
This talk is divided into 7 parts. Part 1 begins with a quick look

at the SSA optimization framework and global value numbering.

Part 2 describes a well known brute force algorithm for GVN. Part

3 modifies this to arrive at an efficient sparse algorithm. Part

4 unifies the sparse algorithm with a wide range of additional

analyses. Parts 5-7 put it all together, present measurements

and suggest conclusions.
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The framework of an SSA based global optimizer can be rep-

resented as a pipeline of processing stages. The intermediate

representation of a routine flows in at the top and is first trans-

lated to static single assignment form. The SSA form IR is now

processed by a number of passes, one of which is global value

numbering. The results of GVN are used to transform the IR.

Finally the IR is translated out of SSA form, and optimized IR

flows out of the pipeline.
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These are the basic notions of value numbering. A value is a

constant or an SSA variable. The values of a routine can be

partitioned into congruence classes. Congruent values are guar-

anteed to be identical for any possible execution of the routine.

Every congruence class has a representative value called a leader.

PLDI’02 17 June 2002 4-1/34



GVN is an analysis phase - it does not transform IR. Its input

is the SSA form IR of a routine. It produces 4 outputs: the

congruence classes of the routine, the values in every congruence

class, the leader of every congruence class and the congruence

class of every value.
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GVN can be unified with analyses such as constant folding, al-

gebraic simplification and unreachable code elimination. Unified

algorithms produce better results and run faster than repeated

invocations of their component analyses. The results of GVN are

used to perform unreachable code elimination, constant propa-

gation, copy propagation and redundancy elimination.
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This is a well known brute force algorithm for GVN. Step 1. ini-

tially makes all the SSA variables of the routine have the indeter-

minate value �. Step 2. clears a hash table to map expressions

to values. Step 3. processes all the instructions of the routine

in reverse post order. Only instructions that assign expressions

to variables are considered. For an instruction which assigns the

expression X op Y to V, let E be the expression Value-of(X)

op Value-of(Y). A hash table lookup is performed on E. If the

lookup is successful, its result is made the value of V. Otherwise

the value of V is set to V itself, and the hash table is updated

to map E onto V. Finally, step 4. repeats steps 2. and 3. until

there are no more changes in the values.
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Here is an example of the brute force algorithm in action. First all the variables
are given the value �. Then their definitions are processed in RPO.

The SSA variable I1 is assigned the value 1. Since the expression 1 is not
in the hash table, the value of I1 is set to I1. For J1, the hash table already
contains 1, so its value is also set to I1.

I2 is assigned the merge of the values of I1 and I3. I3 has the value �, so it
is ignored. A φ-function with one argument reduces to that argument. So I2

is assigned the value I1. Similarly J2 is also assigned the value I1.

I3 is defined as I2 + 1, which becomes I1 + 1, which is not in the hash table.
So I3 is assigned the value I3. Since J3 has the same definition, it is also
assigned the same value. This ends the first pass.
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The second pass does not change I1 and J1. The definition of

I2 is now φ(I1, I3), which is not in the hash table. So I2 changes

to the value I2. J2 also changes to I2. I3 and J3 remain the

same.

The third pass confirms these values. Hence J3 is congruent to

I3. The algorithm has reached a fixed point in 3 passes.
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The Brute Force algorithm is Taylor Simpsons 1996 hash based

RPO algorithm. It achieves the same result as the 1988 parti-

tioning algorithm due to Alpern, Wegman and Zadeck. Brute

Force is an optimistic algorithm - it assumes that all values are

initially congruent until it can prove otherwise. Only an opti-

mistic algorithm can discover the congruence of I3 and J3 in

the previous example. Brute Force takes O(C) passes where C

is the loop connectedness of the SSA def-use graph. The loop

connectedness of a graph is the maximum number of back edges

in any acyclic path.
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Sparse value numbering is a simple modification to Brute Force.

