
COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (1)

Domain Specific Languages

COMP 520: Compiler Design (4 credits)

Professor Laurie Hendren

hendren@cs.mcgill.ca

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (2)

Designing Domain-Specific Languages (DSLs)

• Specialize language for domain-specific task.

• Avoid the urge to include all of your favourite language constructs.

• Make the language easy to use for the domain specialist.

• Decide on the right data and control abstractions.

• Try to reduce excess notation - are type declarations necessary?

• Ensure that you will be able to generate “efficient-enough" code for each construct.

• Decide whether a DSL or a specialized library is a better solution.

• Decide on the target language - aim for portability.

• Consider interfacing with a known host language in order to leverage existing libraries and for

developing DSL libraries.

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (3)

OncoTime is an experimental DSL for a real problem

• The real problem is designing a DSL which allows for easily analyzing, verifying and visualizing patient

treatment paths in radiation oncology.

• OncoTime design motivated by real problems currently being solved “by hand coding" in the HIG

group.

• Since the language is experimental, groups will be allowed to make small modifications and additions

to the OncoTIme language. All such modifications/additions should be documented and justified.

• Since the language is addressing a real problem, the projects may be prototypes of a system that is

eventually used.

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (4)

Radiation Oncology at the MUHC

• Radiation Oncology is the use of radiation to treat cancer and other diseases.

• About 1 in 3 people in the western world will develop cancer in their lifetime, and about half of those

will require radiation. http://ranzcr.edu.au/about/radiation-oncology.

• Radiation Oncology in MUHC currently centered at MGH, but soon to move to the new cancer centre

at the Glen site.

• Last year they treated 2,500 patients for a total of 40,000 treatments.

• The entire operation of the radiation oncology department is computerized, with a database containing

complete information about treatments, documents, appointments and so on.

• For our project we have access to an anonymized version of the key parts of the database, so we will

be able to use the OncoTime compilers to compile OncoTime programs which compute real, and

potentially useful information.

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (5)

A typical patient pathway through radiation oncology treatment

For a video and link to the patient information brochure, please visit

http://muhc.ca/cancer/radiation-oncology. This should give you some idea of the

process the patient goes through.

http://acfro.com/wp-content/uploads/2012/07/image003.jpg

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (6)

Start Referring Physicians Booking Office Initial Consult No Treatment Needed

Physician ROR More TestsCT Scan

Machines Booked

Initial ContourMD Contour

CT Planning Sheet Dose Calculation MD Approve Physics QA

Ready for TreatmentPatient TreatmentsEnd of Treatment NoteFollowup Appts.

Patient Undecided

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (7)

Patient Treatments

• Patient treatments are given every weekday, often for many weeks. For example, 5 weeks (25

treatments) is common for breast cancer.

• Each week the patient also has an appointment with his/her radiation oncologist, and may have other

appointments with other medical professionals, such as nutritionists.

• For each appointment there are several times. The patient scans their medicare card when they arrive,

this is the arrival time. Then when the patient is moved to the consultation room this gives us the

actual consult start time. Each appointment also has a scheduled start time. One could imagine that

there are many interesting questions to ask about waiting times for patients.

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (8)

Time Series View of the Data

• You will note that the entire process is described as a series of events, ordered by time of the event.

• From the patient perspective, this series of events is also how they see the process.

• We would like to compute over the time series to ask questions such as:

– What are all the events, ordered by time, for patient P ?

– How many (Which) consults were performed on breast cancer patients in January?

– How many (Which) consults led to a ROR (RadOnc Requistion)?

– What is the expected delay between CT Scan and Ready for Treatment?

– How long has patient P been waiting for previous consultations?

– Do Dr. D’s patients wait longer than average for planning and/or appointments?

– Do patients wait longer on Monday mornings?

– How many (Which) patients check-in more than 1 hour early?

– Does checking in early result in being seen early?

– How many patients who have finished treatments have the End of Treatment note finished within

two weeks?

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (9)

Filtering Data

• Many of the questions we want to ask are relevant only to part of the data, for example:

– We may be interested only in certain time periods: between given dates, only Mondays, only the

mornings.

– We may only want to look at events relevant to patients with a specific diagnosis (i.e. breast cancer,

prostate cancer, lung cancer, ...).

– We may only want to look at some of the patients: only men, only patients born between 1990 and

now, only patients from a specific postal code, only patient P , ...

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (10)

Waiting Time for Planning

• Look at the time for planning for patients who had six essential events, in the correct order, CT-SIM,

Ready for MD Contour, Ready for Dosimetry, Prescription Approved, Ready for Physics QA,

and Ready for Treatment.

• Visualize the data in many different ways.

• Eventually develop a predictor, which can fairly accurately determine the expected number of days

before the patient can begin treatment, based on many factors.

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (11)

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (12)

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (13)

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (14)

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (15)

Waiting time for Consults

• Patients also come for many different types of appointments, including the initial consult, weekly

consultations during treatments, and follow-up consults.

