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Abstract. Fork-heuristics play a key role in software Thread-Level Spec-
ulation (TLS). Current fork-heuristics either lack real parallel execu-
tion environment information to accurately evaluate fork points and/or
focus on hardware-TLS implementation which cannot be directly ap-
plied to software TLS. This paper proposes adaptive fork-heuristics as
well as a feedback-based selection technique to overcome the problems.
Adaptive fork-heuristics insert and speculate on all potential fork/join
points and purely rely on the runtime system to disable inappropriate
ones. Feedback-based selection produces parallelized programs with ideal
speedups using log files generated by adaptive heuristics. Experiments of
three scientific computing benchmarks on a 64-core machine show that
feedback-based selection and adaptive heuristics achieve more than 88%
and 50% speedups of the manual-parallel version, respectively. For the
Barnes-Hut benchmark, feedback-based selection is 49% faster than the
manual-parallel version.
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1 Introduction

Thread-level speculation (TLS) is a safety-guaranteed approach to automatic or
implicit parallelization. Speculative threads are optimistically launched at fork
points, executing a code sequence from join points well ahead of their parent
thread. Safety is preserved in this speculative model by buffering reads and
writes of the speculative thread. Once the parent thread reaches the join point
the latter may be joined, committing speculative writes to main memory and
merging its execution state into the parent thread, provided no read conflicts
have occurred. In the presence of conflicts the speculative child execution is
discarded or rolled back for re-execution by the parent.

The selection of fork/join points plays a key role in the performance of TLS,
especially for software implementations as a result of higher overhead than its
hardware counterpart. So far there are three sorts of fork-heuristics: static heuris-
tics [5], static profiling heuristics [4, 10, 11] and dynamic profiling heuristics [9].
The first build mathematical cost-benefit models of speculative execution us-
ing compile-time program information, and use the models to predict profitable
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fork/join points. This approach has the limitation that some model parameters,
such as thread dependency probability and iteration count of nested loops, are
unknown at compile-time, which in turn limits its effectiveness and application.
The second heuristics compile and run the sequential program, collect profiling
execution traces, and then use the traces to determine the best fork/join points.
The drawback of this approach is lack of real parallel execution environment in-
formation, which limits accuracy of the fork point selection decision. The third
approach is more promising for real estimation, but is currently based on hard-
ware implementation, which is inappropriate and cannot be directly applied to
software TLS.

This paper proposes adaptive fork-heuristics to solve the above problems.
Adaptive heuristics are dynamic profiling heuristics for software TLS, which in-
sert all potential fork/join points into the speculative program and rely entirely
on the runtime system to determine profitable fork/join points and disable in-
appropriate ones. Since fork/join points are evaluated during real speculative
parallel execution, all necessary information such as the thread conflict ratio and
thread execution time is available, enabling accurate estimation of cost-benefit
of each thread and thus each pair of fork/join points. On-the-fly fork/join point
selection also eliminates the requirement of profiling runs and enables adaptation
to different fork/join points for different input data. Our investigation demon-
strates feasibility of this approach, as well as providing concrete data on actual
performance in a realistic thread-level speculative system.

2 Related Work

The bulk of proposed fork-heuristics are static profiling heuristics. Java runtime
parallelizing machine (Jrpm) [4], for instance, first profiles execution of a sequen-
tial program with a hardware profiler, and then dynamically speculates on the
selected prospective loops after collecting enough profiling data to decide the
best loops to parallelize. Du et al. [6] proposed a cost-model-driven compilation
framework SPT to select candidate loops for speculative parallelization, which
builds control-flow graphs and data-dependence graphs with profiling informa-
tion of a sequential execution and uses the graphs to evaluate candidate loops
based on the cost model. The STAMPede [11] TLS approach selects specula-
tively parallel loops based on several filter criteria: the loop execution coverage
and iteration count are above a threshold and the loop body is neither too large
nor too small. The Mitosis [10] compiler/architecture uses arbitrary pairs of ba-
sic blocks as fork/join points and models parallel execution based on profiling
traces to estimate candidate pairs. The POSH [7] compiler simulates sequen-
tial execution on a train input set and models TLS parallel execution to select
beneficial fork/join points.

