackle a number of these factors by employing the double-pushout

approach, using our abstraction approach (Section 4.1), our match morphism which reduces

279

the state-space (Section 2.3.2.2), and algorithmic optimizations to the contract prover

(Section 6.3).

An approach to model transformation verification is to convert or compile the model

transformation into another formalism for verification. This approach can leverage

verification work performed in other domains. For example, the work of Gerking et al. [58]

verifies reachability, safety, and liveness properties on a cyber-physical system model. This

model is transformed into a network of timed automata, which is then verified using the

UPPAAL tool suite [24]. The result of UPPAAL verification is combined with traceability

links kept during the conversion from the original model to bring the counter-example back

into the domain-specific language.

Another approach to model transformation verification involves semantic analysis of the

transformation under study as well as the input and output languages. The work of Giese

et al. [60] concerns relating the semantic equivalence of a transformation’s arbitrary input

model to a transformation and the programming language code produced as output. The

verification result is obtained through conversion of the transformation to hundreds of lines

of proof code, which is fed as input to a theorem prover.

In Barroca et al. [20], operational semantics are provided for the input and output

languages using SOS. Then a DSLTrans transformation is provided which maps the input

language constructs to the output language constructs. This approach is able to check that

the semantics of the transformation are preserved and provide counter-examples if they are

not.

8.2.1 State-space Analysis

An approach for model transformation verification is to represent the state-space of the

transformation. This state-space can then be checked for properties of interest.

For example, the work of Varró et al. [165] explores the use of planner algorithms

for model transformations. Planner algorithms are a technique from artificial intelligence

research where an initial and goal state are described, and then the system tries to find

a path of rules to traverse between them. In that work, the planner algorithm is used to

prove that the paths of transformation rules conforms to a graph grammar.

A later paper by Varró focuses in generating a transition system for a transformation

given the meta-model, the rules in the transformation, and a valid instance model [163].

280

The state space is then built by matching the rules onto the instance model in different

combinations. The resulting transition system is then checked for a safety property and

deadlock.

A similar transition system is also seen in work by König and Kozioura, where

transformations are approximated by Petri graphs which contain model nodes with an

overlaid Petri net [83].

The work of Becker et al. [23] proposes a technique for checking a dynamic system

for safety properties by creating the state-space backwards from undesirable unsafe states.

Counter-examples are then found by searching for invariants encoded in the rules of the

transformation.

The GROOVE tool is similar to our research, as it can specify, play, and analyse graph

transformations [59]. GROOVE also operates on a start instance graph, and then builds the

state-space of rule application as graphs. For example, Rensink et al. [126] check for safety

and reachability properties that are expressed as constraints over graphs by employing this

state-space technique.

However, as with any state-space exploration problem, difficulties arise in avoiding a

state-space explosion. A number of GROOVE studies [125, 22, 127] deal with this problem

by introducing abstractions over the state-space. For example, [125] introduces the idea

of shape graphs, which abstractly represent portions of the graph. Rule application may

therefore effect only this abstracted portion of the graph, leaving the state unchanged.

This abstraction over the structure of the graph has parallels to our representation of

path conditions as combinations of rules. In our work, we leave the issue of which rule

elements overlap abstracted (Section 4.1), but we retain the full structure of each rule. As

well, our abstraction relation defines a lower bound on rule application.

8.2.2 Contract Proving

The notion of contracts is to provide guarantees on the system under study. As described

in Section 4.6, contracts can be divided into various classifications. The most common

contract seen in the literature is the pattern contract type, or as termed in the classification

of [26], a syntactic contract. Such contracts check whether certain elements in the input

model will produce certain elements in the output model.

281

As an example of verification of semantic contract checking, the work of Dragomir et

al. [49] defines behavioural contracts on SysML models. These models are transformed to

the timed input/output automata formalism where the verification takes place.

The work of Akehurst and Kent [12] defines structural relations between the meta-

models of the abstract syntax, concrete syntax and semantics domain of a fragment of UML.

These triple-graph-grammar-like relations also encode OCL constraints [170] between the

elements in the meta-model, which can be seen as an early (yet perhaps more powerful)

version of the contracts we address in our work.

OCL constraints can also be used for the verification of model transformations

themselves, such as in the work of Cariou et al. [39]. Their work defines a contract as

constraints on the source model of a transformation, constraints on the target model.

and constraints on ‘element evolution’. These latter checks are defined as mappings

between source model elements (classes, attributes), and target model elements. The

technique therefore requires an input model and output model to the transformation, and

the transformation must be endogenous.

Related OCL constraint work looks at the effect of transformation rules on the

constraint. For example, the work of Clariso et al. [41] takes as input an OCL constraint

and a transformation rule, and produces a constraint that holds before the application of

the rule if and only if the original OCL constraint holds afterwards.

Narayanan and Karsai [107] propose verifying model transformations by writing

structural correspondence rules between source and target meta-model elements (with

optional attribute constraints). Similar to our contracts, these correspondence rules are

written as pre-condition/ post-condition structures. The authors specify that during the

execution of the transformation that cross-links (essentially our traceability links) are kept

between input elements and the output elements that are produced by the input elements.

Then, for one pair of input and output models, the correspondence rules are checked against

the cross-links. Thus the correspondence rules prove that output elements have been

successfully created. Note that while our work shares elements of the work of Narayanan

and Karsai, our technique focuses on proving the structural contracts across all executions

of the transformation.

282

The verification approach of Asztalos et al. [15] is based on the creation of an assertion

language that allows making structural statements about models at a given point of

transformation execution, as well as statements about the transformation steps themselves.

These model transformation assertions can express a) properties of the models under

transformation – “There are no elements of type T in the model”, b) properties of the

rules – “Rule r terminates”, or c) the modification that is performed in the rules – “Rule r

deletes all elements of type T from the model”.

The assertion framework also defines a number of deduction rules, which are formally

defined in the double-pushout approach. Therefore, the framework attempts to derive the

initial assertions in order to verify the properties. The deduction rule to be applied is

selected based on the assertion at a particular step in the transformation. The framework

presented is able to extract initial assertions from the transformation and prove properties

automatically. However, the authors note that this derivation may take many derivation

steps or even enter an infinite loop. Therefore a more specific reasoning system may be

needed.

Another technique of Asztalos et al. [92] applies to transformations written in the

VTMS transformation language. Note that this approach only requires the definition of

the transformation and the meta-models of the source and target languages. No concrete

input models are used for this verification, meaning that the result will hold for all possible

input models, as with our approach.

Guerra et al. [69] have proposed techniques for the automated verification of model

transformations based on visual contracts. Their work describes a rich and well-studied

language for describing syntactic relations between input and output models. These pre-

and post- condition graphs then are transformed into OCL expressions, which are fed into

a constraint-solver to generate test input models for the transformation. Their framework

algorithm then tests a transformation by executing it on a number of these input models,

and verifying them using the OCL expressions.

The approach is independent of the transformation language used. However the

verification technique used by Guerra et al. differs fundamentally from ours. Our

abstraction over rule multiplicity enables our approach to be exhaustive, while the approach

by Guerra et al. is aimed at increasing the level of confidence in a transformation through

283

coverage of test cases. A similar white-box generation approach is also seen in recent work

by González and Cabot [66].