Step 1. performs the same initialization as Brute Force. Step

2. touches the instructions of the start block. Step 3. examines

all the instructions of the routine in reverse post order. If an

instruction is untouched, it is skipped. Otherwise it is wiped,

and processed as in Brute Force. If the value it produces has

changed, its consumers are touched. These are found from the

SSA def-use chains of the routine. Finally, step 4. repeats step

3. until there are no more touched instructions.
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Here is an example of sparse value numbering in action. Since it processes
instructions in exactly the same way as Brute Force, the values computed by
every pass are exactly the same as for Brute Force. Initially, the definitions
of I1 and J1 are touched. These are processed, and their values change, so
their consumers, the definitions of I2 and J2, are touched and processed. I2

and J2 also change, so the definitions of I3 and J3 are touched and processed.
I3 and J3 also change, so the definitions of I2 and J2 are touched. Hence
the first pass ends after processing 6 instructions, leaving the definitions of
I2 and J2 touched.

The second pass skips the definitions of I1 and J1, and processes the defini-
tions of I2 and J2. The change in I2 and J2 causes the definitions of I3 and
J3 to be touched and processed. The change in I3 and J3 causes the defini-
tions of I2 and J2 to be touched. So the second pass ends after processing 4
instructions, leaving the definitions of I2 and J2 touched.

The third pass processes only 2 instructions - the definitions of I2 and J2.
Since they do not change, it does not touch any more instructions, and the
algorithm terminates after having reached a fixed point.

Brute Force processed a total of 3 x 6 or 18 instructions. Sparse value
numbering processed a total of 6 + 4 + 2 or 12 instructions. So it is ≈ 1.5
times faster than Brute Force for this example.
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Sparse value numbering is faster than Brute Force because it

does not process all the instructions in every pass. It does have

to examine every instruction to see if it is touched, but this

check is much faster than processing it. Unlike Brute Force, the

sparse algorithm does not clear the hash table between passes.

Because of this, when the leader of a congruence class is moved

to a new congruence class, the old congruence class requires

special treatment (unless it is empty). The definitions of the

remaining members of the old class are touched, and one of

them is chosen to be their new leader.
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The previous example demonstrated that at the end of a pass of sparse
value numbering, the instructions left touched are φ-instructions with one
or more operands carried by back edges. For acyclic code, there are no
such instructions, therefore sparse value numbering completes in one pass.
For cyclic code, it must process these instructions. When the optimistic
assumption is confirmed, the values of these instructions will not change,
therefore sparse value numbering completes in almost one pass. When the
optimistic assumption is rejected, sparse value numbering takes anywhere
up to one less pass than Brute Force. Therefore sparse value numbering
should be quite efficient. This is supported by measurements collected from
our implementation of sparse value numbering when optimizing the SPEC
CINT2000 C benchmarks. It takes < 4% of the total optimization time (this
is with additional unified analyses), and 1.98 passes per routine on average.
Finally, the speedup due to sparseness is 1.23 to 1.57.
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Sparse value numbering can be strengthened by unifying it with a

wide range of additional analyses. Algebraic transformations are

the most straightforward to incorporate. Before looking up an

expression in the hash table, it is subjected to algebraic transfor-

mations. Constant folding evaluates expressions with constant

operands. The algebraic, associative and distributive laws are

used to simplify expressions or restructure them in order to find

more congruences. This requires forward propagation, which

replaces an SSA variable with its defining expression. These

unifications require two modifications to sparse value number-

ing. Firstly, if any value of a congruence class is defined as a

constant, that constant should be made the leader of the class.

