
Mixed Model Universal
Software Thread-Level Speculation

Zhen Cao and Clark Verbrugge
School of Computer Science, McGill University

Montréal, Québec, Canada H3A 0E9
Email: zhen.cao@mail.mcgill.ca, clump@cs.mcgill.ca

Abstract—Software approaches to Thread-Level Speculation
(TLS) have been recently explored, bypassing the need for
specialized hardware designs. These approaches, however, tend
to focus on source or VM-level implementations aimed at spe-
cific language and runtime environments. In addition, previous
software approaches tend to make use of a simple thread forking
model, reducing their ability to extract substantial parallelism
from tree-form recursion programs such as depth-first search and
divide-and-conquer. This paper proposes a Mixed forking model
Universal software-TLS (MUTLS) system to overcome these
limitations. MUTLS is purely based on the LLVM intermediate
representation (IR), a language and architecture independent IR
that supports more than 10 source languages and target archi-
tectures by many projects. MUTLS maximizes parallel coverage
by applying a mixed forking model that allows all threads to
speculate, forming a tree of threads. We evaluate MUTLS using
several C/C++ and Fortran benchmarks on a 64-core machine. On
3 computation intensive applications we achieve speedups of 30 to
50 and 20 to 50 for the C and Fortran versions, respectively. We
also observe speedups of 2 to 7 for memory intensive applications.
Our experiments indicate that a mixed model is preferable for
parallelization of tree-form recursion applications over the simple
forking models used by previous software-TLS approaches. Our
work also demonstrates that actual speedup is achievable on
existing, commodity multi-core processors while maintaining the
flexibility of a highly generic implementation context.

Keywords—Thread-Level Speculation; Parallelization; Forking
Model

I. INTRODUCTION

Thread-level speculation (TLS), or speculative multithread-
ing (SpMT) is a safety-guaranteed approach to automatic or
implicit parallelization. Speculative threads are optimistically
launched at fork points, executing a code sequence from join
points well ahead of their parent thread. Safety is preserved
in this speculative model by buffering reads and writes of
the speculative thread. Once the parent thread reaches the
join point the latter may be joined, committing speculative
writes to main memory and merging its execution state into
the parent thread, provided no read conflicts have occurred.
In the presence of conflicts the speculative child execution is
discarded or rolled back for re-execution by the parent.

Thread-level speculation has received significant attention
in terms of hardware development as a feasible technique for
automatic parallelization [4], [17], [16]. Software-only designs
have been proposed, and have the advantage of applying to
existing, commodity multiprocessors, but the immediacy of
application requires some tradeoff in terms of increased over-
head and compilation complexity, with existing research efforts

based on prototype, language-specific implementations [12],
[10]. Realistic and convincing evaluation of such designs, how-
ever, requires consideration of a full compiler infrastructure,
one that enables both deep investigation and application to a
variety of compilation contexts.

Fundamentally, TLS approaches differ in terms of forking
models: how they create and manage speculative threads.
Two main forking models exist, in-order, and out-of-order,
and existing software models have been primarily based on
one or the other of these strategies, which allow for good
exploitation of parallelism in loops and deep method calls
respectively, as discussed in section II. These simple forking
models, however, have limitations with respect to the ability
to extract parallelism, and a reliance on pure in-order or pure
out-of-order design limits the amount of parallelism that can
be found in more complex programs, including ones that make
extensive use of tree-form recursion, such as found in depth-
first search and divide-and-conquer programs.

In this work we propose the Mixed-model Universal soft-
ware-TLS (MUTLS) system to overcome both limitations of
existing software-TLS approaches. First, MUTLS uses a mixed
forking model to maximize the potential to extract parallelism
in more general classes of programs. Second, MUTLS is
universal in that it is language and architecture neutral. Our
approach is to build a pure software TLS design using the
popular LLVM compiler framework [1]. We integrate our de-
sign into LLVM’s machine and language-agnostic intermediate
representation (IR), enabling generic application of TLS to
arbitrary input and output contexts. This has the advantage of
providing a full and non-trivial compiler context for evaluating
TLS, as well as allowing the full range of source and hardware
pairings enabled by the LLVM framework.

Our design is demonstrated and tested by modifying front-
ends for C/C++ and Fortran to support user-driven speculation.
From this we are able to generate native executables (or
JIT-based execution) for non-trivial benchmarks to evaluate
performance, illustrating the potential of our approach as a
means to explore and compare the use of TLS in different lan-
guage contexts. Software TLS faces significant challenges in
terms of balancing overhead concerns with the many possible
design decisions possible in TLS implementation. Our system
simplifies this research exploration by allowing for practical
experimentation within an optimizing compiler context. This
paper has the following specific contributions.

• We describe MUTLS, the first software-TLS implementa-
tion on a source language and target architecture independent

intermediate representation (IR). Our design is capable of
adding TLS features to any LLVM input language and exe-
cutes on any architecture supported by LLVM, significantly
extending previous TLS systems which only support a single
language context and/or architecture.
• We propose a tree-form, mixed forking model which incurs
less cascading rollbacks than previous mixed forking models.
We integrate it into the MUTLS system, demonstrating that
complex mixed fork models can be hosted in a language and
architecture independent software-TLS implementation.
• We perform a deep experimental analysis of performance
using a programmer-directed approach to arbitrary point
speculation. Our experiments demonstrate real speedup on
both C++ and Fortran benchmarks, and show that a mixed
model is preferable to in-order and out-of-order models for
tree-form recursion applications. As far as we know, no
previous software-TLS systems have experimented on tree-
form recursion benchmarks.

II. BACKGROUND ON TLS DESIGN AND FORK MODELS

Traditionally, TLS approaches has been characterized
by different speculation models, based on the selection of
fork/join points. Loop-level speculation [4], [7], [17], [11]
speculates on loop iterations, with loop iteration boundaries
as fork/join joints. Method-level speculation (MLS) [3], [13]
selects method (function) calls as fork points and speculates
on their continuations. Arbitrary point speculation [16], [6]
imposes no constraints on the selection of fork/join points. In
principle all these forms are equivalent, although the required
code transformations make conversion technically challenging.

Within any of these speculation models, different forking
models can be used to define how the existence of multiple
speculative threads is managed. Each of in-order, out-of-order
and mixed, provides different choices, and has greater or lesser
affinity for different program contexts.