In an approach by Büttner et al., an ATL transformation is mapped to a set of first-

order logic statements [37, 38]. The set of ATL handled is restricted in order to only

include terminating and confluent constructs, in an interesting parallel to our research

which also requires the reduction of expressiveness. Then, a Satisfiability Modulo Theories

(SMT) theorem prover can determine if all constraints can hold on the target models. This

is performed through the use of a model finder which will search for the negation of a

given OCL constraint that should hold. Note that the Alloy tool used performs bounded

verification, and as such does not guarantee that a counter-example would be found if

it exists. In contrast, our work will produce all counter-example path conditions for the

contract.

In work by Gogolla and Vallecillo [63, 154], the authors describe their method where

‘Tracts’ can be specified for model transformations. These tracts define a set of constraints

on the source and target meta-models, a set of source-target constraints, and a tract test

suite, i.e., a collection of source models satisfying the source constraints. The accompanying

TractsTool can then automatically transform the source models into the target meta-model,

and subsequently verify that the source/target model pairs satisfy the constraints. The

advantages of this are that the approach is not computationally-intensive, as tests can be

narrowly focused in a modular way.

There are several other approaches supporting the testing of model transformations

based on different kind of contracts such as model fragments [105], graph patterns [17],

Triple Graph Grammars (TGGs) [172], dedicated testing languages [82, 56], and even a

combination of these mentioned approaches [62].

8.3 SyVOLT Algorithms
This section will discuss work related to the algorithmic optimizations presented for our

SyVOLT contract prover tool in Section 6.3. As well, we discuss works related to analysing

and providing feedback for the transformation and its execution.

284

Note that the parallelization optimization we have performed on our prover

(Section 6.3.1) is not unique to the transformation verification domain, and we refer the

interested reader to works such as Kumar et al. [86] for a detailed examination.

Slicing. The slicing work on Section 6.3.2 shares similar characteristics to operations

performed in other fields, such as compiler slicing of programs [149]. In that work,

instructions in a program are selected as they relate to a property of interest.

Within the transformation verification literature, other approaches can be seen to be

similar to our work. For example, the work of Burgueneo et al. [36] compares the elements

in Tracts (discussed in Section 8.2.2) to the rules in the transformation. The intention is

to suggest to the user which rules are causing the Tract to fail.

However, this use of slicing differs from ours in two fundamental ways. First, the

approach of Burgueneo et al. focuses on guiding the user towards the problematic rules. In

our implementation, this analysis is performed by the algorithms detailed in Section 6.4,

where we report the interaction of rules that causes the contract to fail. Our slicing approach

is solely a performance optimization to reduce the number of path conditions that must be

created.

The second difference is that our sliced transformation absolutely must contain all rules

that could change the result of a contract being satisfied or not by a transformation. We

cannot afford a false result in our verification as is allowed in Burgueneo et al., and thus

our set of rules must be conservatively built.

The thesis of Ujhelyi [152] presents another expression of the slicing idea. In that work,

slices are based on variables present in the declarative transformation specification, and the

resulting slice is a combination of statements in the transformation, as well as individual

model elements that are involved in the statements. Therefore, this is a dynamic slice in

that the transformation is sliced for a particular model. In contrast, our slicing technique

is not model-dependent, but is instead contract-dependent.

Pruning. The work of Biermann et al. [30] is related to that of our pruning approach

defined in Section 6.3.3, in that both approaches rely on the presence of containment links

in the meta-model of a model. Biermann et al. focus on defining and validating that

refactoring rules for EMF models are consistent, in that containment links are respected at

285

all times. In our research, these containment links are used to define invalid output path

conditions that can be removed from the path condition generation process.

Note that pruning can also refer to other techniques in the literature, such as extracting

the relevant portion of a meta-model [139].

8.3.1 Contract/Transformation Analysis

The analyses in Section 6.4 assist the user in generating a path condition set such that

contracts can be proved. This is done by ensuring that dependencies are met, all rule

symbolically execute, and providing further analysis for the contract result. These analyses

share qualities with that found in the literature.

The thesis of Amstel [155] tackles the issue of evaluating the quality of a model

transformation. User studies are performed to rate transformations based on qualities such

as re-usability, completeness, and conciseness. The numeric ratings of these qualitative

facets of the transformation are then correlated with quantitative metrics, such as the

number of rules or variables in the transformation. This provides a guide for the

transformation designer to build intuitive transformations. As well, the thesis details

methods to visualize how the transformation covers the meta-model. While our approach

is currently focused on how the contract result relates to the current transformation, we

are examining how the prover can provide exact advice on increasing the quality of the

transformation.

Also related to understanding the transformation is the ability to visualize and debug

the execution of the transformation. As seen in Figure 6.14 on page 246, the SyVOLT

tool currently produces a very unintuitive graphic representation of path conditions, which

makes it difficult to understand how rules and contracts interact with that path condition.

A better approach is seen in the thesis of Ujhelyi [152], which provides derivation rules to

operate over the underlying model and produce a visualization. This reusable framework

allows for the decoupling of the model and its representation.

Another form of debugging is to visualize the execution of the transformation, both

before and after the application of rules as well as the actual matching and rewriting steps

of each rule [101, 100]. In particular, during development of SyVOLT we found that we

had two key questions regarding matching of the pattern graphs, why is this not matching,

when it should? and why is this matching, when it shouldn’t? We note that these debugging

286

questions are relatively simple, and yet the igraph and T-Core libraries used lack sufficiently

powerful debugging mechanisms.

In the literature, there has been recent success in explicitly modelling these steps in

both the simulation domain [157] and for model transformations themselves [75].

287

Chapter 9

Conclusion and Future Work

The practice of model-driven engineering is today recognized as an essential part of

industrial software development. As models become first-order artefacts for simulation,

code generation, and knowledge representation, it is imperative to be able to reason about

and modify these models in a structured way.

In this thesis, we have focused on reasoning about model transformations. In particular,

our research is on the verification of translation model transformations. These model

transformations take as input models which conform to one model language and produce

an output model which conforms to another language. As seen in our industrial case study

in Section 7.2, these translations can ensure that models are kept up-to-date in the industry

standard language.

The reasoning that our verification research performs is based on structural contracts,

which relate the elements in the input model to elements in the output model. Our technique

builds a state-space for the transformation through the use of symbolic execution, and

determines whether the contract is satisfied or not on each state in the state-space. If the

contract is not satisfied, then a counter-example is produced for the user which represents a

combination of rules which does not satisfy the contract. Thus, the user better understands

the transformation through the production of these counter-examples.

A critical issue with state-space exploration techniques is the reduction of the state-

space. In our research, we require that the transformation language be both terminating,

288

confluent, and without deletion of elements. In our research, the DSLTrans transformation

language fits these criteria.

9.1 Research Questions
The following sections will discuss the research questions posed in Chapter 1, our

solutions to each question, and a brief discussion of future work.

9.1.1 Formalization of DSLTrans

Chapter 3 discusses our answer to the first research question: How can the semantics

of a model transformation language with reduced expressiveness (DSLTrans) be precisely

formalized and brought to the state-of-the-art?

Our research depends on the use of a model transformation language with restricted

expressiveness and precise semantics. Previous work on DSLTrans demonstrated that this

language provided the termination, confluence, and non-deletion properties we required

for our path condition building and contract proving approaches. However, the precise

semantics of all DSLTrans constructs were not given, and where given were not placed in

the double-pushout formalization which is common in the model transformation literature.

