
1

COMP 621 – McGill University – Laurie Hendren

 Intermediate code provides an abstraction
which can be produced by the front-end,
and consumed by the back-end.

 Front end – produces IR of source program
 Back end – generates target code from IR
 Optimizations may operate on the IR

1COMP 621 - McGill University - Laurie Hendren

2

 Break compiler into manageable pieces
◦ simpler pieces
◦ more modularity

 Easier re-targeting
 Complete pass before emitting code
◦ => better code

 Allows for language-independent and
machine-independent optimizations

 Drawback: Another step => loss in efficiency

2COMP 621 - McGill University - Laurie Hendren

 The compilers internal representation
◦ Is language-independent and machine-

independent

AST IR

Pentium

Java bytecode

Itanium

TI C5x

ARM

optimize

Enables machine independent
and machine dependent optimizations

3COMP 621 - McGill University - Laurie Hendren

3

COMP 621 - McGill University - Laurie Hendren 4

 Captures high-level language constructs
◦ Easy to translate from AST
◦ Supports high-level optimizations

 Captures low-level machine features
◦ Easy to translate to assembly
◦ Supports machine-dependent optimizations

 Narrow interface: small number of node
types (instructions)
◦ Easy to optimize
◦ Easy to retarget

5COMP 621 - McGill University - Laurie Hendren

4

 Most compilers use 2 IRs:
◦ High-level IR (HIR): Language independent but closer

to the language
◦ Low-level IR (LIR): Machine independent but closer to

the machine
◦ A significant part of the compiler is both language and

machine independent!

AST HIR

Pentium

Java bytecode
Itanium
TI C5x
ARM

optimize

LIR

optimize
optimize

C++
C

Fortran

6COMP 621 - McGill University - Laurie Hendren

 Structural (High-level IR)
◦ graph-based or tree-based
◦ convenient for high-level transformations
◦ may require more storage space

 Linear (Low-level IR)
◦ pseudo-code for abstract machine
 e.g., stack machine, RTL from gcc (Register Transfer

Language)
◦ large variation in level of abstraction
◦ simple, compact data structures

 Hybrids
◦ combination of graph & linear code
◦ examples: control flow graphs

7COMP 621 - McGill University - Laurie Hendren

5

8COMP 621 - McGill University - Laurie Hendren

 HIR is essentially the AST
◦ Must be expressive for all input languages

 Preserves high-level language constructs
◦ Structured control flow: if, while, for, switch
◦ Variables, expressions, statements, functions

 Allows high-level optimizations based on
properties of source language
◦ Function inlining, memory dependence analysis,

loop transformations

9COMP 621 - McGill University - Laurie Hendren

6

 A set of instructions which emulates an
abstract machine (typically RISC: Reduced
instruction set computing)

 Has low-level constructs
◦ Unstructured jumps, registers, memory locations

 Types of instructions
◦ Arithmetic/logic (a = b OP c), unary operations,

data movement (move, load, store), function
call/return, branches

 Allows for machine-specific optimizations
◦ E.g., register allocation

10COMP 621 - McGill University - Laurie Hendren

 3 general alternatives
◦ Three-address code or quadruples
 a = b OP c
 Advantage: Makes compiler analysis/opt easier

◦ Low-level tree representation
 Was popular for CISC (complex instruction set

computer) architectures
 Advantage: Easier to generate machine code

◦ Stack machine
 Like Java bytecode
 Advantage: Easy to generate, compact representation
 Disadvantage: Difficult to optimize directly

11COMP 621 - McGill University - Laurie Hendren

7

12COMP 621 - McGill University - Laurie Hendren

COMP 621 - McGill University - Laurie Hendren 13

iload 1
iload 2
iadd
istore 3

8

COMP 621 - McGill University - Laurie Hendren 14

iload 1
iload 2
iadd
istore 3

 a = b OP c
◦ Originally, because instruction had at most 3

addresses or operands
 This is not enforced today, ie MAC: a = b * c + d
◦ May have fewer operands

 Also called quadruples: (a,b,c,OP)
 Example

a = (b+c) * (-e) t1 = b + c
t2 = -e
a = t1 * t2

Compiler-generated
temporary variable

15COMP 621 - McGill University - Laurie Hendren

9

 The operands in 3-address code can be:
◦ Program variables
◦ Constants or literals
◦ Temporary variables

 Temporary variables = new locations
◦ Used to store intermediate values
◦ Needed because 3-address code not as expressive

as high-level languages
 Often introduce lots of temporaries and then

simplify to remove spurious ones.

16COMP 621 - McGill University - Laurie Hendren

17COMP 621 - McGill University - Laurie Hendren

10

18COMP 621 - McGill University - Laurie Hendren

19COMP 621 - McGill University - Laurie Hendren

11

20COMP 621 - McGill University - Laurie Hendren

21COMP 621 - McGill University - Laurie Hendren

12

 Assignment instructions
◦ a = b OP C (binary op)
 arithmetic: ADD, SUB, MUL, DIV,

MOD
 logic: AND, OR, XOR
 comparisons: EQ, NEQ, LT, GT,

LEQ, GEQ
◦ a = OP b (unary op)
 arithmetic MINUS, logical NEG

◦ a = b : copy instruction
◦ a = ld b : load instruction
◦ st a = b : store instruction
◦ a = &b: symbolic address

 Flow of control
◦ label L: label instruction
◦ goto L: unconditional jump
◦ if (a op b) goto L : cond. jump

 Function call
◦ call f(a1, ..., an)
◦ a = call f(a1, ..., an)

 IR describes the instruction
set of an abstract machine

22
COMP 621 - McGill University - Laurie

Hendren

n = 0;
sum = 0;
while (n < 10) {

if (n % 2 == 0)
sum = n+1;

}
print(sum);

Convert the following code segment to assembly code

23
COMP 621 - McGill University - Laurie

Hendren