In the in-order model, only the most recently speculated
(most speculative) thread can fork a new speculative thread.
This model is particularly appropriate for loop-based specu-
lation, with future loop iterations forked in iteration order.
The non-speculative parent begins the first iteration, forking
a speculative child thread to execute the second, which can
then fork a speculative grand-child to execute the third, and so
on. Therefore, a typical scenario is that speculative threads are
created in the order of their sequential execution: if the start of
thread A would be prior to the start of thread B in sequential
execution, then thread A is forked by its parent prior to B,
and hence the name of this fork model. This model has the
advantage that N threads can efficiently parallelize a loop of
N iterations, but the disadvantage that if a speculative thread
has to rollback all subsequently speculated threads should also
rollback, as well as the constraint that parallelism not found
in the most speculative thread may not be exploited.

The out-of-order model usually applies to method-level
speculation. As the non-speculative parent thread enters a
function call, a new thread is forked to execute the method
continuation. This process can continue recursively, resulting
in speculative threads being forked in the order that the parent
descends into nested method calls, and so joined in the reverse
order, as the parent returns from each call. This approach

avoids concerns of “increasing” speculation found in in-order
models, and easily applies to more arbitrary code construc-
tions such as C++ nested block statements. The out-of-order
model, however, has the disadvantage of limited parallelism
on loop-level speculation since the non-speculative thread has
to complete an iteration before reaching the fork point again
to speculate another thread. The inability to launch specula-
tive threads from speculative threads prevents more than one
iteration from executed speculatively, bounding parallelism to
just two threads irrespective of loop dependencies.

Mixed model is by far the most powerful forking model.
It maximizes parallelism opportunities by allowing all threads
to speculate new threads, and thus has the strength of both
in-order and out-of-order models. One scenario in which it
outperforms in-order and out-of-order models is tree-form
recursion, where in-order speculation can only extract the top-
level parallelism and out-of-order can only descend into one
branch, while a mixed model theoretically can fork a whole
tree of threads.

The flexibility of the mixed model also involves different
designs. One part is how the system organizes the speculated
threads. Previous mixed model systems organize them in a
simple linear form, as a sequence of execution of the program.
This design has a similar disadvantage to the in-order model:
if a sequentially earlier thread rolls back, then all subsequent
threads roll back even if they present no conflicts, which is
not rare since function calls usually indicate independent tasks.
The approach we develop here uses a novel mixed model that
organizes the threads in a tree-form, and only has cascading
rollbacks within its subtree.

III. RELATED WORK

Many compiler frameworks have been proposed for thread-
level speculation. These typically require significant hardware
support, with the most efficient and modern designs involving
different, hybrid forms of software and hardware cooperation.

The bulk of these works focus on loop-level in-order spec-
ulation, for which a number of feasible performance models
have been proposed. The Java runtime parallelizing machine
(Jrpm), for instance, identifies the best loops to parallelize by
analyzing speculative loops with dynamic compilation and a
hardware profiler [4]. Du et al. propose a misspeculation-based
cost-model driven compilation framework to select effective
loops for speculative parallelization [7]. STAMPede is a coop-
erative approach with unified hardware support for TLS [17].

Research on hardware MLS has suggested MLS is more
amenable to unstructured parallelism, as is often found in
method-heavy programming contexts, such as object-oriented
languages [3]. This direction includes work on specific aspects
of hardware MLS, such as determining appropriate fork heuris-
tics [20]. MLS can work well with an out-of-order design, but
for simplicity of hardware implementation these works usually
assume in-order speculation.

Mitosis [16] is a mixed model arbitrary point TLS system.
It uses a profiling-based estimation model to find fork/join
point pairs called SP/CQIP. The order of a new speculation
is defined to be just after the last thread speculated on the
same SP/CQIP pair. POSH [9] is another mixed model TLS

system targeting both loop- and method-level parallelism. It
requires the compiler to insert the fork/join points such that
threads speculated by the same thread are joined in reverse
order, which is used to assign the order of the speculative
threads. Therefore it relies on a correct compiler control-flow
analysis to distinguish nested structures such as function calls
or loop-nests. Given the order of threads, these systems treat
speculative threads the same as in-order speculation.

In most models thread joining is a highly linear process,
with the rollback of one thread potentially causing cascaded
rollbacks of all subsequent speculative threads in execution
order. Garcı́a-Yágüez et al. propose a mechanism to avoid such
cascades, rolling back only threads that have consumed values
from an aborted thread [8]. Our design for tree-based rollback
also reduces these dependencies, more coarsely, but without
the need to build a thread dependency matrix.

Hardware-centric approaches generally use compiler-based
fork heuristics to find appropriate fork/join points. Of course
the same underlying techniques can be applied through manual
specification based on programmer directives [14], a general
design approach adopted by most software approaches, as well
as by us to simplify our current implementation.

A. Software-only TLS

With the absence of readily available TLS-specific hard-
ware and growing ubiquity of commodity multiprocessors,
pure software-based approaches have seen increased attention.

Focusing on out-of-order MLS in Java, Pickett and Ver-
brugge describe the SableSpMT software TLS system, based
on an interpreted virtual machine context [12]. This effort
aimed primarily at facilitating TLS analysis, but other works
have focused directly on showing speedup. Ding et al. propose
the in-order, arbitrary-point speculation system BOP, showing
that even a coarse-grained strategy based on spawning system
processes (rather than threads) can generate speedups of 2.08
to 3.31 for 3 SPEC CPU benchmarks on an 8-core Intel Xeon
7140M machine, while still providing safety [6]. Other, more
TLS-specific approaches have also been proposed. Oancea and
Mycroft present an optimistic C++ library for in-order software
thread-level speculation SpLSC [10] as well as an in-place
implementation SpLIP aimed at independent loops that rolls
back for all WAW, WAR and RAW dependencies [11]. SpLSC
and SpLIP achieve speedups of 0.09 to 5.86 and 1.44 to 5.88
respectively, for 7 applications from SciMark2, BYTEmark
and JOlden benchmark suites on an 8-core AMD Opteron
2347HE machine.

Safe futures [19] is an explicit, transaction-based specula-
tive parallelism approach for Java. Safe futures are like MLS
except that the future thread can be explicitly claimed (joined)
in the continuation thread by the programmer. Safe futures
apply logical semantics to order the threads and join as in-
order speculation.

While design of all these software and library approaches
have informed our overall design, we extend them by devel-
oping a true cross-language, cross-platform design with a tree-
form mixed forking model, fully incorporated into a compiler
context. Table I provides a summary of the main approaches,
how they differ, and where our design is situated.

