
1

An introduction to Aspect-
Oriented Programming with
AspectJ
COMP 303
McGill University

Slides based on those from: Constantinos
Constantinides

2

The AspectJ programming
language

• AspectJ extends the Java programming
language with constructs in order to support
AOP.

• It is a superset of Java.
– Each valid Java program is also a valid AspectJ

program.
• It is a general-purpose language (as opposed to

domain-specific).
• Currently the most notable AOP technology.

3

public class Buffer {
private String[] BUFFER;
int putPtr; // keeps track of puts
int getPtr; // keeps track of gets
int counter; // holds number of items
int capacity;
Buffer (int capacity) {…}
public boolean isEmpty() {…}
public boolean isFull() {…}
public void put (String s) {…}
public String get() {…}
}

}

A first example: A bounded buffer

• Class Buffer contains
mutator and accessor
methods:
– Mutators: put(), get()
– Accessors: isFull(),

isEmpty()

4

Behavior of Buffer class
public class Buffer {

…
public void put (String s) {

if (isFull())
System.out.println("ERROR: Buffer full");

else {
BUFFER[putPtr++] = s;
counter++;

}
}

public String get() {
if (isEmpty())

return "ERROR: Buffer empty";
else {

counter--;
return BUFFER[getPtr++];

}
}

}

5

AspectJ language concepts
• Joinpoint: a well-defined event in the execution

of a program (such as the core functionality
provided by class Buffer).
– e.g. the call to method get() inside class Buffer.

• Pointcut: A collection of joinpoints.
– e.g. the execution of all mutator methods inside class

Buffer.
• Advice: A block of code that specifies some

behavior to be executed before/after/around a
certain joinpoint.
– e.g. before the call to the body of method get(),

display some message.

6

Example: Tracing
• Let us display a message before all calls to put()

and get() inside Buffer.

• This pointcut specifies any call to put() in Buffer,
taking a String argument, returning void, and
with public access.

call(public void Buffer.put(String))

• A call joinpoint captures an execution event after
it evaluates a method calls’ arguments, but
before it calls the method itself.

2

7

Identifying joinpoints (cont.)

• This pointcut specifies all call events to
get() in class Buffer, taking no arguments,
returning String, and with public access:

call (public String Buffer.get())

8

Defining a pointcut

• We define a pointcut named “mutators” that
combines both basic pointcut expressions.

pointcut mutators(): call(public void Buffer.put(String)) ||
call (public String Buffer.get());

9

Defining a pointcut (cont.)
• We may use logical operators in the definition

of pointcuts in order to combine pointcut
expressions:

1. || (OR operator)
Matches a joinpoint if either the left pointcut
expression matches or the right pointcut expression.

2. && (AND operator)
Matches a joinpoint only when both the left pointcut
expression and the right pointcut expression match.

3. ! (NOT operator)
Matches all joinpoints not specfied by the pointcut

10

Define an advice
• An advice must be defined with respect to a pointcut, in

this example we define an advice to mutators.
• This is a special type of advice, called “before advice”.

As the term suggests, it specifies what must be done just
before the event (joinpoint) specified by the pointcut.

• Pointcuts and advice together define composition
(weaving) rules.

before(): mutators() {
System.out.println("------ Mutator method called.");

}

11

Advice
• An advice associates the code to be executed

with pointcuts.
• There are three ways to associate an advice

with a pointcut:
– Before: run just before the pointcut.
– After: runs just after the pointcut.

• May be after normal return, after throwing an exception or
after returning either way from a joinpoint.

– Around: Runs instead of the pointcut, with the
provision for the pointcut to resume normal execution
through proceed() (see later)

12

Providing an aspect definition
• Much like a class, an aspect is a unit of modularity.
• It is defined in terms of pointcuts (collections of

joinpoints), advice, and ordinary Java fields and
methods.