Therefore, Chapter 3 defines the precise semantics of all DSLTrans constructs within

the double-pushout approach. This approach centres on the idea of morphisms to represent

the matching and rewriting steps of the rules in the transformation. Therefore, we have

provided the matcher and rewriter structures for DSLTrans rules. These structures are

employed in the creation of mass productions, which allow for the application of multiple

rules at once onto a target graph. This enforces the property in DSLTrans where a rule is

forbidden from matching on elements produced by another rule.

This thesis also makes the contribution of defining semantics for other constructs in

DSLTrans. In particular, we discussed the presence of negative elements in DSLTrans

rules. These elements prevent the application of rules through an extraction and matching

procedure. As well, we have provided precise semantics for indirect links, which match over

a transitive closure of the target graph, and Exists elements, which have restrictions on how

they match over the target graph.

289

This formalization of the language is primarily important to enable us to apply the

contract proving approach to DSLTrans. In particular, we require the specification of

negative elements and indirect links to fully represent these in our symbolic execution

approach. As well, the placing of DSLTrans in the double-pushout approach aligns us

with other model transformation languages, such that we can explore related tools and

approaches. This also increases the confidence of users of the transformation language,

including our industrial partners.

9.1.2 Formalization of the Contract Proving Approach

In Chapter 4 we have presented a symbolic execution technique for the DSLTrans

language, answering two of our research questions.

9.1.2.1 Abstraction Relation and Path Condition Creation

The first research question addressed was How can the infinite execution possibilities of

a transformation be represented in an explicit finite set?

Our solution to this question is based upon the definition of an abstraction relation

in Chapter 4.4. This relation allows us to create path conditions, which symbolically

represent the application of transformation rules. These path conditions abstract input-

output models, which are pairs of an input model to the transformation and the associated

output model. The elements present in these input-output models are represented in the

associated path condition, allowing us to determine how rule application creates elements

in the input and output models. This abstraction relation is presented along with a list of

examples which demonstrate how the conditions of the abstraction relation are necessary.

As a contribution of this thesis, we have discussed how our abstraction relation technique

can represent multiple applications of a rule. This allows us to build path conditions which

represent these multiple applications and therefore extend the range of contracts which we

can prove. We also discussed the consequences of this multiplicity representation for path

condition construction and contract proving.

Following the definition of the semantics for all DSLTrans constructs in Chapter 3,

we now extend our path condition building technique to all DSLTrans transformations.

Therefore, negative elements, indirect links, and Exists elements are now addressed within

our technique.

290

9.1.2.2 Contract Proving Approach

Chapter 4 also addresses a two-part research question: a) How can structural pre-

condition/ post-condition contracts be proven to be satisfied or non-satisfied on these

representations? b) When a contract is not satisfied, how do the counter-examples produced

relate to the transformation?

Part a) is discussed in Section 4.4, where we have presented our contract verification

technique. The contracts of interest are structural in nature, relating the elements in the

input model of the transformation to the produced output model.

The contract proving approach we follow determines whether the elements present in the

contract are present in the path conditions produced. If so, then through the abstraction

relation we know that these elements will also appear in the abstracted input-output models.

If not, then the path condition represents a counter-example to the contract.

The counter-examples allows the user to reason about the interactions between rules

and determine if the transformation behaviour is as expected. This contract verification

approach allows us to reason about the infinite set of transformation input-output models

by examining a finite set of path conditions.

9.1.3 Design of SyVOLT

Our fourth research question What is the design and work-flow of a contract verification

tool? is addressed in Chapter 5.

In that chapter, we focus on providing relevant details for our implementation of the

path condition building and contract proving processes. In particular, we highlight how our

SyVOLT tool fits into the model-driven and multi-formalism paradigm with a presentation

in Section 5.1 of a Formalism Transformation Graph and Process Model. This allows for

the elegant expression of the work-flow of the tool.

Chapter 5 also presents the mechanisms for creating transformations and contracts in

two modelling tools, Eclipse (Section 5.2.2) and MPS (Section 5.2.3). The creation of these

plug-ins allows for our contract proving approach to be used by these two large research

and development communities.

As well, we discuss a few low-level details of the SyVOLT tool in Section 5.3. These

details include the representation of typed graphs within our tool which provides context for

291

our scalability techniques, as well as the model manipulations we perform in the PyRamify

component which provides motivation for reasoning about model transformations at a

higher level.

9.1.4 Algorithmic Scalability Techniques

Chapter 6.3 discusses our solution to our last research question: What are techniques

for improving the scalability of the verification tool to allow for larger transformations to be

verified?

As discussed in that chapter, the production of a state-space for a transformation suffers

from exponential resource requirements as the transformation size increases. Chapter 6.3

therefore details three algorithmic techniques for reducing these requirements. The first

technique is to make the path condition generation and contract proving algorithm

parallel such that multiple operations can take place at one time. Slicing is the second

technique, wherein only those rules relevant to the contract being proved are retained in

the transformation. Finally, we examined the pruning technique, where study of the output

meta-model of the transformation reveals conditions where path conditions can be declared

invalid and removed.

Results were provided for each of the techniques for our case studies (Chapter 7),

displaying how they are beneficial to reducing the time taken by the contract prover. In

particular, our numeric results indicate that our technique is scalable and widely applicable,

as we can prove multiple contracts on relatively large transformations.

9.2 Future Work
This thesis has presented our contribution to contract verification for DSLTrans model

transformations. This was achieved by providing an end-to-end approach, such that a)

the precise semantics of DSLTrans was presented, b) the contract proving approach was

discussed with examples, c) the SyVOLT tool was introduced, and d) the tool was shown

to be scalable to our case studies.

This section will examine the future work possible in this research.

292

9.2.1 Transfer Contract Proving Approach

A large part of the current thesis has focused on the formalization of the DSLTrans

language and the contract proving approach within the double-pushout approach. This

approach was selected as it is common within the model transformation community, and

multiple verification techniques and tools exist.

Therefore, a future direction of research is to transfer our contract proving approach

to be applicable to other double-pushout/ graph transformation languages. In particular,

it may be sufficient to define a short list of restrictions to be placed on a language to fit

our contract proving technique. An initial list would include restrictions like termination,

confluence, non-deletion, and layer-based.

Extending our approach to a new language may be as simple as defining matchers and

rewriters for the rules in the language, similar to that performed in Section 3.1.4. As well,

any constructs in those languages not handled in the current thesis would have to be added

to the path condition generation and contract proving techniques.

Further generalization to languages that allow deletion, non-termination, or other

relaxations of expressiveness may be possible. However, as these restrictions are so core to

our approach, an entirely new verification approach may need to be taken.

9.2.2 Creation Process for Contracts

As with other verification approaches, it is not trivial to determine which properties are

of interest for a transformation. For our case studies, the contracts were non-systematically

created to verify certain properties, which may miss interesting or erroneous behaviours in

the transformation.

Future work will focus on determining a systematic way of creating contracts to fully

verify a transformation. In particular, we will work with transformation developers (such as

the creators of the mbeddr transformation in Section 7.5 on page 270) to understand what

properties are of interest, and how these properties should be translated into contracts.