TABLE I. COMPARISON OF TLS SYSTEMS

Language Forking Model Speculative Region

H
ar

dw
ar

e Jrpm [4] Java in-order loop iteration
SPT [7] C in-order loop iteration

STAMPede [17] C in-order loop iteration
Mitosis [16] C mixed (linear) arbitrary
POSH [9] C mixed (linear) nested structure

So
ft

w
ar

e SableSpMT [12] Java out-of-order method call
Safe futures [19] Java mixed (linear) method call

BOP [6] C in-order arbitrary
SpLSC/SpLIP [10], [11] C++ in-order loop iteration

MUTLS arbitrary mixed (tree) arbitrary

B. LLVM

Our approach is built on the Low Level Virtual Machine
(LLVM) [1]. LLVM is a popular framework for compiler re-
search of various forms. Tristan et al., for example, present an
approach to translation validation, verifying intra-procedural
optimizations within LLVM [18]. Other work on parallelism
has also used LLVM. Work on enforcing deterministic schedul-
ing has been based on LLVM traces [5], and Prabhu et al.
build a commutativity based programming extension on LLVM
enabling multiple forms of implicit parallelism [15]. As far as
we are aware, however, our work is the first to use LLVM for
speculative parallelism, although there has been recent work
proposing to use LLVM to target IBM’s BlueGene/Q TLS
architecture [2].

IV. DESIGN

MUTLS is purely based on the LLVM intermediate rep-
resentation (IR). LLVM is a compiler framework that allows
for multiple source languages and target architectures through
the use of a generic, Static Single Assignment (SSA) based
IR. This intermediate form is a type-safe, expressive assembly
code which can be regarded as a universal abstract machine
capable of representing all high-level languages.

There are many analyses and optimizations in LLVM. Each
pass can specify its required and/or preserved analyses, so
transformation passes can use analysis information and assume
the IR already underwent specific transformations. There are
two sorts of passes: LLVM IR based passes and Machine Func-
tion passes. Transformations of the former are purely based
on the LLVM IR—i.e. from well-formed LLVM IR to well-
formed LLVM IR. Machine Function passes are performed
in the code generator for specific target architectures. The
approach within this paper implements an LLVM-IR based
pass and thus is inherently target independent.

The design of the system involves changes to LLVM
back-end and its front-ends. The latter are minor, allowing
easy portability of multiple language. Most of the complexity
resides in the back-end, where we require code to support
forking, buffering, joining and commit or rollback.

A. Front-End Design

Two built-in functions are added to the front-end for the
user to specify fork and join points. These two functions have
an argument p, which denotes the id of the fork/join point.
Multiple fork points can have the same id while the join points
cannot. Threads speculated at a fork point start execution from
the join point with the same id. The fork point function has
another argument model to specify the forking model of the

fork point. In order to avoid unnecessary rollbacks, we also
add a barrier point which barriers the speculative thread if it
is not in nested function calls (i.e. it is at the same level as
was speculated). These built-in functions are transformed to
the corresponding LLVM IR built-in functions, which are then
processed by the back-end speculator pass. Examples of input
C and Fortran programs are given in Figure 1.

void work(…) {

…

__builtin_MUTLS_fork(p, model);

S1;

…

__builtin_MUTLS_join(p);

S2;

…

__builtin_MUTLS_barrier(p);

S3;

…

}

subroutine work(…)

…

call MUTLS_FORK(p, model)

S1

…

call MUTLS_JOIN(p)

S2

…

call MUTLS_BARRIER(p)

S3

…

end subroutine work

(a) C program (b) Fortran program

Fig. 1. User-directed TLS source code. Before S1 the parent thread forks a
speculative thread to execute S2, and synchronizes with it once it reaches that
point. The speculative thread will stop before S3 if it reaches that point.

B. Back-End Overview

Our support for TLS in LLVM consists of two main parts:
an LLVM speculator transformation pass, and a TLS runtime
library. The LLVM speculator pass modifies the incoming IR
based on the annotated fork and join points, delegating more
complex behaviours to the TLS runtime library.

The TLS runtime library provides four modules: Thread-
Data, GlobalBuffer, LocalBuffer and ThreadManager. A
ThreadData module maintains the status of a speculative
thread, while GlobalBuffer and LocalBuffer modules manage
individual buffering of global and local variables for specula-
tive threads. The ThreadManager module maintains for each
CPU one ThreadData, one GlobalBuffer and one LocalBuffer
object, and interacts with the LLVM speculator pass.

The TLS runtime library is written in C++, and can be
compiled into native static or dynamic libraries for linking
into any executable. However, to enable further optimizations
provided by LLVM such as inlining of library calls, we
compile it into a bytecode library to link with the speculated
LLVM bytecode of the source program.

The following subsections discuss the various steps in-
volved in modifying the LLVM IR for TLS execution. We
first present the basic code preparation, and then trace through
the implementation design from fork to join, as well as give
further details on memory management.

C. Preparation for Speculation

Target dependent information such as access to the actual
instruction pointer (IP) and stack frame are generally not
available in LLVM IR, nor are some low-level operations
such as the ability to directly jump to another function.
Maintaining the LLVM SSA-form after each transformation
is also required. These issues make thread-level speculation
for LLVM more difficult. We perform a number of IR-based

code transformations to support TLS. These transformations
are required for each function with annotation of fork and join
points, as well as their nested function calls.

For each such function we perform 4 basic modifications.
We need to (1) generate a speculative version of the function,
(2) generate helper functions for interaction with the TLS
runtime library, (3) split and number the basic blocks at
appropriate points for synchronization between the speculative
and non-speculative versions of the function, and (4) assign
local buffering addresses (offsets from stack pointer) for local
variables. Below we detail these steps.

(1) We first clone the function and add two integer param-
eters counter and rank to generate the speculative function.
These arguments are used to direct the code entry to the correct
starting point and track the CPU index. To ensure safety, every
load and store operation within the function is replaced by a
TLS runtime library call to MUTLS_load_{int32, int64,
etc} and MUTLS_store_{int32, int64, etc}. Note that
since we inline the TLS runtime library into the source LLVM
code, these function calls are reduced to more efficient direct
memory accesses.

(2) We generate a stub function with the suffix “.stub” as
the entry point for speculative threads. This prologue function
fetches arguments of the speculative function through the
MUTLS_get_regvar_{int32, ptr, etc} library calls, and
then calls the function with the arguments. These arguments
are stored by the non-speculative parent thread in a gener-
ated proxy function, which has the same signature as the
speculative function and stores the function arguments to
the LocalBuffer object by the MUTLS_set_regvar_{int32,
ptr, etc} library calls. The proxy function then calls the
MUTLS_speculate library function with the stub function
address to fork a new thread.