There is also research dedicated to static profiling heuristics. Whaley and
Kozyrakis [13] proposed three classes of heuristics for method-level speculation,
and found that single-pass heuristics lead to best speedups while simple/complex
multi-pass heuristics tend to over/under speculation. Wang et al. [12] constructed
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a loop-graph and used it for global loop selection to maximize program per-
formance. Liu et al. [8] proposed an online-profiling approach to speculatively
parallelize candidate loops. Online static profiling approaches [4, 8] have the ad-
vantage over offline-profiling that they do not require additional profiling input
and can dynamically profile on the real data. However, these still lack parallel
execution environment information for accurate estimation of fork/join points.
Pure static heuristics are less common, since they lack runtime parameters. Dou
and Cintra [5] proposed a thread-tuple cost-model to estimate speedups of can-
didate loops. As well, some heuristics combine profiling and static approaches,
such as SPT [6].

Dynamic profiling heuristics have recently been studied. Luo et al. [9] pro-
posed a dynamic performance tuning technique for selection of candidate loops.
It used hardware performance monitors to profile runtime statistics such as in-
struction fetch penalty and cache miss, and estimated the efficiency of each
thread and loop with the statistics. Unfortunately, this approach cannot be di-
rectly applied to software TLS without low-level and machine-specific access to
hardware performance monitors.

All the above are hardware-TLS heuristics, which tend to focus on finer-
granularity parallelism due to hardware resource constraints. In software-TLS,
heuristics should focus on coarser-granularity parallelism as software TLS has
higher overhead than hardware implementation. So far as we know, the adap-
tive heuristics we propose are the first heuristics specifically proposed for and
validated in software TLS.

HEUSPEC [14] is a software speculation parallel model that dynamically
adapts to different value predictors and granularity tasks. While adaptive fork-
heuristics target the problem of fork point selection.

3 Adaptive Fork-Heuristics

Adaptive fork-heuristics add potential pairs of fork/join points to the specula-
tive program, evaluate the cost-benefit of each pair during parallel execution
and disable unprofitable ones. The design involves three aspects: (1) what the
potential fork/join points are, (2) how to estimate the cost-benefit of each pair
of fork/join points, and (3) how to disable fork points.

3.1 Potential Fork/Join Points

The potential fork/join points of the design are loop iterations and function
(method) calls, since loops usually take the majority of program’s execution
time and function calls usually represent independent computation tasks. They
are also the choice of most other TLS works, known as loop-level speculation
and method-level speculation, respectively.

We also apply two optimizations for each loop: “blockize” and “end-barrier.”
Suppose there are n processors. Blockize splits the loop iterations into n blocks,
which in turn avoids creating too many small threads. The exception is loops
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with a small constant number of iterations, which do not need this optimization.
The end-barrier optimization adds a barrierpoint just after the end of the loop.
This optimization is beneficial because loops usually have dependency with their
continuation, particularly for loop nests, in which case an inner loop thread may
cause cascading rollbacks of the outer loop threads.

In this implementation, we add directives of fork/join/barrier points and per-
form the two optimizations manually. This is a limitation of our prototype—both
the adding of fork/join/barrier points annotation and the optimizations can be
automated by compiler transformation, enabling full automatic parallelization.

3.2 Cost-Benefit Estimation

The design uses a cost-benefit model to evaluate the profitability of each thread
and each pair of fork/join points. The model assumes a constant time Toverhead

of overhead (thread creation, cache miss, buffering, etc) for each thread. Al-
though this is an inaccurate approximation since threads with different memory
access frequencies have different buffering overhead, we find it works well for
our estimation, partly because we are only concerned with whether a thread is
profitable, and not how profitable it is.

The runtime Tt,run of a speculative thread t comprises two parts: work
time Tt,work and synchronization/validation/commit/rollback time, which are
available through timing. If thread t commits, its cost-benefit is estimated as
ηt = Tt,work/(Tt,run + Toverhead). If it rolls back, its cost-benefit is 0. Given a
minimum cost-benefit threshold ηthreshold, if ηt < ηthreshold, then thread t is
considered not profitable and should not have been speculated.