One possible approach to contract generation is to have the transformation designer write

sentences about the properties they wish to prove, and generate contracts directly from

these sentences.

293

9.2.3 Integration with Modelling Tools

Another direction of our research is to integrate our contract proving approach

with academic and industrial tools. In particular, we are interested in integrating

our language into other model transformation engines such as VIATRA [25] and the

ModelVerse [158, 160]. This integration would be made possible through the extension

of our contract proving approach to the transformation languages defined in those tools, or

by providing plug-ins such that DSLTrans transformations and contracts can be created.

We are also interested in examining how our algorithmic scalability techniques and modular

tool components can be transferred to other domains and modelling tools.

A critical aspect of model-driven engineering is to model everything explicitly and at

the correct abstraction level. We have attempted to follow this principle in our approach

to developing our SyVOLT tool. However, the PyRamify component breaks this principle,

as it is encoded as Python scripts which use explicit manipulation of Python classes and

variables to create the Matchers and Rewriters needed. This is due to the requirement to

perform RAMification on the rule language, which is composed of the input language, the

output language, and the DSLTrans language. To our knowledge, no other modelling tools

are available to automatically perform this operation. Therefore it is our intention to work

with modelling tool developers to natively enable this type of reasoning.

The eventual goal of the SyVOLT development process is to integrate the contract prover

directly into model transformation building processes, such that contracts are continually

checked on the transformation during development. This ‘contract-driven’ development

could reduce the time to develop transformations by quickly detecting counter-examples.

This would be similar to the continuous verification approach performed by Ratiu et al. in

MPS [124].

294

Bibliography

[1] Apache Ant. http://ant.apache.org.

[2] ATL Zoo. http://www.eclipse.org/atl/atlTransformations.

[3] Atlas Transformation Language. http://eclipse.org/atl.

[4] Autosar. https://www.autosar.org.

[5] Eclipse Platform. https://eclipse.org/.

[6] Epsilon Generation Language. http://www.eclipse.org/epsilon/.

[7] Graphical Modelling Framework. https://eclipse.org/gmf-tooling/.

[8] Jetbrains Meta Programming System. https://www.jetbrains.com/MPS.

[9] mbeddr. http://mbeddr.com/.

[10] RSS 2.0 Specification. http://www.rssboard.org/rss-specification.

[11] The igraph Network Analysis Package. http://igraph.org/.

[12] D. Akehurst and S. Kent. A relational approach to defining transformations in a

metamodel. In UML 2002 - The Unified Modeling Language, pages 243–258. Springer,

2002.

[13] M. Amrani, J. Dingel, L. Lambers, L. Lúcio, R. Salay, G. Selim, E. Syriani, and

M. Wimmer. Towards a model transformation intent catalog. In Proceedings of the

First Workshop on Analysis of Model Transformations, pages 3–8. ACM, Oct. 2012.

[14] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer. Henshin: Advanced

concepts and tools for in-place EMF model transformations. In International

295

http://ant.apache.org
http://www.eclipse.org/atl/atlTransformations
http://eclipse.org/atl
https://www.autosar.org
https://eclipse.org/
http://www.eclipse.org/epsilon/
https://eclipse.org/gmf-tooling/
https://www.jetbrains.com/MPS
http://mbeddr.com/
http://www.rssboard.org/rss-specification
http://igraph.org/

Conference on Model Driven Engineering Languages and Systems, pages 121–135.

Springer, 2010.

[15] M. Asztalos, L. Lengyel, and T. Levendovszky. Towards automated, formal

verification of model transformations. In International Conference on Software

Testing, Verification and Validation, pages 15–24. IEEE, 2010.

[16] B. Azizi, B. Zamani, and S. Kolahdouz-Rahimi. Contract verification of

ETL transformations. In International Conference on Computer and Knowledge

Engineering, pages 154–160. IEEE, Oct. 2017.

[17] A. Balogh, G. Bergmann, G. Csertán, L. Gönczy, et al. Workflow-driven tool

integration using model transformations. In Graph Transformations and Model-

Driven Engineering, pages 224–248. Springer Berlin Heidelberg, 2010.

[18] A. Balogh and D. Varró. Advanced model transformation language constructs in the

VIATRA2 framework. In Proceedings of the Symposium on Applied Computing, pages

1280–1287. ACM, 2006.

[19] B. Barroca. Analysable software language translations. PhD thesis, Faculdade de

Ciências e Tecnologia, 2013.

[20] B. Barroca, V. Amaral, and D. Buchs. Semantic languages for developing correct

language translations. Software Quality Journal, pages 1–37, Jan. 2017.

[21] B. Barroca, L. Lúcio, V. Amaral, R. Félix, and V. Sousa. DSLTrans: A Turing

incomplete transformation language. In International Conference on Software

Language Engineering, pages 296–305. Springer Berlin Heidelberg, 2011.

[22] J. Bauer, I. Boneva, M. E. Kurbán, and A. Rensink. A modal-logic based graph

abstraction. In International Conference on Graph Transformation, volume 5214 of

Lecture Notes in Computer Science, pages 321–335. Springer, 2008.

[23] B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling. Symbolic invariant

verification for systems with dynamic structural adaptation. In International

Conference on Software Engineering, pages 72–81. ACM, 2006.

[24] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL - A tool

suite for automatic verification of real-time systems. In International Hybrid Systems

Workshop, pages 232–243. Springer, Springer, 1996.

296

[25] G. Bergmann, I. Dávid, Á. Hegedüs, Á. Horváth, I. Ráth, Z. Ujhelyi, and D. Varró.

VIATRA 3: A reactive model transformation platform. In International Conference

on Theory and Practice of Model Transformations, pages 101–110. Springer.

[26] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making components

contract-aware. Computer, 32(7):38–45, 1999.

[27] J. Bézivin. On the unification power of models. Software and Systems Modeling,

4(2):171–188, 2005.

[28] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lindow. Model

transformations? Transformation models! In International Conference on Model

Driven Engineering Languages and Systems, volume 4199, pages 440–453. Springer,

2006.

[29] E. Biermann. Local confluence analysis of consistent EMF transformations. Electronic

Communications of the European Association for the Study of Science and Technology,

38:68–84, 2011.

[30] E. Biermann, C. Ermel, and G. Taentzer. Precise semantics of EMF model

transformations by graph transformation. In International Conference on Model

Driven Engineering Languages and Systems, pages 53–67. Springer, 2008.

[31] D. Bisztray and R. Heckel. Combining termination proofs in model transformation

systems. Mathematical Structures in Computer Science, 24(4), 2014.

[32] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language reference

manual. Addison-Wesley, 1999.

[33] K. Born, T. Arendt, F. Hess, and G. Taentzer. Analyzing conflicts and dependencies of

rule-based transformations in Henshin. In International Conference on Fundamental

Approaches to Software Engineering, pages 165–168. Springer, Berlin, Heidelberg,

2015.

[34] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven software engineering in

practice. Synthesis Lectures on Software Engineering, 1(1):1–182, 2012.

[35] H. S. Bruggink. Towards a systematic method for proving termination of

graph transformation systems. Electronic Notes in Theoretical Computer Science,

213(1):23–38, 2008.

297

[36] L. Burgueno, J. Troya, M. Wimmer, and A. Vallecillo. Static fault localization in

model transformations. IEEE Transactions on Software Engineering, 41(5):490–506,

2015.