(3) Speculative termination and synchronization require a
number of checkpoints to be inserted into the code. At each
annotated fork point the basic block is split to generate a
speculation block, and at each join point annotation the basic
block is split to generate a join point block. Speculation is
necessarily terminated at each external, indirect and exception
handling function call through a terminate point block (other
than for known, safe external calls such as abs, log, etc), and
prior to the method return point through a return point block.
Before each internal function call, a basic block is split to
generate an enter point block, and inside each loop a block is
split to generate a check point block. Except for the speculation
block, all these blocks are potential synchronization blocks, and
are numbered by the synchronization counter starting from 1,
which is then used to build the speculation and synchronization
tables, as discussed in subsections IV-D and IV-E.

(4) Registers cannot be used to transfer data between
threads. Thus for each local (register and stack) variable live
at the beginning of a synchronization block of the function,
we allocate and assign an offset so we can save and restore
such data through the runtime library at speculation and
synchronization points.

A schematic of the transformation is given in figure 2. The
following sections will discuss it in detail. We use C pseudo
code instead of LLVM assembly for compactness.

void work(args) {

S1;

__builtin_MUTLS_fork(0, mixed);

while (…){

S2;

printf();

}

__builtin_MUTLS_join(0);

S3;

work2(…);

S4;

return;

}

void work(args) {

int ranks[1]={0}, c, r;

if(MUTLS_sync_entry(&c, &r)){

jump to synchronization table;

}

S1;

MUTLS_get_CPU(mixed, 0, ranks);

if (ranks[0]>0){

MUTLS_save_local

work.proxy(args, s3, rank);

}

while (…){

S2;

printf();

}

if (ranks[0]>0){

MUTLS_validate_local

if(MUTLS_synchronize(0, ranks, &c, &r)){

Jump to synchronization table;

}

}

S3;

work2(…);

S4;

return;

// synchronization table and

// restore blocks for synchronization blocks

}

void work.speculative(args, counter, rank) {

int ranks[1]={0};

// speculation table and restore blocks for join point blocks

S1;

MUTLS_get_CPU(0, mixed, ranks);

if (ranks[0]>0){

 MUTLS_save_local

 work.proxy(args, s3, rank);

}

while (…){

S2;

MUTLS_save_local

MUTLS_terminate_point(counter1, rank);

printf();

if (MUTLS_check_point(counter2, rank)){

MUTLS_save_local

MUTLS_commit(rank);

}

}

if (ranks[0]>0){

MUTLS_validate_local

MUTLS_save_local

MUTLS_sync_parent(s3);

}

S3;

MUTLS_save_local

MUTLS_enter_point(counter3, rank);

work2(…);

S4;

MUTLS_save_local

MUTLS_return_point(counter4, rank);

return;

}

(a) Original version

(c) Non-speculative version

(d) Speculative version

void work.proxy(args, counter, rank) {

MUTLS_save_local(args);

MUTLS_speculate(work.stub, counter, rank);

}

void work.stub(rank) {

args = MUTLS_restore_local

counter = MUTLS_restore_local

work.speculative(args, counter, rank);

}

(b) Proxy and stub functions

Statement markers

MUTLS library calls

MUTLS save/restore/validation library calls

LLVM speculator pass generated functions

LLVM speculator pass added blocks

Fig. 2. Transformations performed by the Speculator Pass

D. Fork

Speculative threads are intended to be bound to virtual
CPUs. Each virtual CPU is identified by rank, which is an
ID number from 1 to the total number of CPUs. Since each
function may contain multiple fork/join points, the speculator
transformation pass allocates an integer array ranks on the
stack to store the ranks of the child threads speculated in
the current function frame. The length nranks of ranks is the
number of join points in the function. At most one thread
can be speculated on at each fork/join point id; if a fork/join
point id is not speculated on, the corresponding entry in ranks
is 0. This design allows multiple threads to be speculated
on the same join point at different stack frames of the same
function, enabling the ability to extract substantial parallelism
from recursive function calls.

Each CPU can be RUNNING, IDLE or READY TO RE-
CLAIM, and are initialized IDLE at the beginning of program
execution. At each fork point, the LLVM speculator pass
generates a library call MUTLS_get_CPU to assign a rank to
the speculative thread, passing the forking model, fork/join
point id and the ranks array. If no CPU is IDLE, speculation
will not be performed; otherwise the child rank is stored in
the corresponding entry of ranks and control is branched to
the speculation block. The speculation block saves the local
variables live at the beginning of the join point block as will
be discussed in subsection IV-G4, and then forks a speculative
thread by calling the proxy function generated in preparation
step (2). In the proxy function MUTLS_speculate initializes
the ThreadData object and sets the CPU state as RUNNING.
The resulting speculative thread retrieves this data within the

stub function, and then enters the actual speculative code.

The speculative entry point is conceptually somewhere
within a function, but since LLVM does not allow branching
directly to this starting point some gymnastics are performed
to redirect entry control flow. For this we use the speculation
table, implemented as a switch LLVM instruction that directs
incoming control flow to the block indicated by the counter
argument. A 0-counter indicates normal entry, while a non-
0 value indicates some internal starting point. This approach
bypasses the inability of LLVM to branch directly into a
function, and also allows both initial and any subsequent (such
as recursive) calls to the speculative function to coexist. Upon
initial entry, local variables need to be initialized to the same
values found in the non-speculative function at forking. For
this we fetch the values previously stored within the runtime
library and assign them to the corresponding local variables.
This process is slightly complicated by the fact that LLVM IR
is in SSA form, and so trivially re-assigning register variables
is not possible. We thus add a separate restore block to assign
the local values, and then branch into the actual entry point.
Phi nodes are inserted at the beginning of the latter block to
distinguish the different versions of the register variables.

E. Join

At each join point, the LLVM speculator pass adds instruc-
tions to check if a thread was speculated on the join point; if so
it synchronizes with the speculative thread. This process is en-
capsulated by MUTLS_synchronize, which returns true/false
if the speculative thread commits/rollbacks. If true is returned,
the synchronization counter and the speculative thread rank

are returned by the arguments c and r, and control branches
to the synchronization table. The synchronization table itself
is a switch LLVM instruction that branches to the code blocks
indexed by synchronization counter. Unlike the speculation
table which has nranks + 1 entries, the synchronization table
has an entry for each possible synchronization block.

