
COMP 520 Compiler Design
Individual Assignment #2

The Rest of MiniLang! Your first compiler....

Due: Wednesday, February 3

Overview:

The purpose of this assignment is to get everyone familiar with the remaining phases of the
compiler, within the context of a simple project.

Question 1: Type or declaration errors (5 points)

Develop five small programs, where each program exhibits a different type or declaration
error. We will collect these together, along with all of the other students’ tests, into one big
torture test suite which we will use for testing your compiler.

You should test your compiler on many more programs.

Question 2: AST and pretty print MiniLang (10 points)

Implement an AST and pretty printer of the AST for MiniLang. Given an input program of
the name foo.min, your compiler should write the pretty print to file foo.pretty.min. This
pretty-printed file should be parsable by your compiler, in particular, check the invariant we
saw in class:

pretty(parse(pretty(parse(P)))) ≡ pretty(parse(P))

Question 3: Symbol Table and Type Checking (10 points)

Implement a simple symbol table and type checker for MiniLang, ensuring that you imple-
ment the semantics we decided in class. If there is a declaration or type error, then your
compiler should emit an error message, and not proceed to generate code.

If the program being compiled is foo.min, then your compiler should print out your
symbol table into file foo.symbol.txt. You should be able to print a symbol table, even if
there is a declaration or type error in the program, although the symbol table information
may be incomplete. This will help you in debugging.

1

Question 4: Code Generation (10 points)

If the input program successfully passes type checking, then your compiler should produce
an output .c file. If the input file is foo.min, then the output file should be foo.c. This
output file should be compilable by any standard C compiler, without needing any other
files. Make sure you test your generated code.

What to hand in

Hand in a tar.gz file of the form firstname lastname.tar.gz. The structure of the files
inside that tar-ball should be:

firstname_lastname/

README (Your name, student ID, what command to use to make your

scanner/parser (make, ant ..), any special directions)

programs/

invalidtype/ (your five programs with decl or type errors)

src/ (the source code and build files)

run (a script that when invoked as "run foo.min" will process the

input file and will produce three outputs, foo.pretty.min,

foo.symbol.txt and foo.c.)

The .tar.gz file should be handed in via MyCourses.

2