If the assumption holds that threads speculated at the same fork point always
show similar behaviour (they always commit/rollback and have similar work time
/ runtime ratio), then we can directly use ηt to estimate the cost-benefit of the
fork point. However, the assumption generally does not hold, even for fork/join
points speculating independent loop iterations. The reason is that at the be-
ginning of program execution many threads with dependencies are speculated,
causing nondeterministic rollbacks.

We propose 3 independent mechanisms to address this issue: global hint,
local hint and interval hint. Global hint uses at least Nwarmup threads instead
of one thread to determine the cost-benefit of a pair of fork/join points. When
a thread completes execution, its runtime plus overhead is accumulated to the
runtime Trun of the pair Trun = Trun + Tt,run + Toverhead. The exception is
when it is cascadingly rolled back, as a cascading rollback does not represent the
cost-benefit of a thread. If it commits, its work time is accumulated to the work
time Twork of the pair Twork = Twork + Tt,work. After N >= Nwarmup threads
completes, the cost-benefit of the pair is then estimated as η = Twork/Trun. The
hint disables the fork point if the cost-benefit is below a threshold. For local hint,
if a thread decides not to speculate on a fork point then none of its child threads,
grand-child threads, etc can speculate on the fork point. In other words, a local
hint affects the sub-tree of a thread, hence the name. Interval hints directly use
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the cost-benefit of a thread to decide profitability of its fork point; if a fork-
point is disabled, it will try to speculate again after certain amount of time has
passed. We find the global hint is the most effective for our benchmarks. It seems
to work well on independent loops while the other two might suit more irregular
applications. We plan to compare these hints in future work.

3.3 Disabling Fork Points

Each fork point has a globally unique id. The TLS runtime system maintains the
attributes of the fork point, which can be accessed given the id. When a thread
reaches a fork point, it queries the runtime system with the id whether it can
speculate on the fork point. The runtime system then checks a flag variable of
fork point attributes and returns the result. When a thread commits/rollbacks,
if the adaptive fork-heuristics decide that one fork point is not profitable as
discussed in section 3.2, the runtime system then set the flag variable to false to
disable the fork point.

If a loop nest has independent outer loops, such as enumerating elements on
a matrix, then we can select to speculate on any or all of these loops. Speculating
on outer loops enables coarser granularity parallelism but tends to consume more
memory than inner ones, while speculating on all loops maximizes parallelism.
These decisions have important influence on performance. However, the adaptive
fork heuristics will select all speedup loops, even though disabling inner ones
may yield further speedups as a result of less thread overhead. Here, we add an
option, nest-loop-disabling, to disable an inner loop if its parent nest loop stably
commits (its N and η are above the thresholds).

We also propose an optimizing technique called feedback-based selection to
achieve ideal speedups from the second compilation for our benchmarks. After
the program completes execution, it records the cost-benefit of each fork point
to a feedback-based selection log file. The next time the TLS compiler compiles
the program, it reads the log file and does not insert inappropriate fork/join
points as potential candidates. For points that behave differently depending on
the input, the programmer can annotate them so that the compiler still insert
them even though they are in the log file. The optimization prevents unprofitable
fork/join points from hurting performance repeatedly for each compilation.

4 Implementation Framework

We implement the adaptive fork-heuristics into the MUTLS [2, 3] software-TLS
compiler framework. MUTLS is a language and architecture independent soft-
ware TLS framework purely based on the LLVM [1] intermediate representation
(IR). It can exploit substantial parallelism from both loop- and method-level
speculation. It supports compiler directives to annotate fork/join/barrier points.
Each annotation also specifies an id. Threads speculated at a fork point will start
execution from the join point with the same id, and will be joined when the non-
speculative thread reaches that join point. A thread will also stop execution
when it reaches a barrier point with the same id.



6 Zhen Cao and Clark Verbrugge

A sample program as well as its semiautomatically parallelized program an-
notated with adaptive fork-heuristics and feedback-based selection log file gener-
ated by the MUTLS compiler is illustrated in Figure 1. Given the log file, there
are various criteria to decide inappropriate fork/join points, such as whether a
fork point is disabled, whether the cost-benefit is below a threshold, and whether
the ratio of committed/total threads is below a threshold. Combination of these
criteria is also possible. In the current implementation, we simply decide not to
add a pair of fork/join points as potential ones if the fork point is disabled.