A speculative thread needs to terminate if it may ex-
ecute instructions unsafe to perform speculatively, or if
the parent thread is waiting to join with it. The former
case is enforced by adding a no-return runtime library call
MUTLS_terminate_point at each terminate point block. The
latter case, however, requires polling to determine whether or
not the speculative thread needs to stop. This is implemented
through calls to MUTLS_check_point, which are inserted
prior to function calls and within inner loops to ensure that
the non-speculative thread need not wait overly long. In either
case, if validation fails during synchronization, the speculative
thread rolls back within these functions; otherwise, it commits
and passes in its synchronization counter and rank to indicate
its continuation point and to identify itself. Live local variables
needs to be saved in order for the non-speculative thread to
restore the values after committing. For performance, this is
not done before the MUTLS_check_point as check points are
entered frequently. Instead, the speculator pass adds a commit
block at each check point, which saves the local variables and
calls MUTLS_commit to complete the commit process.

Efficient thread polling and synchronization is performed
using a simple flag-based barrier. The ThreadData object
for each speculative thread maintains two volatile variables:
sync_status which is set to SYNC if the speculative
thread is notified to synchronize, and valid_status which
is set to COMMIT or ROLLBACK after validation and
global buffer commit/rollback. Both variables are initialized to
NULL during the fork process. When MUTLS_synchronize
is called, the non-speculative thread locates the correspond-
ing ThreadData object as discussed in subsection IV-F. It
then sets sync_status to SYNC and busy-waits for the
valid_status to be non-NULL. The speculative thread busy-
waits for sync_status to be SYNC if it enters a terminate
point, or simply returns if it enters a check point and encoun-
ters a NULL. Once both threads have stopped the speculative
thread can validate and commit/rollback.

F. Mixed Forking Model

The mixed forking model assumes that the direct children
of a thread follow the out-of-order model; that is, a later spec-
ulated thread represents logically earlier sequential execution.
It also assumes that a thread subtree represents a continuous
interval of execution with its root representing the earliest
logical execution, and that different thread subtrees represent
disjoint intervals of execution. As a result, a “reverse in-order
traversal” of the thread tree follows the sequential execution
order. This assumption is similar to previous work [19], [9].
However, unlike their approaches, the runtime system does not
rely on the mixed-model assumption to be correct.

Each thread maintains a children stack storing the ranks of
its direct children. When forking a thread, it pushes the new
thread rank into children. In the MUTLS_synchronize library
call, it pops a child rank from children and checks if it is equal

to the corresponding rank stored in the ranks array. If it is not,
then it means the program did not follow the mixed-model
assumption. In this case, it sets the sync_status of the child
thread to be NOSYNC and the process continues until the rank
is found or children is empty. In either case, the corresponding
entry in ranks is set to 0 to allow speculation on that point
again. If children is empty, the child thread has already rolled
back and false is returned. Otherwise, it appends the children
of the child thread to the children of the non-speculative thread,
synchronizes with the child thread and returns the rank in the
argument. Note that even if the child thread is invalid and
requires rollback, its children are still preserved in the children
of the non-speculative thread. This process is different from
previous software approaches, having the advantage that local
conflicts do not incur global rollbacks.

G. Memory Buffering

Non-local (static and heap) and local (register and stack)
variable accesses of a speculative thread are buffered in its
GlobalBuffer and LocalBuffer objects, respectively. Global-
Buffer is flat since non-speculative and speculative threads
share the same address space (the same addresses for non-
local objects). The LocalBuffer is organized as an array of
stack frames, with each frame containing a RegisterBuffer and
StackBuffer for storing register and stack variables.

1) Address Space Registration: Memory buffering should
guarantee that invalid addresses are not accessed. Also required
is to identify whether an address is in GlobalBuffer (non-local
and non-speculative stack variables) or on the speculative stack
(speculative stack variables). We solve the problem with an
address space registration mechanism. The address space (the
start and the end addresses) of each static and heap object
is registered in the runtime library during the creation and
deletion of the object, that is, at the beginning of program
execution for a static object and memory allocation and
deallocation for a heap object. Adjacent spaces can be merged
to improve performance. The stack address space of a thread
are the addresses between its base and current stack pointers,
and is registered in its LocalBuffer object. A speculative thread
is rolled back if it reads/writes an address not in the global and
local address spaces.

The current implementation of heap memory registra-
tion is to intercept language-specific memory management
library calls in LLVM IR, for example, “malloc” in C,
“ gfortran internal malloc” in Fortran and “ Znwm” in C++.
We do not allow speculative threads to allocate/deallocate
memory as they may roll back. We realize that this approach
is somewhat ad-hoc and difficult to deal with customized
allocators. We plan as future work to solve the problem by
hooking into OS system calls or handling page fault signals.

2) Global Buffer: Each GlobalBuffer object maintains two
maps: a read-set and a write-set, with writes to the global
address space redirected into the write set. Global loads either
return the value from the write-set if found there, from the
read-set if previously read, or by loading the value from
memory and saving it in the read-set (first time).

Conflicts only occur when a speculative thread reads data
from an address before the non-speculative thread writes
data to the address. Therefore, the validation process iterates

through the read-set of the GlobalBuffer object, comparing
data with the corresponding values in main memory; if they
are not equal, then validation fails and the buffer is discarded.
Otherwise, validation succeeds and the data in the write-set is
committed.

As the addresses of the global read and write operations
can be arbitrary, and there may be an arbitrary number of
read and write operations, the read and write-set maps must
be efficient. Normal hash maps frequently increase in size
as data is inserted, causing dynamic memory allocation and
deallocation. Our design is instead to use static memory. The
map has a byte array buffer of a multiple of the WORD
size, a pointer array addresses and an integer stack offsets,
all containing a maximum of N elements. The two arrays
together implement a hash map while the stack guarantees
that validation, commit and finalization operations of threads
accessing a small amount of data are fast.

The addresses are initialized zero at the beginning of
program execution. Given an address, the find/insert operation
uses an efficient hash function to calculate its offset in buffer
as the lower bits of the address, and the array index in
addresses as the offset divided by the WORD size. Then
addresses[index] is checked; if it is zero, meaning an empty
slot, the address is inserted into the addresses array, data
of WORD size is inserted at buffer+offset, and the offset is
pushed onto offsets; otherwise, if addresses[index] equals the
address, meaning the address has been inserted, then the data
is accessed in buffer, otherwise the hash buffer is conflict. In
the buffer conflict case, we store the address and data in a
temporary buffer and the speculative thread will wait to be
joined at the next check point. If the temporary buffer is used
up, the speculative thread rolls back, although this is rare since
check points are entered frequently. During validation, commit
and finalization, offsets is traversed to find addresses and data
accessed by the speculative thread.