• Pointcuts say which events (joinpoints) to match, and
the advice body says what to execute when it matches.

public aspect Tracer {
pointcut mutators(): call(public void Buffer.put(String)) ||

call (public String Buffer.get());
before(): mutators() {

System.out.println("------ Mutator method called.");
}

}

3

13

Tracing the execution
(base program)

public class BufferDemo {
public static void main(String[] args) {

Buffer buffer = new Buffer(10);
buffer.put("Hello");
buffer.put("there");
System.out.println(buffer.get());
System.out.println(buffer.get());

}
}

Hello
there

14

Tracing the execution
(after weaving Tracer aspect)

public class BufferDemo {
public static void main(String[] args) {

Buffer buffer = new Buffer(10);
buffer.put("Hello");
buffer.put("there");
System.out.println(buffer.get());
System.out.println(buffer.get());

}
}

public aspect Tracer {
pointcut mutators(): call(public void Buffer.put(String)) ||

call (public String Buffer.get());
before(): mutators() {

System.out.println("------ Mutator method called.");
}

}

------ Mutator method called.
------ Mutator method called.
------ Mutator method called.
Hello
------ Mutator method called.
there

15

Types of joinpoints
1. Calls to methods and constructors
2. Execution of methods and constructors
3. Field access
4. Exception handling
5. Class initialization
6. Lexical structure
7. Control flow
8. Self-target and argument-type
9. Conditional test

16

Patterns in pointcuts

• Pointcuts use a pattern language to
specify events.

• The use of the * character is highly
overloaded.
– Using * where a type is expected matches

any type.
– Using * where an identifier is expected

matches any identifier.
– You can also use * within an identifier pattern.

17

Identifier Patterns

• the expression foo* would match any
identifier starting with “foo”.

• the expression *if* would match any
identifier with “if” in it.

• In general, an identifier pattern can by any
valid identifier with * characters added to
it.

18

Classname patterns

• Sometimes we wish to write patterns that
identify a class or a set of classes.

• To identify a class in the default package
we can just use an identifier pattern.

• We can string together identifier patterns
to specify packages using “.” and “..”.

• We can add a “+” to the end of an identifier
pattern to indicate that we wish to match a
class and all of it subclasses.

4

19

Specifying classes

foo : class foo
foo+ : class foo and all of its subclasses
foo* : all classes starting with “foo”
foo : all classes with “foo” in it
foo*+ : all classes starting with “foo”, and

all of their subclasses

20

Specifying packages and classes

• MyPackage.foo : the class foo in package
MyPackage

• MyPackage.*.foo : the class foo that is in
some immediate subpackage of MyPackage

• MyPackage..foo : the class foo that is in
MyPackage or any subpackage of MyPackage.

• In package specifications “..”
means . | .*. | .*.*. | …

21

Specifying arguments

• (*) : one argument, any type
• (int) : one argument of type int
• (int,*) : two arguments, first one with

type int
• () : no arguments
• (..): any number of arguments
• (int,..) : first argument of type int any

number of other arguments
22

Specifying a method/constructor
signature

Method:
[modifier_pattern] return_type_pattern
classtype_pattern.id_pattern (args_pattern)
[throws_pattern]

Constructor:
[modifier_pattern] return_type_pattern
classtype_pattern.new(args_pattern)
[throws_pattern]

23

Calls to methods and constructors

Call to any method with name
starting with “myMethod” in
MyClass.

call (* MyClass.myMethod*(..))

Call to myMethod() in MyClass
taking any arguments, returning
any type.

call (* MyClass.myMethod(..))

Call to myMethod() in MyClass
taking any arguments, with void
return type, and any access
modifiers.

call (void MyClass.myMethod(..))

Call to public static myMethod() in
MyClass taking a String argument,
return type is void.

call (public static void
MyClass.myMethod(String))

24

Calls to methods and constructors
(cont.)

Call to the constructor of MyClass
taking any arguments.

call (MyClass.new(..))

Call to the constructor of MyClass
taking no arguments.

call (MyClass.new())

Call to myMethod() in any class in
default package.

call (* *.myMethod(..))

