Intermediate

Representations

(Slides adapted from
http://moodle.bracu.ac.bd/course/view.php?id=90)

Intermediate code

» Intermediate code provides an abstraction
which can be produced by the front-end,
and consumed by the back-end.

» Front end - produces IR of source program
» Back end - generates target code from IR
» Optimizations may operate on the IR

source - front _”I I R I back .

end : : end code

NN

target

code

IR benefits and drawbacks

- Break compiler into manageable pieces
> simpler pieces
- more modularity optimize

- Easier re-targeting - . e :::
- Complete pass before emitting code

- => better code
- Allows for language-independent and

machine-independent optimizations
- Drawback: Another step => loss in efficiency

COMP 621 - McGill University - Laurie Hendren

Intermediate Representation (IR)

» The compilers internal representation

> Is language-independent and machine-

independent
Enables machine independent

/ and machine dependent optimizations

optimize .
p Pentium

Java bytecode

AST

IR

[tanium
TI C5x
ARM

COMP 621 - McGill University - Laurie Hendren

Can there be one general purpose
IR?

e |

2
\M%“’ / _{ oo

/Mo

COMP 621 - McGill University - Laurie Hendren

What Makes a Good IR?

» Captures high-level language constructs
> Easy to translate from AST
> Supports high-level optimizations
» Captures low-level machine features
- Easy to translate to assembly
> Supports machine-dependent optimizations
» Narrow interface: small number of node
types (instructions)
- Easy to optimize
- Easy to retarget

COMP 621 - McGill University - Laurie Hendren

Multiple IRs

» Most compilers use 2 IRs:

> High-level IR (HIR): Language independent but closer
to the language

> Low-level IR (LIR): Machine independent but closer to
the machine

> A significant part of the compiler is both language and
machine independent!

7 optimize
optimize ~ optimize P* AP
C++ (_7 m entrum
C AST— HIR—— LIR Java bytecode
Fortran [tanium
TI C5x

ARM

COMP 621 - McGill University - Laurie Hendren

Intermediate Representation

Categories

« Structural (High-level IR)
- graph-based or tree-based
- convenient for high-level transformations
° may require more storage space

. Linear (Low-level IR)

- pseudo-code for abstract machine

- e.d., stack machine, RTL from gcc (Register Transfer
Language)

- large variation in level of abstraction
> simple, compact data structures

» Hybrids
> combination of graph & linear code
- examples: control flow graphs

COMP 621 - McGill University - Laurie Hendren

IR Category example

é float a[l10][20];
mws Low € High
High-level IR Middle-level IR Low-level TR
tl = ali, j+2] tl =3 + 2 rl = [fp - 4]
t2 = i * 20 r2 = [rl + 2]
£3 = tl + t2 r3 = [fp - 8]
t4 = 4 * t3 r4d = r3 * 20
t5 = addr a r5 = r4 + r2
t6 = t5 + td ré = 4 * r5
t7 = *t6 r7 = fp -216

£f1 = [x7 + r6]

COMP 621 - McGill University - Laurie Hendren

High-Level IR

» HIR is essentially the AST
> Must be expressive for all input languages
» Preserves high-level language constructs
- Structured control flow: if, while, for, switch
- Variables, expressions, statements, functions
» Allows high-level optimizations based on
properties of source language

> Function inlining, memory dependence analysis,
loop transformations

COMP 621 - McGill University - Laurie Hendren

Low-Level IR

A set of instructions which emulates an

abstract machine (typically RISC: Reduced

instruction set computing)

- Has low-level constructs

> Unstructured jumps, registers, memory locations

Types of instructions

> Arithmetic/logic (a = b OP ¢), unary operations,
data movement (move, load, store), function
call/return, branches

Allows for machine-specific optimizations

> E.g., register allocation

COMP 621 - McGill University - Laurie Hendren

Alternatives for LIR

- 3 general alternatives
- Three-address code or quadruples
ca=bO0OPc
- Advantage: Makes compiler analysis/opt easier
- Low-level tree representation

- Was popular for CISC (complex instruction set
computer) architectures

- Advantage: Easier to generate machine code
- Stack machine
- Like Java bytecode

- Advantage: Easy to generate, compact representation
- Disadvantage: Difficult to optimize directly

COMP 621 - McGill University - Laurie Hendren

Three-Address Code
(Quadruples)
o OP vy, z, X

tox

operation operands result

o Has three names/addresses (x,y, z), or less
o A single operator (OP)