Secondly, a value which is subject to forward propagation should

be treated as changed when its defining expression changes.
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This is an application of algebraic transformations. The first pass

of sparse value numbering sets the value of I1 to 1. Because I3
is �, I2 reduces to 1. Constant folding evaluates I3 to 1. The

second pass processes the definition of I2. Both I1 and I3 have

the value 1, so I2 becomes their merge, which is 1. Since there

is no change in I3, the algorithm terminates. It has taken almost

one pass to find out that I3 has the value 1.
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Unreachable code elimination is also straightforward to incorpo-

rate into sparse value numbering. Firstly, the start block of the

routine is made reachable, and all the other blocks and edges are

made unreachable. Secondly, touched but unreachable instruc-

tions are wiped but not processed. Thirdly, jump instructions are

also examined. If an outedge cannot be followed, it remains un-

reachable. Otherwise it becomes and remains reachable. Once

an edge becomes reachable, so do its target blocks. Finally,

operands of φ-functions that are carried by unreachable edges

are ignored.
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This is an application of unreachable code elimination. Constant

folding evaluates the predicate I1 �= 0 to true. So the edges E1

and E2 remain unreachable. Thus I2 is ignored when evaluating

the definition of I3. Hence I3 has the value 1.

PLDI’02 17 June 2002 18-1/34



The optimistic assumption is powerful but also expensive. A

better tradeoff is the balanced assumption, which is pessimistic

in congruence of values and optimistic in reachability. That is,

it assumes that all values are non-congruent until proven other-

wise, and all blocks (other than the start block) and edges are

unreachable until proven otherwise. To perform balanced value

numbering, every φ-function with one or more operands carried

by back edges is treated as a unique value, and the algorithm

is terminated after the first pass. Measurements collected when

optimizing the SPEC CINT2000 C benchmarks indicate that bal-

anced value numbering is as fast as pessimistic, and almost as

strong as optimistic value numbering. It also runs 1.39 to 1.90

times faster than optimistic value numbering.
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This example illustrates that values can be inferred in the absence

of explicit definitions. The use of I1 in block B1 is dominated

by edge E1. E1 is the false outedge from the conditional jump.

So the predicate J1 �= 0 has the value false at edge E1. Thus J1

must have the value 0 at edge E1 and block B1. Furthermore I1
is congruent to J1. Thus I1 must have the value 0 at edge E1

and block B1. Hence K1 has the value 0.
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The algorithm for value inference is straightforward to incor-

porate into sparse value numbering. Before looking up an ex-

pression in the hash table, value inference is performed on its

operands. For each operand X of the expression, value inference

starts from the block B containing the expression and goes up

the dominator tree looking for an edge E such that E dominates

B, E is the true outedge from a jump instruction with predicate

Y = Z, and Y is congruent to X. If such an E is found, then X

is inferred to have the value Z. Only a dominator tree approach

can be completely unified with value numbering. The previous

example cannot be handled by approaches that implement value

inference by means of a pre-pass that inserts assignments.
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When performing value inference, there are two approaches to determining
dominance relationships. Accordingly there are two versions of the value num-
bering algorithm. The complete algorithm incrementally builds the reachable
dominator tree - the dominator tree of the reachable subset of the CFG. The
practical algorithm uses the dominator tree of the routine. The practical al-
gorithm is simpler, but it cannot ignore unreachable code when determining
dominators, and it cannot perform inferences along back edges. Further-
more sparse value numbering has to be modified to work for value inference.
When the reachability or predicate of an edge B1→B2 changes, all potentially
affected instructions are touched. The complete algorithm touches the in-
structions of all the blocks dominated by block B2. The practical algorithm
touches all instructions downstream in RPO of block B2.
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When value inference finds that one variable has the value of another, it can
be repeated on the second variable. This makes its worst case time O(E2),
where E is the number of edges in the CFG. However it can be made to run
very efficiently by noting that it is applicable only to the operands of = or �=
predicates of jump instructions. These are initially marked as inferenceable,
and a count of the inferenceable values is maintained for every congruence
class. When a class acquires an inferenceable value, its count is incremented,
and when it loses one, it is decremented. Value inference can now be restricted
to values in classes whose counts are positive. Additionally, the results of value
inference can be cached across multiple uses in a block. These optimizations
make value inference run very efficiently in practice. Measurements collected
when optimizing the SPEC CINT2000 C benchmarks indicate that it visits
0.91 blocks per instruction on average.
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Predicate inference is similar to value inference in concept and