• It is interesting to study the waiting time for these patients, in order to better predict the expected

waiting time, and to identify undesirable situations, such as patients arriving much too early, doctors

scheduling too many patients during some time periods, and patients who are habitually late.

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (16)

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (17)

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (18)

How is the data stored?

• The production database, Aria, is very large and complex.

• We are going to use a much simpler MySQL database.

• Events are encoded implicitly in the MySQL database.

• Previous studies have combined SQL queries with some post-processing.

• There are many ways of encoding similar values, and we need some way of grouping them (these

groups were called aliases in a related project, http://scitation.aip.org/content/

aapm/journal/medphys/41/8/10.1118/1.4894911).

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (19)

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (20)

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (21)

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (22)

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (23)

How to design OncoTime?

• Want to support an abstraction of time series of events, because this corresponds to our conceptual

model of the process.

• Want a way of easily creating groups of related values.

• Need to get the correct data of out the MySQL database, but we do not want to require the user to

build an SQL query.

• Once the data is expressed as a time series, we want some control structures to compute with those

time series.

• Want to be able to interface to the host generated language (python?) in order to use existing libraries

and to easily program specialized functions.

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (24)

Program Structure
script Foo() //should reside in file Foo.onc, should first letter be a cap?
/**
Documentation comment. This comment should be returned by the command "help
foo"
*/

// ------- USE CLAUSES --------------------------

// ------- GROUP DEFINITIONS --------------------

// ------- FILTERS ------------------------------

// ------- COMPUTATIONS -------------------------
{}

• Header, documentation and computation block required, others optional.

• Sections must come in this order.

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (25)

script FilterTest()
/**
* This file demos filters ...
*/
// The filter is applied over the whole database, resulting in the data
// which will be considered in the computations part

population is
Id: 1000, 2000, 3000
Sex: M
Birthyear: 1967
PostalCode: K2G6K8
Diagnosis: breast

doctors are
Id: 2123, 1231, 1415

period is
Dates: 2013-01-01, 2015-01-01

events are
Events: ct_sim_booked

{ foreach Patient p
print p

}

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (26)

Any order and repetition allowed?

• the four sections, population, doctors, period and events may come in any order, and may be omitted

• if a section is omitted, then the ’*’ value is implied for all the fields (i.e. no filtering)

• if a section is repeated, then any field that is redefined becomes the active filter.

• inside the population and period sections the fields can be listed in any order

• if a field is omitted, then the ’*’ value is implied for all those fields

• if a field is repeated, then the last definition is the one taken (should redefinition be a warning?)

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (27)

What does a group file look like? - myGroups.grp
/**
* This file defines a set of data that can easily be changed to
* make it specific to particular queries or doctor’s interests.
*/

group Id myId = {1001, 2000}
group Id extraId = {400, 500}
group Id myPatientIds = {100, 200, 300, 500, <extraId>}
group Sex myGenders = {M, F}
group Birthyear myBirthyears = {1993, 2014, 1960}
group Diagnosis myDiagnosis = {breast, prostate, liver}
group Days myWorkDays = {Mon, Tues, Wed, Thurs, Fri}
group Years my_years = {2014, 2015, 2016}

Other types are: Postalcode, Date, Hour, Event

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (28)

You can include some predefined groups, and also define some more
// --- uses
use myGroups.grp, ExtraGroups.grp

// ------- GROUP DEFINITIONS --------------------
// define a new group - string by default, other group names with <>
group Diagnosis diaglist = {breast, prostate}

// here is an example of using an existing group
group Diagnosis diaglist2 = {<diaglist>, liver}

// should you allow for some regular expressions for group values?

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (29)

Database views to Event Streams

• The use, groups and filter sections set up all the information needed to determine what information
needs to be extracted from the database.

• The compiler will generate SQL queries that will result in the information needed to generate an
internal representation of an event stream, and it will create an efficient representation of the event
trace.

• What is a reasonable representation? Want to not use excess space, but also want links for quickly
traversing all events, all events for a patient, and perhaps other specializations.

• The computation section of the program computes over the event trace, and also assumes a table of
patient info and doctor info for all patients and doctors that occur in the events.

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (30)

What are events? Before treatment planning group:
consult_referral_received(time, patientid)
initial_consult_booked(time, patientid, doctorid) ... room?
initial_consult_completed(time, patientid, doctorid)
CT_sim_booked(time, patientid, doctorid) ... room?
ready_for_CT_sim(time, patientid, doctorid)

Treatment planning group:
CT_sim_completed(time, patientID, doctorID)
ready_for_initial_contour(time, patientID, doctorID) ... dosometristid?
ready_for_MD_contour(time, patientID, doctorID)
ready_for_dose_calculation(time, patiendID, doctorID)
prescription_approved_by_MD(time, patientID, doctorID)
ready_for_physics_QA(time, patientID, doctorID) ... physicistid?
ready_for_treatment(time, patientID, doctorID)
machine_rooms_booked(time, patientID, doctorID) ... machines?
patient_contacted(time, patientID, doctorID)