Different size data accesses can be encountered. Assuming
a read/write of data of size size at address p, the MUTLS
memory buffering supports read/write operations if size is
larger than, equal to, or smaller than WORD, given that one
of size and WORD is a multiple of the other, and that p is
aligned by size. If size is larger than WORD, we split the
address into several WORD pointers and split data before
write or reconstruct data after read operations. To support the
case that size is smaller than WORD, a byte array mark with
the same size as buffer is needed. First, a normalized address
np is calculated by making the lowest WORD bits of p 0.
If addresses[index] equals np, then the data is read/written
at buffer+offset, and size bytes from mark+offset are set to
0xFF if it is a write; otherwise, if it is an empty slot, then
WORD bytes of data are read from np and written to the
buffer and size bytes from mark+offset are set to 0xFF if it is
a write; otherwise, it is a buffer conflict. Validation of the read-
set validates all read data, while commit of the write-set only
commits data marked by mark. An optimization for commit is
that if WORD size data of mark is -1, then the WORD bytes
of data in buffer can be committed all at once.

3) Local Buffer: The LocalBuffer is used to trans-
fer local (register and stack) variables between par-
ent and child threads during fork and join though
MUTLS_(set|get)_(regvar|stackvar)_* library calls.

At preparation step (4) of subsection IV-C, the speculator
pass assigns an offset for each register and stack variable.
MUTLS_(set|get)_regvar_* passes the offset and the reg-
ister value to the RegisterBuffer object, which in turn stores
the register value in a static array. If there are too many
variables and the assigned offset exceeds the array size,
the speculator pass reports an error and speculation fails.
MUTLS_(set|get)_stackvar_* is a similar case for stack
variables, except that they also pass the address and size of
the stack variable, and copy the stack data.

The above is complicated by the potential presence of
stack pointers. If such a pointer is used in a speculative
context, and the thread commits, the pointer will be invalid
since the speculative version of the stack variable no longer
exists. Instead, it should point to the non-speculative ver-
sion. We propose a pointer mapping mechanism to solve the
problem. During commit of pointers through MUTLS_get_-
(regvar|stackvar)_ptr calls, the value of the pointer is
checked and if it is in the stack address space of the speculative
thread, it is mapped to point to the corresponding variable
in the non-speculative thread. Since the non-speculative and
speculative functions may have different stack layouts, we
cannot use a constant offset for mapping of all variables.
The implementation thus records stack variable addresses in a
hash map during MUTLS_(set|get)_stackvar_* calls, and
calculates the offset of the pointer value. A complication to
this occurs when type-casts between pointers and integers are
present in a function—the pointer mapping mechanism may be
unsafe as integer values may be used in various instructions
including I/O. Our current implementation is to disallow
pointer-integer type-casts unless the value is inside the global
address space that is not mapped. Before type-cast instructions
between pointers and integers, MUTLS_ptr_int_cast library
calls are inserted which barrier the speculative thread if the
pointer/integer value is not in the global address space.

Stack variable loads/stores in nested frames of a speculative
function directly access the function’s stack, since they do not
affect the non-speculative thread and the stack acts as buffer
itself. These variables are committed (copied) to the stack of
the non-speculative thread by MUTLS_get_stackvar_* calls.
Stack variables at the bottom frame are accessed as non-local
data, the non-speculative version of which are buffered in
GlobalBuffer during MUTLS_(load|store)_* calls.

4) Register Variable Validation: Local register variables
live at the beginning of the join point block need to be
initialized as they would be when normal execution reaches
the join point. If the variable is not live at the fork point,
then it should be predicted by the forking thread, other-
wise the speculative thread retrieves an uninitialized value.
Induction variables and expressions can also be made live
by code transformation. When the forking thread reaches
the join point, it should validate that the live local vari-
ables were correctly speculated, which is implemented by the
MUTLS_validate_local_{int32, ptr, etc} library calls.
The speculative thread will rollback if this validation fails.

H. Stack Frame Reconstruction

For simplicity we currently restrict speculative threads from
returning from their entry function, but do allow them to call

and enter new functions. Even this is non-trivial, however,
since the non-speculative parent thread may then need to
reconstruct equivalent stack frames as part of a successful join,
but stack frames are not available at the LLVM IR level, and
may also differ in layout due to the extra parameters added to
speculative versions. We propose a stack frame reconstruction
scheme to address this problem. First, we need to explicitly
track stack frames as the speculative thread descends into a
call chain. At each enter point block, MUTLS_enter_point
is called to register a new stack frame in the LocalBuffer
object for the nested function call. This is matched at each
return point block, where MUTLS_return_point is called
to pop the stack frame. (Note that this checks to ensure the
speculative thread is returning from a nested function call,
and not its entry point.) The non-speculative parent must then
generate a corresponding call chain, restoring frame data as it
descends. This is initiated by the synchronization process, and
fully enabled by a library call MUTLS_synchronize_entry
inserted at the top of each non-speculative function reachable
from a speculative one. This function inspects the LocalBuffer
object, recognizes the existence of further frames, and if
so restores the current frame data and directs the thread to
the correct call point in the current function. This process
continues until the non-speculative thread has replicated the
entire call chain and frame state.

V. EXPERIMENTAL RESULTS

We implement the MUTLS1 system on llvm 2.9 with
the llvm-gcc-4.2.2.9 front-end. For experimentation we used
an AMD Opteron 6274 machine with 64 2.2GHz processor
cores (4×16-core, 8×2MB L2 cache) and 64GB memory. The
operating system is 64-bit Red Hat Enterprise Linux.

The benchmarks we experiment with are summarized in
Table II. 3x+1 computes the well-known 3x+1 problem that
avoids memory access during the computation, and thus serves
as an idealized benchmark for our software-TLS system. We
include 4 tree-form recursion applications to evaluate the
mixed forking model: fft, matmult, nqueen and tsp. Matmult
is a block-based matrix multiplication like Strassen’s algo-
rithm. This gives us a mix of CPU- and memory-intensive
computation. Note that the computation/memory intensiveness
is not characterized by the total memory used, but by the
memory access frequency (density), defined as the number
of read/writes divided by the program runtime ρ = Nrw/T .
Thus, although matmult has time complexity O(N3) and space
complexity O(N2), it is still considered memory intensive.