implementation. In this example, the predicate J1 = 0 in block

B1 is dominated by edge E1. The predicate I1 �= 0 has the value

false at edge E1. Moreover I1 is congruent to J1. Hence the

predicate J1 = 0 has the value true in block B1. Predicate in-

ference is also very efficient in practice. Measurements collected

when optimizing the SPEC CINT2000 C benchmarks indicate

that it visits 0.38 blocks per instruction on average.
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It is not possible for value numbering to discover congruences between φ-
functions in different blocks. This is because the φ-functions of classical
SSA do not associate their operands with the conditions under which they
arrive. Φ-predication overcomes this limitation by associating each operand
of a φ-function with a predicate which is true when and only when control
flow carries that operand to the φ-function.

The slide shows two φ-functions I0 and I ′
0, which are in different blocks. The

problem is: when are I0 and I ′
0 congruent? This is answered by rewriting I0

as: if P1 then I1 else if P2 then I2 else if . . .. The predicate P1 is true when and
only when control reaches block B1 through E1. All paths to block B1 must
go through its immediate dominator D1. Hence it is sufficient for P1 to be
true when and only when control reaches B1 along the path D1→· · ·→E1→B1.
Similarly I ′

0 is rewritten as: if P ′
1 then I ′

1 else if P ′
2 then I ′

2 else if . . .. Now, I0

is congruent to I ′
0 if and only if the Ii are congruent to the I ′

i and the Pj are
congruent to the P ′

j.
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It is convenient to define the predicate of a block B1 as: P1∨P2∨
. . .. Now two φ-functions are congruent if their arguments are

congruent and either their blocks are identical, or the predicates

of their blocks are congruent. The predicate of a block should

not be optimized to the value true; although it has the form of

an expression, it is really an ordered list of predicates. The algo-

rithm to compute the predicate of a block B1 first determines its

immediate dominator D1. It then traverses all reachable paths

from block D1 to block B1, combining the predicates of jump in-

structions encountered during traversal. This algorithm imposes

two restrictions: block B1 must postdominate block D1, and

back edges can not be traversed. If these restrictions are vio-

lated, the predicate of block B1 is undefined and non-congruent

to the predicate of any other block.
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Here is an example of φ-predication in action. Blocks B4 and

B7 contain φ-functions whose arguments are congruent. The

predicate of block B4 is computed by starting from its immediate

dominator B1, and traversing the two reachable paths from block

B1 to block B4. The first path B1→B2→B4 reaches B4 with the

predicate K1 �= 0. The second path B1→B2→B4 reaches B4

with the predicate K1 = 0. Hence the predicate of block B4 is

(K1 �= 0) ∨ (K1 = 0). The predicate of block B7 is identical.

Hence J3 is congruent to I3.
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To incorporate φ-predication into sparse value numbering, it is

necessary to compute the predicates of touched blocks only. The

predicates of blocks are computed before their instructions are

processed. When the reachability or predicate of an edge B1→B2

changes, all potentially affected blocks are touched. The com-

plete algorithm touches all blocks that postdominate block B2.

The practical algorithm touches all blocks that are downstream

in RPO of block B2. Φ-predication is very efficient in practice.

Measurements collected when optimizing the SPEC CINT2000

C benchmarks indicate that it visits 0.38 blocks per instruction

on average.
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Combining all these analyses produces an algorithm that unifies