Call to any method with name
starting with “myMethod” in
MyClass and the first argument is
of String type.

call (* MyClass.myMethod*
(String,..))

5

25

Calls to methods and constructors
(cont.)

Call to all public methods in all
classes in any package with
com.company the root package.

call (public * com.mycompany..*(..))

Call to the constructor of MyClass
or to the constructor of any of its
subclasses, taking any arguments.

call (MyClass+.new(..))

26

Field access
• Capture read and write access to the fields of a class.
• The general format is

get (FieldSignature) or set (FieldSignature)

• FieldSignature is
[modifier_pattern] type_pattern field_pattern

Execution of write-access to field x
of type int in MyClass.

set (int MyClass.x)

Execution of read-access to field
out of type PrintStream in System
class.

get(PrintStream System.out)

27

Exception handling

• Capture the execution of exception handlers of
specified types.

• The general form is
handler(ExceptionTypePattern)

Execution of catch-block handling
exception types with names that
start with “CreditCard”.

handler (CreditCard*)

Execution of catch-block handling
IOException or its subclasses

handler (IOException+)

Execution of catch-block handling
RemoteException type

handler (RemoteException)

28

Class initialization
• Capture the execution of static-class initialization

(code specified in static blocks inside class
definitions) of specified types.

• The general format is
staticinitialization(TypePattern)

Execution of static block of
MyClass or its subclasses.

staticinitialization(MyClass+)

Execution of static block of
MyClass

staticinitialization(MyClass)

29

Lexical structure
• Capture joinpoints inside the lexical structure of class or

a method.
• The general forms are

within (TypePattern), or
withincode(MethodOrConstructorSignature)

Any joinpoint inside the lexical
scope of any myMethod() of
MyClass.

withincode(*
MyClass.myMethod(..))

Any joinpoint inside the lexical
scope of classes with a name that
starts with “MyClass”.

within(MyClass*)

Any joinpoint inside the lexical
scope of MyClass.

within(MyClass)

30

Control flow
• Capture joinpoints based on the control flow of other

joinpoints.
– e.g. if a() calls b(), then b() is within the control flow of a().

• Take the forms
cflow (joinpoint)
cflowbelow(joinpoint)

All joinpoints in the control flow of
a call to any myMethod() in
MyClass excluding a call to the
specified method itself.

cflowbelow(call (*
MyClass.myMethod(..))

All joinpoints in the control flow of
a call to any myMethod() in
MyClass including a call to the
specified method itself.

cflow(call (*
MyClass.myMethod(..))

6

31

Self-target and argument-type

• Capture joinpoints based on self-obj, target-obj
and arguments-type.

All joinpoints where the type of
argument or exception handler
type is RemoteException

args(RemoteException)

All joinpoints where the first
argument is of type String and the
last argument is of type int.

args(String, …, int)

All joinpoints where the obj on
which the method is called is of
type MyClass.

target(MyClass)

All joinpoints where this is
instanceof JComponent

this(JComponent)

32

this/target/args

valuetargetthisset
emptytargetthisget
exception-thishandler
argsthisthisconstr. exec.
argsthisthismethod exec.
args-callerconst call
argstargetcallermethod call

argstargetthis

33

Conditional test

• Captures joinpoints based on some conditional
check at the joinpoint.

• Takes the form
if (BooleanExpression)

All joinpoints where
EventQueue.isDispatchedThread()
evaluates to true.

if
(EventQueue.isDispatchedThread())

34

Reflection and thisJoinPoint

• With reflection we can examine information at an
execution point (joinpoint).

• Each advice has access to thisJoinPoint which
contains information about the joinpoint.

• Can also use thisJoinPointStaticPart to get
only static information (this may be less
expensive)

35

Example: Tracing with reflection
• Let us trace the execution of all methods inside class

Buffer, with any type of arguments, returning any type
and with any access type.

• The pointcut below specifies the above events:
execution (* Buffer.*(..))