[37] F. Büttner, M. Egea, and J. Cabot. On verifying ATL transformations using ‘off-

the-shelf’ SMT solvers. In Proceedings of International Conference on Model Driven

Engineering Languages and Systems, pages 432–448. Springer, 2012.

[38] F. Büttner, M. Egea, J. Cabot, and M. Gogolla. Verification of ATL transformations

using transformation models and model finders. In International Conference on

Formal Engineering Methods, pages 198–213. Springer, 2012.

[39] E. Cariou, N. Belloir, F. Barbier, and N. Djemam. OCL contracts for the

verification of model transformations. Electronic Communications of the Electronic

Communications of the European Association for the Study of Science and Technology,

24, 2010.

[40] V. Carletti, P. Foggia, A. Saggese, and M. Vento. Introducing VF3: A new

algorithm for subgraph isomorphism. In International Workshop on Graph-Based

Representations in Pattern Recognition, pages 128–139. Springer, 2017.

[41] R. Clarisó, J. Cabot, E. Guerra, and J. de Lara. Backwards reasoning for model

transformations: Method and applications. Journal of Systems and Software,

116:113–132, 2016.

[42] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott.

All about Maude - A high-performance logical framework: How to specify, program and

verify systems in rewriting logic. Springer-Verlag, 2007.

[43] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm for

matching large graphs. In International Association for Pattern Recognition workshop

on Graph-based Representations in Pattern Recognition, pages 149–159, 2001.

[44] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)-graph isomorphism

algorithm for matching large graphs. IEEE transactions on pattern analysis and

machine intelligence, 26(10):1367–1372, 2004.

298

[45] K. Czarnecki and S. Helsen. Classification of model transformation approaches. Pro-

ceedings of the Object-Oriented Programming, Systems, Languages and Applications

Workshop, 45(3):1–17, 2003.

[46] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Attributed

graph transformation with node type inheritance. Theoretical Computer Science,

376(3):139–163, 2007.

[47] J. de Lara and H. Vangheluwe. Automating the transformation-based analysis of

visual languages. Formal Aspects of Computing, 22(3-4):297–326, May 2010.

[48] M. De Santo, P. Foggia, C. Sansone, and M. Vento. A large database of graphs and

its use for benchmarking graph isomorphism algorithms. Pattern Recognition Letters,

24(8):1067–1079, May 2003.

[49] I. Dragomir, I. Ober, and C. Percebois. Contract-based modeling and verification of

timed safety requirements within SysML. Software and Systems Modeling, 16(2):587–

624, 2017.

[50] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph

Transformation. Monographs in Theoretical Computer Science. Springer-Verlag New

York, Inc., 2006.

[51] H. Ehrig, G. Taentzer, J. de Lara, D. Varró, and S. Varró-Gyapai. Termination criteria

for model transformation. In International Conference on Fundamental Approaches

to Software Engineering, pages 49–63. Springer, 2005.

[52] R. Floyd. Algorithm 97: Shortest path. Communications of the Association for

Computing Machinery, 5(6):345, 1962.

[53] M. Fowler. Language workbenches: The killer-app for domain specific languages?

https://martinfowler.com/articles/languageWorkbench.html, June 2005.

[54] M. Fowler. Projectional editing. https://martinfowler.com/bliki/

ProjectionalEditing.html, Jan. 2008.

[55] R. France and B. Rumpe. Model-driven development of complex software: A research

roadmap. In Future of Software Engineering, pages 37–54. IEEE Computer Society,

2007.

299

https://martinfowler.com/articles/languageWorkbench.html
https://martinfowler.com/bliki/ProjectionalEditing.html
https://martinfowler.com/bliki/ProjectionalEditing.html

[56] A. García-Domínguez, D. S. Kolovos, L. M. Rose, R. F. Paige, and I. Medina-Bulo.

EUnit: a unit testing framework for model management tasks. In Proceedings of

International Conference on Model Driven Engineering Languages and Systems, pages

395–409. Springer, 2011.

[57] L. Geiger and A. Zündorf. Tool modeling with Fujaba. Electronic Notes in Theoretical

Computer Science, 148(1):173–186, 2006.

[58] C. Gerking, W. Schäfer, S. Dziwok, and C. Heinzemann. Domain-specific model

checking for cyber-physical systems. In Model Development, Validation and

Verification workshop at International Conference on Model Driven Engineering

Languages and Systems, pages 18–27, 2015.

[59] A. H. Ghamarian, M. de Mol, A. Rensink, E. Zambon, and M. Zimakova. Modelling

and analysis using GROOVE. International Journal on Software Tools for Technology

Transfer, 14(1):15–40, 2012.

[60] H. Giese, S. Glesner, J. Leitner, W. Schäfer, and R. Wagner. Towards verified

model transformations. In Proceedings of the 3rd International Workshop on Model

Development, Validation and Verification, pages 78–93. Citeseer, 2006.

[61] H. Giese, S. Hildebrandt, and L. Lambers. Bridging the gap between formal semantics

and implementation of triple graph grammars. Software and Systems Modeling,

13(1):273–299, 2014.

[62] P. Giner and V. Pelechano. Test-driven development of model transformations. In

Proceedings of International Conference on Model Driven Engineering Languages and

Systems, pages 748–752. Springer, Berlin, Heidelberg, 2009.

[63] M. Gogolla and A. Vallecillo. Tractable model transformation testing. In Proceedings

of European Conference on Modelling Foundations and Applications, pages 221–235.

Springer, Berlin, Heidelberg, 2011.

[64] C. Gomes, B. Barroca, and V. Amaral. Classification of model transformation tools:

Pattern matching techniques. In Model-Driven Engineering Languages and Systems

SE - 38, volume 8767 of Lecture Notes in Computer Science. Springer International

Publishing, 2014.

300

[65] C. Gomes, B. Barroca, and V. Amaral. DSLTrans User Manual, Sept. 2016.

http://msdl.cs.mcgill.ca/people/levi/files/DSLTransManual.pdf.

[66] C. González and J. Cabot. ATLTest: a white-box test generation approach for ATL

transformations. In Model Driven Engineering Languages and Systems, pages 449–

464. Springer, 2012.

[67] E. Guerra, J. de Lara, D. Kolovos, and R. Paige. A visual specification language

for model-to-model transformations. In IEEE Symposium on Visual Languages and

Human-Centric Computing, pages 119–126. IEEE, 2010.

[68] E. Guerra, J. de Lara, and F. Orejas. Pattern-based model-to-model transformation:

Handling attribute conditions. In International Conference on Theory and Practice

of Model Transformations, pages 83–99. Springer, 2009.

[69] E. Guerra, J. De Lara, M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger,

J. Schönböck, and W. Schwinger. Automated verification of model transformations

based on visual contracts. Automated Software Engineering, 20(1):5–46, 2013.

[70] A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application

conditions. Fundamenta Informaticae, 26(3, 4):287–313, 1996.

[71] A. Habel and K.-h. Pennemann. Correctness of high-level transformation systems

relative to nested conditions. Mathematical Structures in Computer Science,

19(2):245–296, 2009.

[72] R. Heckel, J. M. Küster, and G. Taentzer. Confluence of typed attributed graph

transformation systems. In International Conference for Graph Transformations,

pages 161–176. Springer, 2002.