JPTTTTTTTITRI LY

COMP 621 - McGill University - Laurie Hendren

o We will write as: x €y OP z
Example:
x € (y + z)*(-1); . tl €y + z

t2 & -r
t3 € t1 * t2

Stack-based bytecode versus
3-address code (c=a + b)

iload 1
iload 2
1add

istore 3 \»
s4 <2
o b C

\r/;\ /@\2} ﬁ%ﬂ%(

i 1

\ﬂ//\/ W/\ stadk

\\\?ar\ ables

COMP 621 - McGill University - Laurie Hendren

Suppose we are doing constant
propogation, and we know that a
is 10, and b is 127)

tload 1
1load 2
1add
istore 3

o)0 C 5ﬂ_ %1
([
\ fo) \ VL

— —— =

;ﬁ//\—/\ V\#;/lo/\ stadk

\\\?a(\ ables ot

COMP 621 - McGill University - Laurie Hendren . 14

Three-Address Code

»a=bOPC

> Originally, because instruction had at most 3
addresses or operands
- This is not enforced today, ie MAC: a=b*c+d

- May have fewer operands
» Also called quadruples: (a,b,c,OP)

» Example
Compiler-generated
a = (b+c) * (-e) ti=b+c temporary variable
t2=-¢
a=tl *t2

COMP 621 - McGill University - Laurie Hendren 15

IR Operands

» The operands in 3-address code can be:
> Program variables
> Constants or literals
- Temporary variables
» Temporary variables = new locations
> Used to store intermediate values
- Needed because 3-address code not as expressive
as high-level languages
» Often introduce lots of temporaries and then
simplify to remove spurious ones.

COMP 621 - McGill University - Laurie Hendren 16

Typical Statements

o Assignments:
-« x € yoP z : binary OP

o Arithmetic: +, -, *, /, mod
o Logic: AND, OR, XOR
o Comparisons: =, !=, <, >, >=, =<

- x € OP y: unary OP
o Arithmetic: -
o Logic: NOT

COMP 621 - McGill University - Laurie Hendren 17

Typical Statements

o Data movement: SJW")(
C%/)i\g@

+ Copy/Move ¢ s
PY X<y &kd‘\
* Load: x € [y] xe |4
+ Store: [x] €y [1 = contents of N

sTx& \3
+ "address of":

X € addr y &7{6 i‘s

COMP 621 - McGill University - Laurie Hendren 18

Typical Statements

o Flow of control (branch)
* label L :definealabel (=a point inLIR)
* jump L : unconditional jump (3«\‘0)
* c¢jmp ¢ L : conditional jump (jump fo L if ¢ TRUE)
(5 (o gt L)
o Function call
* call f(al,a2,. . .,an)
+x € call f(al,a2,. . .,an)
* Can/should add explicit representation of setup
for passing function arguments

COMP 621 - McGill University - Laurie Hendren 19

10

D
IR Example bty

n €0 n&e O

label 1TEST| {rest:
n=20; t2 € n<10
while (n<10) { t3 € NOT t2

n=n+1; N 1 cjmp t3 1ENT 5 (w2 107
oo ek
} label 1RODY
.Q\om*a
n<€n+l Lenl
jump 1TEST grho XY

label 1END | Jend:

COMP 621 - McGill University - Laurie Hendren

20

Another IR Example | “

m< 0 Mg O

m = 0; tl € c== ,S_;- (Cz:ﬂ 00—\0 ‘Q,\(u(
cjmp tl 1TRUE

if (e==0) {

», mE<m+n
m=m+ n¥n; e, ME man

: do Rend
| else | . jump 1END () e

label 1TRUE | rcue

t2 € n*n rhe nIn

m=m+n;

mé€ m+ t2

label 1END Lend:

COMP 621 - McGill University - Laurie Hendren 21

IR Instructions i
af\= ¥,

» Assignment instructions » Flow of cont
- a = b OPC (binary op) o label L: label instruction
- arithmetic: ADD, SUB, MUL, DIV, > goto L: unconditional jump
MOD - if (a op b) goto L : cond. jump

- logic: AND, OR, XOR

: » Function call
- comparisons: EQ, NEQ, LT, GT,

LEQ, GEQ - call f@al, ..., an)
ca=0Pb (unary op) o a = call f(a], . an)
- arithmetic MINUS, logical NEG » IR describes the instruction
- a = b : copy instruction set of an abstract machine
> a=Id b :load instruction
> sta = b : store instruction (("\\” M (°\°
> a = &b: symbolic address Wwto- . o
(whd 5 M'/é;mé ¢ Eﬂ"’—
72 =),
N
COMP 621 - McGill University - Laurie R add
Hendren \}: ’X '\‘}) .

Class Problem

Convert the following code segment to assembly code

n=0;
sum = 0;
while (n < 10) {
if(n% 2==0)
sum = n+1;
§

print(sum);

COMP 621 - McGill University - Laurie
Hendren 23

12