• This is an example of a named pointcut:
pointcut publics(): execution (* Buffer.*(..));

• An advice may also use an unnamed pointcut:
before(): execution (* Buffer.*(..)) {…}

36

A Tracing aspect with reflection

public aspect ReflectionTracer {
pointcut publics(): execution (* Buffer.*(..));
before(): publics() {

System.out.println("Before: " + thisJoinPoint);
}
after(): publics() {

System.out.println("After: " + thisJoinPoint);
}

}

7

37

Running the tracing example
public class BufferDemo {

public static void main(String[] args) {
Buffer buffer = new Buffer(10);
buffer.put("Hello");
buffer.put("there");
System.out.println(buffer.get());
System.out.println(buffer.get());

}
}

public aspect ReflectionTracer {
pointcut publics(): execution (* Buffer.*(..));
before(): publics() {

System.out.println("Before: " + thisJoinPoint);
}
after(): publics() {

System.out.println("After: " + thisJoinPoint);
}

}

Before: execution(void Buffer.put(String))
Before: execution(boolean Buffer.isFull())
After: execution(boolean Buffer.isFull())
After: execution(void Buffer.put(String))
Before: execution(void Buffer.put(String))
Before: execution(boolean Buffer.isFull())
After: execution(boolean Buffer.isFull())
After: execution(void Buffer.put(String))
Before: execution(String Buffer.get())
Before: execution(boolean Buffer.isEmpty())
After: execution(boolean Buffer.isEmpty())
After: execution(String Buffer.get())
Hello
Before: execution(String Buffer.get())
Before: execution(boolean Buffer.isEmpty())
After: execution(boolean Buffer.isEmpty())
After: execution(String Buffer.get())
there

38

Type modification constructs

• Using an advice we are able to affect the
dynamic behavior of a system.

• Sometimes it is necessary to provide
aspectual behavior over the static
structure of the system.

• AspectJ allows a number of static-
crosscutting types, including:
– Introduction of new methods and fields.
– Introduction of supertypes.

39

Example: Providing timestamp
behavior to Buffer class

• Introducing a private variable named timestamp
of type long to Buffer class:

private long Buffer.timestamp;

• Introducing a void method in Buffer to set the
timestamp:

public void Buffer.timestamp() {
// "this" refers to Buffer class and not to Timestamp aspect
this.timestamp = System.currentTimeMillis();

}

40

Example: Providing timestamp
behavior to Buffer class (cont.)

• Introducing a long method in Buffer to
return the timestamp:

public long Buffer.getTimestamp() {
return timestamp;

}

41

Example: Providing timestamp
behavior to Buffer class (cont.)

public aspect Timestamp {
private long Buffer.timestamp;

public long Buffer.getTimestamp() {
return timestamp;

}

public void Buffer.timestamp() {
// "this" refers to Buffer class and not to Timestamp aspect
this.timestamp = System.currentTimeMillis();

}

}

42

Introduction of supertypes

• Introducing a supertype to one or more class,
affects the inheritance hierarchy of the system.

• We can declare superclasses and interfaces to
an existing class or interface.

8

43

Example

• Let us introduce a TimestampedObject interface
to Buffer class.

• Consider the following interface that defines
getTimestamp() and timestamp():

public interface TimestampedObject {
long getTimestamp();
void timestamp();

}

44

Introducing field and methods

• The field and method introduction in the aspect
definition would now refer to the interface, not
the Buffer class:
private long TimestampedObject.timestamp;

public long TimestampedObject.getTimestamp() {
return timestamp;

}

public void TimestampedObject.timestamp() {
// "this" refers to Buffer class and not to Timestamp aspect
this.timestamp = System.currentTimeMillis();

}

45

Declare an interface to class Buffer

• The aspect can now dictate that class Buffer
should implement the Timestamp interface:

declare parents: Buffer implements TimestampedObject;

46

Exposing context: pointcut

• Pointcuts can expose part of the execution
context at the joinpoints.

• Values exposed by a pointcut can be used in the
body of an advcice declaration.