[73] International Organization for Standardization. ISO 26262: Road vehicles-functional

safety. https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-1:v1:en, 2011.

[74] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transformation tool.

Science of computer programming, 72(1-2):31–39, 2008.

[75] M. Jukšs, C. Verbrugge, and H. Vangheluwe. Transformations debugging

transformations. In MDEbug: Debugging in Model-Driven Engineering at

International Conference on Model Driven Engineering Languages and Systems, 2017.

301

http://msdl.cs.mcgill.ca/people/levi/files/DSLTransManual.pdf
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-1:v1:en

[76] J. Kärnä, J.-P. Tolvanen, and S. Kelly. Evaluating the use of domain-specific modeling

in practice. In Proceedings of the Object-Oriented Programming, Systems, Languages

and Applications workshop on Domain-Specific Modeling, 2009.

[77] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the use of graph transformation

in the formal specification of model interpreters. Journal of Universal Computer

Science, 9(11):1296–1321, 2003.

[78] S. Kelly. Domain-specific modeling 76 cases of MDD that works. MetaCase, 2009.

[79] S. Kelly and J. Tolvanen. Domain-specific modeling: Enabling full code generation.

John Wiley & Sons, 2008.

[80] E. Kindler and R. Wagner. Triple graph grammars: Concepts, extensions,

implementations, and application scenarios. Technical Report TR-RI-07-284,

University of Paderborn, 2007.

[81] J. King. Symbolic execution and program testing. Communications of the ACM,

19(7):385–394, 1976.

[82] D. Kolovos, R. Paige, L. Rose, and F. Polack. Unit testing model management

operations. In Proceedings of IEEE International Conference on Software Testing,

Verification and Validation Workshops, pages 97–104. IEEE, 2008.

[83] B. König and V. Kozioura. Augur 2 - a new version of a tool for the analysis of

graph transformation systems. Electronic Notes in Theoretical Computer Science,

211:201–210, 2008.

[84] T. Kühne. Matters of (meta-) modeling. Software and Systems Modeling, 5(4):369–

385, 2006.

[85] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer. Explicit

transformation modeling. In International Conference on Model Driven Engineering

Languages and Systems, pages 240–255. Springer.

[86] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to parallel computing:

Design and analysis of algorithms, volume 400. Benjamin/Cummings, 1994.

[87] J. M. Küster. Definition and validation of model transformations. Software and

Systems Modeling, 5(3):233–259, 2006.

302

[88] L. Lambers, H. Ehrig, and F. Orejas. Efficient detection of conflicts in graph-based

model transformation. Electronic Notes in Computer Science, 152:97–109, 2006.

[89] L. Lambers, H. Ehrig, U. Prange, and F. Orejas. Embedding and confluence of graph

transformations with negative application conditions. In International Conference on

Graph Transformation, pages 162–177. Springer, 2008.

[90] L. Lambers, S. Hildebrandt, H. Giese, and F. Orejas. Attribute handling for

bidirectional model transformations: The triple graph grammar case. Electronic

Communications of the European Association of Software Science and Technology,

49, 2012.

[91] B. LaShomb and E. Syriani. Re-engineering DSLTrans with T-Core. Technical Report

SERG-2012-04, Department of Computer Science, University of Alabama, 2012.

[92] T. Levendovszky, L. Lengyel, G. Mezei, and H. Charaf. A systematic approach to

metamodeling environments and model transformation systems in VMTS. Electronic

Notes in Theoretical Computer Science, 127(1):65–75, 2005.

[93] L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. Selim, E. Syriani, and

M. Wimmer. Model transformation intents and their properties. Software and Systems

Modeling, 15(3):1–38, 2015.

[94] L. Lúcio, B. Barroca, and V. Amaral. A technique for automatic validation of

model transformations. In Proceedings of International Conference on Model Driven

Engineering Languages and Systems, pages 136–150. Springer, 2010.

[95] L. Lúcio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukss. FTG+PM: An

integrated framework for investigating model transformation chains. In International

System Design Languages Forum, pages 182–202. Springer, 2013.

[96] L. Lúcio and B. Oakes. Language verification repository. https://github.com/

mbeddr/language_verification.

[97] L. Lúcio, B. Oakes, C. Gomes, G. Selim, J. Dingel, J. Cordy, and H. Vangheluwe.

SyVOLT: Full model transformation verification using contracts. In International

Conference on Model Driven Engineering Languages and Systems, pages 24–27, 2015.

303

https://github.com/mbeddr/language_verification
https://github.com/mbeddr/language_verification

[98] L. Lúcio, B. Oakes, and H. Vangheluwe. A technique for symbolically verifying

properties of graph-based model transformations. Technical Report SOCS-TR-2014.1,

McGill University, 2014.

[99] L. Lúcio and H. Vangheluwe. Model transformations to verify model transformations.

In Proceedings of the Workshop on Verification of Model Transformations, 2013.

[100] R. Mannadiar. A multi-paradigm modelling approach to the foundations of domain-

specific modelling. PhD thesis, McGill University, 2012.

[101] R. Mannadiar and H. Vangheluwe. Debugging in domain-specific modelling. In

Proceedings of Software Language Engineering, pages 276–285. Springer, 2010.

[102] T. Mens and P. Van Gorp. A taxonomy of model transformation. Electronic Notes

in Theoretical Computer Science, 152:125–142, 2006.

[103] B. Meyers, R. Deshayes, L. Lucio, E. Syriani, H. Vangheluwe, and M. Wimmer.

Promobox: A framework for generating domain-specific property languages. In

International Conference on Software Language Engineering, pages 1–20. Springer,

2014.

[104] P. Mosterman and H. Vangheluwe. Computer automated multi-paradigm modeling:

An introduction. Simulation, 80(9):433–450, 2004.

[105] J. Mottu, B. Baudry, and Y. Le Traon. Model transformation testing: Oracle issue.

In Proceedings of IEEE International Conference on Software Testing, Verification

and Validation Workshops, pages 105–112, 2008.

[106] S. Mustafiz, J. Denil, L. Lúcio, and H. Vangheluwe. The FTG+PM framework for

multi-paradigm modelling: An automotive case study. In Proceedings of the 6th

International Workshop on Multi-Paradigm Modeling, pages 13–18. ACM, 2012.

[107] A. Narayanan and G. Karsai. Verifying model transformations by structural

correspondence. Electronic Communications of the European Association of Software

Science and Technology, 10, 2008.

[108] M. Nottingham and R. Sayre. The ATOM syndication format. RFC 4287, Network

Working Group, Dec. 2005.

[109] B. Oakes. EcoreImport project. https://github.com/BentleyJOakes/EcoreImport,

2017.

304

https://github.com/BentleyJOakes/EcoreImport

[110] B. Oakes, L. Lúcio, C. Gomes, and H. Vangheluwe. Expressive symbolic-execution

contract proving for the DSLTrans transformation language. Technical Report 2017-

01, McGill University, 2017.

[111] B. Oakes, L. Lúcio, C. Gomes, and H. Vangheluwe. Semantics of the DSLTrans

transformation language via the double-pushout approach. In preparation, 2018.

[112] B. Oakes, J. Troya, L. Lúcio, and M. Wimmer. Fully verifying transformation

contracts for declarative ATL. In International Conference on Model Driven

Engineering Languages and Systems, pages 256–265, 2015.