 

 

 

  

void work(int n) { 

 … 

 for(i = 0; i < n; i++){ 

  for(j = 0; j < 8; j++){ 

   x = f(i, j); 

   s[i][j] += x*x; 

  } 

 } 

 … 

} 

void work(int n) { 

 … 

 for(p = 0; p < P; p++){ 

#pragma tls fork id 1 

  for(i = n * p / P; i < n * (p+1) / P; i++){ 

   for(j = 0; j < 8; j++){ 

#pragma tls fork id 2 

#pragma tls fork id 3 

    x = f(i, j); 

#pragma tls join id 3 

    s[i] += x*x; 

#pragma tls join id 2 

   } 

#pragma tls barrier id 2 

  } 

#pragma tls join id 1 

 } 

#pragma tls barrier id 1 

 … 

} 

(a) Original Program 

(b) Program with Adaptive Fork-Heuristics 

fork point id 1 selected 

cost-benefit 0.9 commit 80 rollback 0 

fork point id 2 disabled 

cost-benefit 0.3 commit 15 rollback 0 

fork point id 3 disabled 

cost-benefit 0 commit 0 rollback 10 

(c) Feedback-based Selection Log File 

Fig. 1. Semiautomatic-Parallelization of a Program

5 Experimental Results

Experiments are performed on a AMD Opteron machine with 64 2.2GHz pro-
cessor cores (4×16 core, 8×2MB L2 cache) and 64GB memory. We use three
scientific computing benchmarks: Barnes-Hut (bh), molecular dynamics (md)
and Mandelbrot (mb). The performance results are shown in Figures 2, 3 and 4
and compared in Figure 5.

For each benchmark, we present the speedups of the manually speculated
program (manual version), the semiautomatically parallelized program using
adaptive fork-heuristics (adaptive version), as well as the optimized program
parallelized by feedback-based selection (feedback version). We also present the
results of the program speculating at every fork point (no hint version) as a base-
line. The manual version evenly distributes the computing tasks to N processor
cores, which serves as the reference implementation. We ran the semiautomatic-
parallel programs 10 times each and present the maximum, average (arithmetic
mean) and minimum speedups. The feedback version is parallelized using the
log file produced by the maximum speedup run.
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Fig. 2. Speedup Results - Barnes Hut

We can see that the adaptive fork-heuristics perform excellently on these
benchmarks. The feedback and adaptive versions of all benchmarks achieve more
than 88% and 50% of the manual parallel performance at 64 cores, respectively.
The feedback version of Barnes-Hut is even 49% faster than the manual ver-
sion. The adaptive version also beats the manual one on average. In addition to
the top-level task distribution loops, the heuristics also select some fork points
in the task computation functions. However, those fork points result in better
speedups not because they contribute to more parallelism, but just because of
cache issues. In fact, we find that even just adding pure rollback yields higher
speedups than the manual version—even failed speculation acts as pre-fetching.
This case demonstrates the power of adaptive fork heuristics that can be directly
applied on real execution, which can always avoid inappropriate fork points and
try to select as more beneficial ones as possible. In contrast, other fork heuris-
tics use pre-defined fork points that do not guarantee benefits on real execution.
Moreover, they cannot select such cache-beneficial fork points due to lack of real
parallel execution environment information.
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Fig. 3. Speedup Results - Molecular Dynamics

For the md benchmark, all versions show close performance, with little vari-
ance in the adaptive runs. Overhead of heuristics is negligible, which demon-



8 Zhen Cao and Clark Verbrugge

strates satisfactory efficiency and applicability of the heuristics. The adaptive
and feedback versions generally show higher performance between 8 and 55 cores
than the manual version, but lower with 1 to 7 and 56 to 64 cores, due to different
cache behaviours affected by the heuristics.
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Fig. 4. Speedup Results - Mandelbrot