• The pointcut exposes and publishes one value,
namely a reference to the Buffer instance

pointcut bufferChanged(Buffer obj):
execution (* Buffer.*(..)) &&
this(obj);

47

Exposing context: advice

• An advice declaration has a parameter list
(like a method) that gives names to all the
pieces of context that it uses.

after(TimestampedObject obj): bufferChanged(obj) {
obj.timestamp();
System.out.println("Operation " + thisJoinPoint + " at " +

obj.getTimestamp());
}

48

Putting everything together
public aspect Timestamp {

private long TimestampedObject.timestamp;
public long TimestampedObject.getTimestamp() {

return timestamp;
}
public void TimestampedObject.timestamp() {

// "this" refers to Buffer class and not to Timestamp aspect
this.timestamp = System.currentTimeMillis();

}
declare parents: Buffer implements TimestampedObject;
pointcut bufferChanged(Buffer obj): execution (* Buffer.*(..)) && this(obj);
after (TimestampedObject obj): bufferChanged(obj) {

obj.timestamp();
System.out.println("Operation " + thisJoinPoint + " at " + obj.getTimestamp());

}
}

9

49

Running the application

Operation execution(boolean Buffer.isFull()) at 1096152607327
Operation execution(void Buffer.put(String)) at 1096152607327
Operation execution(boolean Buffer.isFull()) at 1096152607327
Operation execution(void Buffer.put(String)) at 1096152607327
Operation execution(boolean Buffer.isEmpty()) at 1096152607327
Operation execution(String Buffer.get()) at 1096152607327
Hello
Operation execution(boolean Buffer.isEmpty()) at 1096152607337
Operation execution(String Buffer.get()) at 1096152607337
there

50

Around advice

• The third type of advice, around(), gives a
chance to affect whether and when the
joinpoint (event) is executed, using the
special proceed() syntax.

51

Example: Providing contract
checking to the Buffer class

• Provide a new Buffer class:
public class BBuffer {

private String[] BUFFER;
private int putPtr; // keeps track of puts
private int getPtr; // keeps track of gets
protected int capacity;

BBuffer (int capacity) {
BUFFER = new String[capacity];
this.capacity = capacity;

}

public void put (String s) {BUFFER[putPtr++] = s;}

public String get() {return BUFFER[getPtr++];}

}
52

Introducing state to BBuffer and
declaring pointcuts

private int BBuffer.counter = 0;

private boolean BBuffer.isEmpty() {
return (this.counter==0);

}

private boolean BBuffer.isFull() {
return (this.counter == this.capacity);

}

pointcut puts(BBuffer obj):
execution (* BBuffer.put(String)) && this(obj);

pointcut gets(BBuffer obj):
execution (* BBuffer.get()) && this(obj);

53

around() advice for puts()

void around (BBuffer obj): puts(obj) {
if (obj.isFull())

System.out.println("ERROR: Buffer full");
else {

// go ahead with the method call.
// proceed() takes the same number and types of arguments
// as the around() advice.
proceed(obj);
obj.counter++;

}
}

54

around() advice for gets()

String around(BBuffer obj) : gets(obj){
if (obj.isEmpty())

return "ERROR: Buffer empty";
else {

obj.counter--;
return proceed(obj);

}
}

10

55

Synchronization aspect
public aspect Synchronization {

private int BBuffer.counter = 0;
private boolean BBuffer.isEmpty() {return (this.counter==0);}
private boolean BBuffer.isFull() {return (this.counter == this.capacity);}
pointcut puts(BBuffer obj): execution (* BBuffer.put(String)) && this(obj);
pointcut gets(BBuffer obj): execution (* BBuffer.get()) && this(obj);
void around (BBuffer obj): puts(obj) {

if (obj.isFull()) System.out.println("ERROR: Buffer full");
else {

// go ahead with the method call.
// proceed() takes the same number and types of arguments
// as the around() advice.
proceed(obj);
obj.counter++;