sparse value numbering with constant folding, algebraic simplifi-

cation, unreachable code elimination, global reassociation, value

inference, predicate inference, and φ-predication. For balanced

value numbering, the worst case time complexity of the unified

algorithm is O(E2(E+I)), where E is the number of edges in the

CFG and I is the number of instructions in the routine. For op-

timistic value numbering on an acyclic CFG, it is the same. For

optimistic value numbering on an cyclic CFG, it is O(CE2(E+I)),

where C is the loop connectedness of the SSA def-use graph. In

spite of these worst case time complexities, the unified algorithm

is quite efficient in practice. Measurements collected when opti-

mizing the SPEC CINT2000 C benchmarks indicate that it takes

< 4% of the total optimization time.
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We have implemented the practical version of the unified algorithm in the SSA
based high level interprocedural optimizer component of an internal version
of the PA-RISC C compiler on HP-UX. Our implementation does not exploit
the distributive law, but it is strong enough to handle the previous example.
We now present measurements of the efficiency and strength of the unified
algorithm collected when optimizing the SPEC CINT2000 C benchmarks.
The unified algorithm takes < 4% of the total optimization time. So it is
quite efficient in practice. It runs 1.23 to 1.57 times faster when sparseness
is enabled, and 1.15 to 1.32 times faster when global reassociation, value
inference, predicate inference and φ-predication are disabled. So the speedup
due to sparseness more than offsets the cost of incorporating these additional
analyses. It runs 1.39 to 1.90 times faster with balanced value numbering. So
we can makes the most efficient use of compile time by disabling the additional
analyses and performing balanced value numbering on infrequently executed
routines. Finally, it takes 1.98 passes per routine on average, and the average
instructions visits 0.91, 0.38 and 0.16 blocks for value inference, predicate
inference and φ-predication respectively. This shows that both sparse value
numbering and the additional analyses can be implemented very efficiently.
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This is a comparison of the unified algorithm with Cliff Click’s strongest
algorithm - a unification of optimistic value numbering, constant folding,
algebraic simplification and unreachable code elimination. This is the O(N2)
algorithm from his thesis; it is not the weaker algorithm given in his PLDI’95
paper. We emulated Click’s algorithm by disabling all the analyses except the
four above. The unified algorithm finds 1 to 100 more unreachable values
in 0.6% of the routines, 1 to 102 more unreachable and constant values in
4.4% of the routines, and 1 to 88 less congruence classes in 4.7% of the
routines. Unreachable values are also counted as constants, to account for
the case when a constant value is found to be unreachable. Note that fewer
congruence classes is better because it implies more congruences. The unified
algorithm also finds 1 to 4 more congruence classes in 0.1% of the routines.
This is because of value inference. Although it usually finds more congruences
in practice, this cannot be guaranteed. An example of where it loses in SPEC
is when an expression E is computed within the if- and else- branches of a
conditional statement. If value inference modifies the value of one of the
operands of E, it will break the congruence between the two occurrences of
E.
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This is a comparison of the unified algorithm with Wegman and Zadeck’s
sparse conditional constant propagation algorithm. To emulate Wegman and
Zadeck’s algorithm we enabled optimistic value numbering, constant folding,
algebraic simplification and unreachable code elimination, and disabled con-
gruence finding between non-constant expressions. We did this by replacing
non-constant expressions with their result values before hash table lookups.
The unified algorithm finds 1 to 100 more unreachable values in 0.6% of the
routines, and 1 to 102 more unreachable and constant values in 4.6% of the
routines.
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Finally, here is a comparison of the unified algorithm performing optimistic
against balanced value numbering. Optimisic value numbering finds 1 to 203
more unreachable values in 0.03% of the routines, 1 to 207 more unreachable
and constant values in 0.2% of the routines, and 1 to 115 less congruence
classes in 0.3% of the routines. So balanced value numbering is almost as
strong as optimistic value numbering.
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The conclusions of this work are: First, sparse value numbering

is practical and efficient. Second, balanced value numbering

is a good tradeoff between compilation time and optimization

strength. Third, sparse value numbering can be unified with a

wide range of additional analyses. Fourth, the unified algorithm

offers modest improvements over existing methods. Finally, the

unified algorithm does not require any modifications to classical

SSA. Thank you to Laurie Hendren for helping to prepare and

presenting this slide set. Questions or comments regarding this

work may please be sent to the author at kg@india.hp.com.
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