On the other hand, mb is the least efficient benchmark with respect to
the heuristics, due to its small innermost loop body. However, the normalized
speedups of the adaptive version is relatively stable with the number of cores,
and there is not much variance between each run, which guarantees worst-case
performance. The nest-loop-disabling option is used for the benchmark, which
improves the speedups by 3 times.
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Fig. 5. Performance comparison, speedups normalized to the manual versions

Though the feedback-based selection log file is chosen to be the best speedup
one over 10 runs, all the log files select the same fork/join points as the manual
version for mb and md. For bh, any of the log files produces a feedback version
with significantly higher speedups over the corresponding adaptive ones. Besides,
the feedback versions can be further applied feedback-based selection to produce
even better feedback versions.

To understand what the best parameters are for the benchmarks, we also
experimented with different parameter configurations to see their influence on
the performance. The results are illustrated in Figure 6, with speedups normal-
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ized to the average speedups of the adaptive versions. For all experiments, we
set ηthreshold = 0.5 to indicate overhead should not take more time than useful
work. We then set the default parameters Toverhead = 1000000, Nwarmup = 10
and adjust one of them. The speedup data is computed by geometric means over
10 runs on 64 processor cores.
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Fig. 6. Parameter Results - Toverhead and Nwarmup

It can be seen that the performance is not very sensitive to the parameters of
the heuristics, which is encouraging. The benchmarks have relatively stable per-
formance with Toverhead between 100000 and 1000000 CPU cycles and Nwarmup

between 3 and 10. In general, the performance degrades outside these ranges,
except for mb, which prefers smaller thread overhead and less warmup runs.
The significant performance drop of Nwarmup from 10 to 100 is because a large
number of warmup runs prevents the nest-loop-disabling optimization. It is also
remarkable that memory-intensive benchmarks (bh) tend to suit larger Toverhead

than computation-intensive ones (mb, md).

6 Conclusions and Future Work

In this paper we proposed an adaptive fork-heuristics for software TLS, which
inserts all potential fork/join points and purely relies on the heuristics and run-
time system to disable the inappropriate ones. These adaptive heuristics have
ability to utilize the real parallel execution environment information to maximize
performance. In addition, we proposed a feedback-based selection technique to
achieve ideal speedups.

Experiments on three scientific computing benchmarks on a 64-core machine
demonstrate that the adaptive fork-heuristics are both highly effective and effi-
cient. All benchmarks achieve more than 88% and 50% speedups of the manual
version for the programs parallelized by feedback-based selection and adaptive
fork-heuristics, respectively. Moreover, the feedback version of Barnes-Hut are
49% faster than the manual version due to exploitation of cache efficiency. Ex-
periments also show the encouraging fact that the heuristics are not overly pa-
rameter sensitive.

In future work, we will exploit more accurate cost-benefit models and hints
that are more stable and even less parameter dependent, and evaluate with
more benchmarks. We will also implement the necessary compiler optimizations
to enable fully automatic parallelization with adaptive fork-heuristics.
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D.M.: Mitosis compiler: an infrastructure for speculative threading based on pre-
computation slices. In: PLDI’05: Proceedings of the 2005 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. pp. 269–279 (Jun
2005)

11. Steffan, J.G., Colohan, C., Zhai, A., Mowry, T.C.: The STAMPede approach to
thread-level speculation. ACM Transactions on Computer Systems (TOCS) 23(3),
253–300 (Aug 2005)

12. Wang, S., Dai, X., Yellajyosula, K.S., Zhai, A., Yew, P.C.: Loop selection for
thread-level speculation. In: Proceedings of the 18th international conference on
Languages and Compilers for Parallel Computing (LCPC). pp. 289–303. Springer-
Verlag (2005)

13. Whaley, J., Kozyrakis, C.: Heuristics for profile-driven method-level speculative
parallelization. In: ICPP’05: Proceedings of the 2005 International Conference on
Parallel Processing. pp. 147–156 (Jun 2005)

14. Xu, F., Shen, L., Wang, Z., Guo, H., Su, B., Chen, W.: Heuspec: A software
speculation parallel model. In: ICPP’13: Proceedings of the 42nd International
Conference on Parallel Processing. pp. 621–630 (2013)