}
}
String around(BBuffer obj) : gets(obj){

if (obj.isEmpty()) return "ERROR: Buffer empty";
else {

obj.counter--;
return proceed(obj); }}}

56

Running the application

public class BufferDemo {
public static void main(String[] args) {

BBuffer buffer = new BBuffer(2);
buffer.put("Item 1 ");
buffer.put("Item 2 ");
buffer.put("Item 3 ");
buffer.put("Item 4 ");
System.out.println(buffer.get());
System.out.println(buffer.get());
System.out.println(buffer.get());
System.out.println(buffer.get());

}
}

ERROR: Buffer full
ERROR: Buffer full
Item 1
Item 2
ERROR: Buffer empty
ERROR: Buffer empty

57

Privileged aspects
• You can mark an aspect as ‘privileged’ which

would give it access to the private features of the
affected class(es).

• In the previous example, capacity had protected
access to enable isFull() to get access to it.

public class BBuffer {
…
protected int capacity;

…
}

private boolean BBuffer.isFull() {
return (this.counter == this.capacity);

}
58

Privileged aspects

• We can redefine capacity as private and mark
the synchronization aspect as privileged.

public class BBuffer {
…
private int capacity;

…
}

privileged public aspect Synchronization {…}

59

Determining precedence among
advice

• Multiple pieces of advice may apply to the
same pointcut.

• In this case, the resolution order of the advice
is based on rules on advice precedence.

• There are two cases:
1. Precedence rules among advice from different

aspects.
2. Precedence rules among advice from within the

same aspect.

60

Precedence rules among advice
from different aspects

1. If aspect A is declared to have precedence over aspect
B, then all advice in (concrete) aspect A has
precedence over all advice in (concrete) aspect B when
they are on the same join point.

2. Otherwise, if aspect A is a subaspect of aspect B, then
all advice defined in A has precedence over all advice
defined in B. So, unless otherwise specified with
declare precedence, advice in a subaspect has
precedence over advice in a superaspect.

3. Otherwise, if two pieces of advice are defined in two
different aspects, it is undefined which one has
precedence.

11

61

Example
public class C {

public static void main(String[] args) {
System.out.println("Inside main");

}
}

public aspect A {
declare precedence: A, B;
pointcut callMain(): execution (public static void C.main(..));
before(): callMain() {System.out.println("Before from A");}
after(): callMain() {System.out.println("After from A");}

}

public aspect B {
pointcut callMain(): execution (public static void C.main(..));
before(): callMain() {System.out.println("Before from B");}
after(): callMain() {System.out.println("After from B");}

}

Before from A
Before from B
Inside main
After from B
After from A

62

Precedence rules among advice
from the same aspect

• If either are after advice, then the one that
appears later in the aspect has
precedence over the one that appears
earlier.

• Otherwise, the one that appears earlier in
the aspect has precedence over the one
that appears later.

63

Example 1

public aspect E {
pointcut callMain(): execution (public static void C.main(..));

after(): callMain() {
System.out.println("After from E");

}

after(): callMain() {
System.out.println("After from E - placed below");

}

} Inside main
After from E
After from E - placed below

64

Example 2

public aspect D {
pointcut callMain(): execution (public static void C.main(..));

before(): callMain() {
System.out.println("Before from D - placed above");

}

before(): callMain() {
System.out.println("Before from D - placed below");

}

} Before from D - placed above
Before from D - placed below
Inside main

65

Abstract aspects example
public abstract aspect AbstractTracer {

abstract pointcut logPoints();

before(): logPoints() {
System.out.println("Entering: " + thisJoinPoint);

}

after(): logPoints() {
System.out.println("Exiting: " + thisJoinPoint);

}
}

public aspect TraceMethods extends AbstractTracer {
pointcut logPoints(): call (* Buffer.*(..));

}
66

References

• AspectJ on-line user’s guide, available
from www.eclipse.org/aspectj

• Ramnivas Laddad, “I want my AOP” (Parts
I, II), JavaWorld.

• Nicholas Lesiecki, “Improve modularity
with aspect-oriented programming”, IBM
DeveloperWorks.