A. Speedup

Given the execution time of a parallelized program on
N cores TN , and of the original sequential program Ts,
the absolute speedup is defined as Ts/TN . The results of
computation- and memory-intensive applications are shown in
Figures 3 and 4, respectively. The runtime of each benchmark
is determined by the arithmetic mean over 10 runs.

As expected, the computation-intensive benchmarks per-
form much better than the memory-intensive ones. We achieve
absolute speedups of 51.8, 33.6, 31.9 and 49.0, 31.9, 19.5
for 3x+1, mandelbrot and md of C and Fortran programs,

1MUTLS is available online at http://www.sable.mcgill.ca/∼zcao7/mutls

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

A
b

so
lu

te
 S

p
ee

d
u

p

Number of CPU

3x+1 - c

3x+1 - fortran

mandelbrot - c

mandelbrot - fortran

md - c

md - fortran

Fig. 3. Performance of Computation-Intensive Applications

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

A
b

so
lu

te
 S

p
e
ed

u
p

Number of CPU

fft

matmult

nqueen

tsp

bh

Fig. 4. Performance of Memory-Intensive Applications

respectively. The lower scalability of the Fortran programs is
mainly because of their additional memory buffering overhead,
e.g., the shapes of arrays being allocated on the stack. The
reason that speedups of 3x+1 between 32 and 63 cores are
generally stable and jump up at 64 is our workload distribution
strategy, which splits the computation into 64 loop iterations,
and thus at least two iterations are computed sequentially.

For the memory-intensive benchmarks, we achieve max-
imum speedups of 3.72, 2.01, 5.40, 4.86 and 6.55 for fft,
matmult, nqueen, tsp and bh, respectively. For fft and matmult,
the small threads speculated in deeper recursive calls cause
significant amount of idle time, as discussed in subsection
V-B. Larger problem sizes may relieve the problem, although a
larger amount of data also requires more memory buffering for
the speculation not to overflow, which would result in longer
startup times for the programs.

B. Analysis of Parallel Execution

We are more concerned with the non-speculative thread
since (1) it is on the critical path, (2) it does not roll-
back, and (3) it is the fastest thread, since it does not have
speculative buffering overhead. As a result, we define two
indicators: critical path efficiency which is the useful work
time divided by the runtime of the non-speculative thread
ηcrit = Tworktime nonsp/Truntime nonsp, and speculative
path efficiency which is the sum of the work time divided
by the sum of the runtime of the speculative threads ηsp =
Tworktime sp/Truntime sp. The two efficiencies are illustrated
in Figures 5 and 6.

3x+1 and mandelbrot have almost perfect critical path
efficiency and the highest speculative path efficiency, which
corroborates their highest speedups. md has speculative path
efficiency close to that of 3x+1 and mandelbrot, but its

TABLE II. BENCHMARKS

Benchmark Description Amount of Data Pattern Language Characteristics
3x+1 3x+1 problem in number theory 40M integers (enumerate) loop C/Fortran Computation

intensivemandelbrot mandelbrot fractal generation 512×512 image, maximum 80000 iterations loop C/Fortran
md 3D molecular dynamics simulation 256 particles, 400 iteration steps loop C/Fortran
bh Barnes-Hut N-body simulation 12800 bodies loop C++

Memory
intensive

fft recursive Fast Fourier Transform 220 doubles divide and conquer C
matmult block-based matrix multiplication 1024×1024 matrices divide and conquer C
nqueen N-queen problem 14 queens depth-first search C

tsp travelling sales person (TSP) problem 12 cities depth-first search C

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

C
ri

ti
ca

l
P

a
th

 E
ff

ic
ie

n
cy

Number of CPU

3x+1
mandelbrot
md
fft
matmult
nqueen
tsp
bh

Fig. 5. Critical Path Execution Efficiency

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

S
p

ec
u

la
ti

v
e

P
a
th

 E
ff

ic
ie

n
cy

Number of CPU

3x+1 mandelbrot md fft matmult nqueen tsp bh

Fig. 6. Speculative Path Execution Efficiency

critical path efficiency drops continually, which explains its
lower speedups. An interesting fact is that the critical and
speculative path efficiency of nqueen and tsp are nearly the
same all the time, showing similar characteristics of the
two benchmarks. matmult has the third highest critical path
efficiency of 94%-100%, illustrating the benefit of data reuse
(spatial locality) of efficient memory buffering using the block-
based approach. However, its low speculative path efficiency
significantly weakens its speedups.

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

P
o

w
er

 E
ff

ic
ie

n
cy

Number of CPU

3x+1 mandelbrot md fft matmult nqueen tsp bh

Fig. 7. Power Efficiency

Power consumption is a major concern in modern systems
as well. Although we cannot measure power usage precisely,

we can approximate power efficiency as the sequential runtime
divided by the sum of the runtime of the non-speculative
and all speculative threads ηpower = Ts/(Truntime nonsp +
Truntime sp), giving us an inverse measure of relative waste.
This is shown in Figure 7. As expected, the computation-
intensive applications are much more power efficient, up to
60% to 76% at 64 cores. Among the memory-intensive ones,
nqueen and tsp have the highest power efficiency of 15%
and 14%, respectively, followed by bh (10%), fft (8.4%) and
matmult (5.3%).

The parallel execution coverage is defined as the sum of the
speculative path runtime divided by the critical path runtime
C = Truntime sp/Truntime nonsp. All our benchmarks have
significant parallel execution coverage of 23.1 to 60.7, as
expected of the mixed forking model.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 10 12 15 20 32 48 64

Number of CPU

Critical Path Breakdown - FFT

work

join

idle

fork

find CPU

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 10 12 15 20 32 48 64

Number of CPU

Critical Path Breakdown - Molecular Dynamics

work

join

idle

fork

find CPU

Fig. 8. Critical Path Breakdown - fft and md

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8 10 12 15 20 32 48 64

Number of CPU

Speculative Path Breakdown - FFT

wasted work finalize

commit validation overflow

idle fork find CPU

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8 10 12 15 20 32 48 64

Number of CPU

Speculative Path Breakdown - Matmult

wasted work finalize

commit validation overflow

idle fork find CPU

Fig. 9. Speculative Path Breakdown - fft and matmult

To further understand the overhead, we breakdown the
executions of the least efficient benchmarks: fft and md for
the critical path, and fft and matmult for the speculative path.
The results are presented in figures 8 and 9. It can be seen that
almost all overhead of the critical path is the idle time spent on
synchronizing with the speculative threads, mainly waiting for
them to validate and commit their memory buffers. The specu-
lative path is more interesting. For fft, validation, commit and
finalization accounts for 17% of the total speculative runtime
with few cores, decreasing as more cores are used. Idle time
accounts for most its time, however, up to 59% at 64 cores;
this is partly because we fork a thread to execute the second
recursive call and barrier it after the call, preventing it from
accessing parent data and causing unnecessary rollbacks. In
our experiments, matmult is the only benchmark that exhibits
rollbacks, which start to occur from 3 cores and peakat 23%

at 7 cores. Though we split the computation into 4 sub-tasks
each multiplying one sub-matrix, if the sub-tasks split their
own sub-tasks, then different “sub-sub-tasks” may read/write
the same data and cause rollbacks. Like fft, though, idle time
still dominates, again due to speculative execution barriers.