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (31)

vikramPatientData.grp
/**
* Contains all the information I might want to use across OncoTime programs.
*/

group Id patientGroupOne = {1 to 250, 300 to 400, 1001}
group Birthyear patientBirthyearRange = {1950 to 1970}

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (32)

vikramPatientData.grp
script DailyPatientHistory()
/**
* Generates my patient Timelines.
*/

// ---- Change data in this group file ----
use vikramPatientData.grp

// ---- Filters ----
population is

Id: <patientGroupOne>
Birthyear: <patientBirthyearRange>
Sex: M, F

// ---- Computations ----
{ foreach Patient p

print p
}

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (33)

Example 2 from Reference Compiler
script Barcharts()
/**
* Generates barcharts.
*/

// ---- Change data in this group file ----
use vikramPatientData.grp

// ---- Filters ----
population is

Id: <patientGroupOne>
Birthyear: <patientBirthyearRange>
Sex: M, F

{
table t = count Patients by Birthyear
table s = count Patients by Diagnosis
table v = count Doctors by Id

print t
print s
print v

}

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (34)

Example 3 from Reference Compiler
script PatientDoctorDiagnosis()
/**
* Prints all the informations for male patients who came in between
* 2010 and 2015.
* All months except for December.
*/

group Months myWorkMonths = {01, 02, 03 to 10}

population is
Sex: M
Id: 1 to 2500
Birthyear: 1950 to 1970

period is
Months: <myWorkMonths>, 11
Years : 2010 to 2015

{ foreach Patient p
{ print p
foreach Doctor d
{ print d
foreach Diagnosis diag
{ print diag

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (35)

}
}

}
}

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (36)

Example 4 from Reference Compiler
script PatientSequences()
/**
* Generates my patient Timelines.
*/

// ---- Change data in this group file ----
use vikramPatientData.grp

// ---- Filters ----
population is

Id: <patientGroupOne>
Birthyear: <patientBirthyearRange>
Sex: M, F

{ list s = sequences like
[ct_sim_booked ->
ct_sim_completed | patient_arrives ->
end]

foreach member i in s
print i

}

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (37)

Example 5 from Reference Compiler
script ParameterExpansion(Sex s, Birthyear b1, Birthyear b2, Events e)
/**
* Parameter example.
*/

group Birthyear myBirthyears = {<b1>, 1993, 2012, <b2>}
population is

Id: 13456, 134, 2455
Sex: M, F
Birthyear: <myBirthyears>
Diagnosis: breast, prostate, <e> // can be strings or groups
PostalCode: H4X

period is
Years: 2012, 2012, 2014
Months: 01, 02, 03
Days: Mon, Tues, Wed, Thurs, Fri, Sat, Sun

events are
Events: <e>

{ foreach Doctor d
print d

}

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (38)

Some possible computations - may not match reference compiler
foreach patient p
print p

// optional where clause ??
foreach patient p // [where gender is female, postalcode is K]
print timeline of p // all events, ordered by time, for a patient

// can support a variety of nice visualizations

foreach diagnosis d // [where diagnosis is breast, prostate]
{ print d
foreach patient p
print ID, Gender, Age, Diagnosis of p // field names with caps

}

foreach doctor d
print timeline of d

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (39)

Tables - basically association tables between keys and values
table x = count patients by Diagnosis // table of pairs (Diagnosis : n)

// What are good high-level operators to provide for tables?

foreach element i of x
print x[i] // prints pairs

print x.length

// plot
barchart x // [to filename]?

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (40)

Sequences - one of the key abstractions
// each p1 is either an identifier or a group
foreach sequence s like []

// [patient_arrives -> patient_seen]
// [patient_arrives(p) -> patient_seen(p)]
// [e1 -> e2 | e3 -> e4]
// [e1 -> {e2, e3} -> e4]
// [e1 -> {e2, e3}* -> e4]
// [e1 -(not e2)-> end]
print s

// lists are lists of sequences
list S = sequences like []
foreach member s in S
print s

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (41)

Using the host language to compute
// call out to native code
table z = native(func,x,y) // where x and y are tables, sequences, or

// lists of sequences
sequence z = native(func,x,y)
list l = native(func,x,y)

• Need to define an interface between your internal representation and the representation expected by
the native call.

• Perhaps easier if you generate code in the same language as the native code (Python?)

COMP 520 Winter 2016 Domain-Specific Languages - OncoTime (42)

What are the challenges?

• Write the grammar. Maybe leave quite a bit of checking to a weeding phase, which is aided by an
external structure.

• Determine what static checks including type checks are required.

• Design the code generation for the MySQL queries.

• Design the events representation, and store results of queries in that representation.

• Generate the code generation for computation code as computations over the events.

• You can simplify the language if it gets too complex, and we can add new language features if things
go easily. We will have a core set of features that you must implement.