[113] B. Oakes, J. Troya, L. Lúcio, and M. Wimmer. Full contract verification for ATL

using symbolic execution. Software and Systems Modeling, pages 1–35, 2016.

[114] B. Oakes, C. Verbrugge, L. Lúcio, and H. Vangheluwe. Debugging of model

transformations and contracts in SyVOLT. In MDEbug: Debugging in Model-Driven

Engineering at International Conference on Model Driven Engineering Languages and

Systems, 2018.

[115] Object Management Group. OMG Unified Modeling Language - Version 2.5, Mar.

2015.

[116] F. Orejas and L. Lambers. Symbolic attributed graphs for attributed graph

transformation. Electronic Communications of the European Association of Software

Science and Technology, 30, 2010.

[117] E. Paen. Measuring incrementally developed model transformations using change

metrics. Master’s thesis, Queen’s University, 2012.

[118] D. Plump. Termination of graph rewriting is undecidable. Fundamenta Informaticae,

33(2):201–209, 1998.

[119] D. Plump. Confluence of graph transformation revisited. In Processes, Terms and

Cycles: Steps on the Road to Infinity, pages 280–308. Springer, 2005.

[120] E. Posse and J. Dingel. Kiltera: A language for timed, event-driven, mobile and

distributed simulation. In International Symposium on Distributed Simulation and

Real Time Applications, pages 87–96. IEEE, 2010.

[121] E. Posse and J. Dingel. An executable formal semantics for UML-RT. Software and

Systems Modeling, pages 1–39, 2014.

305

[122] M. Provost. Himesis: A hierarchical subgraph matching kernel for model driven

development. Master’s thesis, McGill University, 2005.

[123] L. A. Rahim and J. Whittle. A survey of approaches for verifying model

transformations. Software and Systems Modeling, 14(2):1003–1028, 2015.

[124] D. Ratiu, B. Schaetz, M. Voelter, and B. Kolb. Language engineering as an

enabler for incrementally defined formal analyses. In Proceedings of the First

International Workshop on Formal Methods in Software Engineering: Rigorous and

Agile Approaches, pages 9–15. IEEE Press, 2012.

[125] A. Rensink and D. Distefano. Abstract graph transformation. Electronic Notes in

Theoretical Computer Science, 157(1):39–59.

[126] A. Rensink, A. Schmidt, and D. Varró. Model checking graph transformations:

A comparison of two approaches. In International Conference on Graph

Transformations, pages 226–241. Springer, 2004.

[127] A. Rensink and E. Zambon. Pattern-based graph abstraction. In International

Conference on Graph Transformation, pages 66–80. Springer, 2012.

[128] J. Rivera, F. Durán, and A. Vallecillo. Formal specification and analysis of domain

specific models using Maude. Simulation, 85(11-12):778–792, 2009.

[129] J. E. Rivera, E. Guerra, J. de Lara, and A. Vallecillo. Analyzing rule-based behavioral

semantics of visual modeling languages with Maude. Software Language Engineering,

5452:54–73, 2008.

[130] L. Rose, R. Paige, D. Kolovos, and F. Polack. The Epsilon Generation Language. In

I. Schieferdecker and A. Hartman, editors, Model Driven Architecture - Foundations

and Applications SE - 1, volume 5095 of Lecture Notes in Computer Science, pages

1–16. Springer Berlin Heidelberg, 2008.

[131] O. Runge, C. Ermel, and G. Taentzer. AGG 2.0 - new features for specifying

and analyzing algebraic graph transformations. In International Symposium on

Applications of Graph Transformations with Industrial Relevance, pages 81–88.

Springer, 2011.

[132] B. Schätz. Verification of model transformations. Electronic Communications of the

European Association of Software Science and Technology, 29, 2010.

306

[133] D. Schmidt. Model-driven engineering. Computer, 39(2):25–31, 2006.

[134] A. Schürr. Specification of graph translators with triple graph grammars. In Graph-

Theoretic Concepts in Computer Science, pages 151–163. Springer, 1995.

[135] G. Selim. Formal Verification of Graph-Based Model Transformations. PhD thesis,

Queen’s University, 2015.

[136] G. Selim, J. Cordy, J. Dingel, L. Lúcio, and B. Oakes. Finding and fixing

bugs in model transformations with formal verification: An experience report.

In Proceedings of Analysis of Model Transformations workshop at Model Driven

Engineering Languages and Systems, pages 26–35, 2015.

[137] G. Selim, L. Lúcio, J. Cordy, J. Dingel, and B. Oakes. Specification and verification

of graph-based model transformation properties. In Proceedings of International

Conference on Graph Transformation, pages 113–129. Springer, 2014.

[138] G. Selim, S. Wang, J. Cordy, and J. Dingel. Model transformations for migrating

legacy models: An industrial case study. In Proceedings of European Conference on

Modelling Foundations and Applications, pages 90–101. Springer, 2012.

[139] S. Sen, N. Moha, B. Baudry, and J.-M. Jézéquel. Meta-model pruning. In

International Conference on Model Driven Engineering Languages and Systems, pages

32–46. Springer, 2009.

[140] S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of model-

driven software development. IEEE Software, 20(5):42–45, 2003.

[141] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: Eclipse Modeling

Framework. Pearson Education, 2008.

[142] E. Syriani. A multi-paradigm foundation for model transformation language

engineering. PhD thesis, McGill University, 2011.

[143] E. Syriani and H. Vangheluwe. Matters of model transformation. Technical Report

SOCS-TR-2009.2, School of Computer Science, McGill University, 2009.

[144] E. Syriani and H. Vangheluwe. Performance analysis of Himesis. Technical Report

SOCS-TR-2010.8, School of Computer Science, McGill University, 2010.

[145] E. Syriani, H. Vangheluwe, and B. LaShomb. T-Core: A framework for custom-built

model transformation engines. Software & Systems Modeling, 14(3):1215–1243, 2015.

307

[146] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and H. Ergin.

AToMPM: A web-based modeling environment. In International Conference on Model

Driven Engineering Languages and Systems, pages 21–25, 2013.

[147] G. Taentzer. AGG: A tool environment for algebraic graph transformation. In

International Workshop on Applications of Graph Transformations with Industrial

Relevance, volume 1779, pages 333–341. Springer, 2000.

[148] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U. Prange,

D. Varró, and S. Varró-Gyapay. Model transformation by graph transformation: A

comparative study. Proceedings of the Workshop for Model Transformation in Practice

at the International Conference on Model Driven Engineering Languages and Systems,

2005.

[149] F. Tip. A survey of program slicing techniques. Centrum voor Wiskunde en

Informatica, 1994.

[150] M. Tisi, S. Martínez, F. Jouault, and J. Cabot. Refining models with rule-based

model transformations. Research Report RR-7582, INRIA, 2011.

[151] J. Troya and A. Vallecillo. A rewriting logic semantics for atl. Journal of Object

Technology, 10(5):1–29, 2011.

[152] Z. Ujhelyi. Program Analysis Techniques for Model Queries and Transformations.

PhD thesis, Budapest University of Technology and Economics, 2016.

[153] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth, Z. Szatmári, and

D. Varró. EMF-IncQuery: An integrated development environment for live model

queries. Science of Computer Programming, 98:80–99, 2015.