C. Comparison of Forking Models

A comparison for different forking models is illustrated
in figure 10, normalized to the speedup of the full mixed
model. With more than 8 cores, the mixed model beats in-
order and out-of-order models for almost all benchmarks. The
only exceptions are in-order nqueen from 8 to 20 cores and tsp
from 12 to 14 cores. With less than 8 cores, generally the DFS
benchmarks perform better under a mixed-model while divide-
and-conquer ones prefer in-order or out-of-order models.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

N
o
rm

a
li

ze
d

 S
p

ee
d

u
p

Number of CPU

fft - inorder matmult - inorder

nqueen -inorder tsp - inorder

fft - outoforder matmult - outoforder

nqueen - outoforder tsp - outoforder

Fig. 10. Comparison of Forking Models

D. Rollback Sensitivity

Most of our benchmarks (other than matmult) do not gen-
erate rollacks due to their embarrassingly parallel properties.
Here we intentionally make the MUTLS system randomly
cause rollbacks with specific probabilities in order to see
the effect on performance. We characterize this as Rollback
Sensitivity, which is the relative slowdown with respect to the
non-rollback scenarios. The results are shown in figure 11.
It can be seen that programs with better speedups are more
sensitive to rollbacks, especially for low rollback probabilities.
We also note that for most memory-intensive workloads, 5%
rollbacks can preserve at least 70% speedups.

0

0.2

0.4

0.6

0.8

1

1.2

mandelbrot md fft matmult nqueen tsp bh

Rollback Sensitivity

1%

5%

10%

20%

50%

100%

Fig. 11. Rollback Sensitivity

VI. CONCLUSIONS AND FUTURE WORK

The complexity of even a relatively plain implementation
of TLS makes exploration of the many possible design choices
difficult, a problem exacerbated by the potential for interaction

with other aspects of an optimizing compiler and execution
environment. The MUTLS system is intended to improve that
situation, providing a full-featured TLS compiler framework
that accommodates a wide variety of input and output contexts.
With a mixed forking model, MUTLS has more potential to
extract parallelism from tree-form recursion applications.

Future work involves more fully fleshing out the design,
adding in features and capabilities that enable deeper ex-
ploration of different aspects of TLS. This includes value
prediction, different automatic fork heuristics, as well as
other improvements to the interface that simplify usage. A
direct and very practical application of our TLS design is
for ready incorporation into the execution context of more
dynamic languages such as JavaScript, Matlab, and Python,
where parallelism likely exists but is difficult to extract using
traditional, conservative analyses and optimizations.

REFERENCES

[1] LLVM (low-level vitrual machine). http://llvm.org.
[2] A. Bhattacharyya. Using combined profiling to decide when thread

level speculation is profitable. In PACT’12, pages 483–484, 2012.
[3] M. K. Chen and K. Olukotun. Exploiting method-level parallelism in

single-threaded Java programs. In PACT’98, pages 176–184, Oct. 1998.
[4] M. K. Chen and K. Olukotun. The Jrpm system for dynamically

parallelizing Java programs. In ISCA’03, pages 434–446, June 2003.
[5] H. Cui, J. Wu, C. che Tsai, and J. Yang. Stable deterministic

multithreading through schedule memoization. In OSDI’10, 2010.
[6] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang. Software

behavior oriented parallelization. In PLDI’07, pages 223–234, June
2007.

[7] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F. Ngai.
A cost-driven compilation framework for speculative parallelization of
sequential programs. In PLDI’04, pages 71–81, June 2004.

[8] A. Garcı́a-Yágüez, D. R. Llanos, and A. González-Escribano. Squash-
ing alternatives for software-based speculative parallelization. IEEE
Transactions on Computers, pages 247–279, May 2013.

[9] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrellas.
POSH: A TLS compiler that exploits program structure. In PPoPP’06,
pages 158–167, Mar. 2006.

[10] C. E. Oancea and A. Mycroft. Software thread-level speculation: an
optimistic library implementation. In IWMSE’08, pages 23–32, May
2008.

[11] C. E. Oancea, A. Mycroft, and T. Harris. A lightweight in-place
implementation for software thread-level speculation. In SPAA’09,
pages 223–232, Aug. 2009.

[12] C. J. Pickett and C. Verbrugge. SableSpMT: a software framework
for analysing speculative multithreading in Java. In PASTE’05, pages
59–66, Sept. 2005.

[13] C. J. Pickett and C. Verbrugge. Software thread level speculation for the
Java language and virtual machine environment. In LCPC’05, volume
4339 of LNCS, pages 304–318. Springer-Verlag, 2005.

[14] M. K. Prabhu and K. Olukotun. Using thread-level speculation to
simplify manual parallelization. In PPoPP’03, pages 1–12, 2003.

[15] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and D. I. August. Com-
mutative set: A language extension for implicit parallel programming.
In PLDI’11, pages 1–11, June 2011.

[16] C. G. Quiñones, C. Madriles, J. Sánchez, P. Marcuello, A. González,
and D. M. Tullsen. Mitosis compiler: an infrastructure for speculative
threading based on pre-computation slices. In PLDI’05, pages 269–279,
June 2005.

[17] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede
approach to thread-level speculation. ACM Transactions on Computer
Systems (TOCS), 23(3):253–300, Aug. 2005.

[18] J.-B. Tristan, P. Govereau, and G. Morrisett. Evaluating value-graph
translation validation for LLVM. PLDI’11, pages 295–305, June 2011.

[19] A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In
OOPSLA’05, pages 439–453, Oct. 2005.

[20] J. Whaley and C. Kozyrakis. Heuristics for profile-driven method-level
speculative parallelization. In ICPP’05, pages 147–156, June 2005.