[154] A. Vallecillo, M. Gogolla, L. Burgueno, M. Wimmer, and L. Hamann. Formal

specification and testing of model transformations. In Formal Methods for Model-

Driven Engineering, pages 399–437, 2012.

[155] M. F. van Amstel. Assessing and improving the quality of model transformations.

PhD thesis, Technische Universiteit Eindhoven, 2012.

[156] H. Van der Auweraer, J. Anthonis, S. De Bruyne, and J. Leuridan. Virtual engineering

at work: The challenges for designing mechatronic products. Engineering with

Computers, 29(3):389–408, 2013.

308

[157] S. Van Mierlo. Explicitly modelling model debugging environments. In International

Conference on Model Driven Engineering Languages and Systems, pages 24–29, 2015.

[158] S. Van Mierlo, B. Barroca, H. Vangheluwe, E. Syriani, and T. Kühne. Multi-

level modelling in the modelverse. In International Conference on Model Driven

Engineering Languages and Systems, pages 83–92, 2014.

[159] S. Van Mierlo, Y. Van Tendeloo, B. Meyers, and H. Vangheluwe. Domain-specific

modelling for human–computer interaction. In The Handbook of Formal Methods

in Human-Computer Interaction, pages 435–463. Springer International Publishing,

2017.

[160] Y. Van Tendeloo. Foundations of a multi-paradigm modelling tool. In International

Conference on Model Driven Engineering Languages and Systems, pages 52–57, 2015.

[161] H. Vangheluwe. Foundations of modelling and simulation of complex systems.

Electronic Communications of the EASST, 10, 2008.

[162] H. Vangheluwe, J. de Lara, and P. J. Mosterman. An introduction to multi-paradigm

modelling and simulation. In Proceedings of AI, Simulation and Planning in High

Autonomy Systems, pages 9–20. SCS, 2002.

[163] D. Varró. Automated formal verification of visual modeling languages by model

checking. Software and Systems Modeling, 3(2):85–113, 2004.

[164] D. Varró and A. Pataricza. Generic and meta-transformations for model

transformation engineering. In International Conference on the Unified Modeling

Language, pages 290–304. Springer, 2004.

[165] D. Varró, G. Varró, and A. Pataricza. Designing the automatic transformation of

visual languages. Science of Computer Programming, 44(2):205–227, 2002.

[166] D. Varró, S. Varró-Gyapai, H. Ehrig, U. Prange, and G. Taentzer. Termination

analysis of model transformations by Petri nets. In International Conference on

Graph Transformation, volume 4178, pages 260–274. Springer, 2006.

[167] G. Varró, K. Friedl, and D. Varró. Adaptive graph pattern matching for model

transformations using model-sensitive search plans. Electronic Notes in Theoretical

Computer Science, 152:191–205, 2006.

309

[168] M. Voelter, A. v. Deursen, B. Kolb, and S. Eberle. Using C language extensions for

developing embedded software: A case study, volume 50. ACM, 2015.

[169] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr: An extensible C-based

programming language and IDE for embedded systems. In Proceedings of the 3rd

annual conference on Systems, programming, and applications: software for humanity,

pages 121–140. ACM, 2012.

[170] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with

UML. Addison-Wesley Professional, 1998.

[171] S. Warshall. A theorem on boolean matrices. Journal of the Association for

Computing Machinery, 9(1):11–12, 1962.

[172] M. Wieber, A. Anjorin, and A. Schürr. On the usage of TGGs for automated model

transformation testing. In International Conference on Theory and Practice of Model

Transformations, pages 1–16. Springer, 2014.

310

	Introduction
	Problem Overview
	Research Questions

	Solution Overview and Contributions
	DSLTrans Semantics in the Double-Pushout Approach
	Structural Contract Proving
	Prover Implementation

	Author Contributions
	Thesis Organization

	Background
	Model Transformations
	Transformation Rules

	DSLTrans Introduction
	Families-to-Persons Transformation
	Rules
	Layers
	Backward Links
	DSLTrans Constructs
	Termination and Confluence Properties

	Fundamental Definitions
	Graphs
	Graph Morphisms

	DSLTrans Formalization
	DSLTrans Structures
	Transformation Rule
	Layer and Transformation
	Input-Output Model
	Matcher and Rewriter

	DSLTrans Semantics
	Application of a DSLTrans Rule
	Negative Application Conditions
	Attributes
	Indirect Links
	Repeated Application of a DSLTrans Rule
	Any versus Exists Elements
	DSLTrans Layer Execution
	DSLTrans Transformation Execution

	Complexity of DSLTrans
	Confluence and Termination Properties
	Confluence
	Termination

	Conclusion

	Transformation Verification using Contracts
	Abstraction Relation
	Symbolic Execution
	Rule Combinations
	Path Conditions
	Definition of the Abstraction Relation
	Examples
	Other DSLTrans Constructs
	Partitioning of Input-Output Models

	Building Path Conditions
	Path Condition Generation Overview
	Rule Classification Sets
	Rule Combination
	Considering Further Layers

	Representation and Coverage of the Technique
	Representation
	Coverage

	Contract Proof
	Structure of a Contract
	Contract Satisfaction
	Transformation Verification

	Validity of Contract Proof
	Implication 1 - Positive Satisfaction
	Implication 2 - Negative Satisfaction from Path Condition
	Implication 3 - Negative Satisfaction from an Input-Output Model
	Partitioning of Transformation Executions

	Contract Expressiveness
	Attributes
	Propositional Logic and Pivots
	Types of Contracts
	Limitations

	Conclusion

	SyVOLT Design and Work-flow
	FTG+PM
	Transformation and Contract Construction
	Higher-order Transformation from ATL
	Eclipse Plugin
	Meta Programming System (MPS)

	Proving Process Implementation
	Himesis Format
	T-Core
	PyRamify
	Path Condition Creation
	Contract Proof

	Conclusion

	SyVOLT Algorithms
	Experimental Conditions
	Split Morphism Matching Algorithm
	Step 1 - Candidate Generation
	Typing and Attribute Resolution
	Step 2 - Match Set Creation
	Complexity Analysis
	Experimental Results

	Algorithmic Optimizations
	Parallelization
	Slicing
	Pruning
	Conclusion

	Checks and Analysis
	Dependency Checking
	Rule Application
	Contract Result Analysis

	Conclusion

	Case Studies
	Case Study Sizes
	Contract Description

	RSS2ATOM
	Transformation
	Contracts

	GM-to-AUTOSAR Transformation
	M6 Contract

	UML-to-Kiltera Transformation
	Contracts

	Families-to-Person Transformation
	Contracts

	mbeddr
	Transformation
	Contract

	Related Work
	DSLTrans
	Graph Transformation Formalism
	In-place versus Out-place
	Control Flow
	Confluence and Termination

	Model Transformation Verification
	State-space Analysis
	Contract Proving

	SyVOLT Algorithms
	Contract/Transformation Analysis

	Conclusion and Future Work
	Research Questions
	Formalization of DSLTrans
	Formalization of the Contract Proving Approach
	Design of SyVOLT
	Algorithmic Scalability Techniques

	Future Work
	Transfer Contract Proving Approach
	Creation Process for Contracts
	Integration with Modelling Tools

